Feynman disentangling of noncommuting operators in quantum mechanics
Abstract Feynman’s disentangling theorem is applied to noncommuting operators in the problem of quantum parametric oscillator, which is mathematically equivalent to the problem of SU(1, 1) pseudospin rotation. The number states of the oscillator correspond to unitary irreducible representations of t...
Ausführliche Beschreibung
Autor*in: |
Popov, V. S. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2005 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Pleiades Publishing, Inc. 2005 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of experimental and theoretical physics - Nauka/Interperiodica, 1993, 101(2005), 5 vom: Nov., Seite 817-829 |
---|---|
Übergeordnetes Werk: |
volume:101 ; year:2005 ; number:5 ; month:11 ; pages:817-829 |
Links: |
---|
DOI / URN: |
10.1134/1.2149062 |
---|
Katalog-ID: |
OLC2043151665 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2043151665 | ||
003 | DE-627 | ||
005 | 20230504103753.0 | ||
007 | tu | ||
008 | 200820s2005 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1134/1.2149062 |2 doi | |
035 | |a (DE-627)OLC2043151665 | ||
035 | |a (DE-He213)1.2149062-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
084 | |a 33.00 |2 bkl | ||
100 | 1 | |a Popov, V. S. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Feynman disentangling of noncommuting operators in quantum mechanics |
264 | 1 | |c 2005 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Pleiades Publishing, Inc. 2005 | ||
520 | |a Abstract Feynman’s disentangling theorem is applied to noncommuting operators in the problem of quantum parametric oscillator, which is mathematically equivalent to the problem of SU(1, 1) pseudospin rotation. The number states of the oscillator correspond to unitary irreducible representations of the SU(1, 1) group. Feynman disentangling is combined with group-theoretic arguments to obtain simple analytical formulas for the matrix elements and transition probabilities between the initial and final states of the oscillator. Feynman disentangling of time evolution operators is also discussed for an atom or ion interacting with a laser field and for a model Hamiltonian possessing the “ hidden” symmetry of the hydrogen atom. | ||
650 | 4 | |a Field Theory | |
650 | 4 | |a Hydrogen Atom | |
650 | 4 | |a Matrix Element | |
650 | 4 | |a Time Evolution | |
650 | 4 | |a Elementary Particle | |
773 | 0 | 8 | |i Enthalten in |t Journal of experimental and theoretical physics |d Nauka/Interperiodica, 1993 |g 101(2005), 5 vom: Nov., Seite 817-829 |w (DE-627)131188410 |w (DE-600)1146369-7 |w (DE-576)032622368 |x 1063-7761 |7 nnns |
773 | 1 | 8 | |g volume:101 |g year:2005 |g number:5 |g month:11 |g pages:817-829 |
856 | 4 | 1 | |u https://doi.org/10.1134/1.2149062 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_2185 | ||
912 | |a GBV_ILN_2192 | ||
912 | |a GBV_ILN_4116 | ||
912 | |a GBV_ILN_4305 | ||
936 | b | k | |a 33.00 |q VZ |
951 | |a AR | ||
952 | |d 101 |j 2005 |e 5 |c 11 |h 817-829 |
author_variant |
v s p vs vsp |
---|---|
matchkey_str |
article:10637761:2005----::enadsnagigfocmuigprtri |
hierarchy_sort_str |
2005 |
bklnumber |
33.00 |
publishDate |
2005 |
allfields |
10.1134/1.2149062 doi (DE-627)OLC2043151665 (DE-He213)1.2149062-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Popov, V. S. verfasserin aut Feynman disentangling of noncommuting operators in quantum mechanics 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Inc. 2005 Abstract Feynman’s disentangling theorem is applied to noncommuting operators in the problem of quantum parametric oscillator, which is mathematically equivalent to the problem of SU(1, 1) pseudospin rotation. The number states of the oscillator correspond to unitary irreducible representations of the SU(1, 1) group. Feynman disentangling is combined with group-theoretic arguments to obtain simple analytical formulas for the matrix elements and transition probabilities between the initial and final states of the oscillator. Feynman disentangling of time evolution operators is also discussed for an atom or ion interacting with a laser field and for a model Hamiltonian possessing the “ hidden” symmetry of the hydrogen atom. Field Theory Hydrogen Atom Matrix Element Time Evolution Elementary Particle Enthalten in Journal of experimental and theoretical physics Nauka/Interperiodica, 1993 101(2005), 5 vom: Nov., Seite 817-829 (DE-627)131188410 (DE-600)1146369-7 (DE-576)032622368 1063-7761 nnns volume:101 year:2005 number:5 month:11 pages:817-829 https://doi.org/10.1134/1.2149062 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2185 GBV_ILN_2192 GBV_ILN_4116 GBV_ILN_4305 33.00 VZ AR 101 2005 5 11 817-829 |
spelling |
10.1134/1.2149062 doi (DE-627)OLC2043151665 (DE-He213)1.2149062-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Popov, V. S. verfasserin aut Feynman disentangling of noncommuting operators in quantum mechanics 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Inc. 2005 Abstract Feynman’s disentangling theorem is applied to noncommuting operators in the problem of quantum parametric oscillator, which is mathematically equivalent to the problem of SU(1, 1) pseudospin rotation. The number states of the oscillator correspond to unitary irreducible representations of the SU(1, 1) group. Feynman disentangling is combined with group-theoretic arguments to obtain simple analytical formulas for the matrix elements and transition probabilities between the initial and final states of the oscillator. Feynman disentangling of time evolution operators is also discussed for an atom or ion interacting with a laser field and for a model Hamiltonian possessing the “ hidden” symmetry of the hydrogen atom. Field Theory Hydrogen Atom Matrix Element Time Evolution Elementary Particle Enthalten in Journal of experimental and theoretical physics Nauka/Interperiodica, 1993 101(2005), 5 vom: Nov., Seite 817-829 (DE-627)131188410 (DE-600)1146369-7 (DE-576)032622368 1063-7761 nnns volume:101 year:2005 number:5 month:11 pages:817-829 https://doi.org/10.1134/1.2149062 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2185 GBV_ILN_2192 GBV_ILN_4116 GBV_ILN_4305 33.00 VZ AR 101 2005 5 11 817-829 |
allfields_unstemmed |
10.1134/1.2149062 doi (DE-627)OLC2043151665 (DE-He213)1.2149062-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Popov, V. S. verfasserin aut Feynman disentangling of noncommuting operators in quantum mechanics 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Inc. 2005 Abstract Feynman’s disentangling theorem is applied to noncommuting operators in the problem of quantum parametric oscillator, which is mathematically equivalent to the problem of SU(1, 1) pseudospin rotation. The number states of the oscillator correspond to unitary irreducible representations of the SU(1, 1) group. Feynman disentangling is combined with group-theoretic arguments to obtain simple analytical formulas for the matrix elements and transition probabilities between the initial and final states of the oscillator. Feynman disentangling of time evolution operators is also discussed for an atom or ion interacting with a laser field and for a model Hamiltonian possessing the “ hidden” symmetry of the hydrogen atom. Field Theory Hydrogen Atom Matrix Element Time Evolution Elementary Particle Enthalten in Journal of experimental and theoretical physics Nauka/Interperiodica, 1993 101(2005), 5 vom: Nov., Seite 817-829 (DE-627)131188410 (DE-600)1146369-7 (DE-576)032622368 1063-7761 nnns volume:101 year:2005 number:5 month:11 pages:817-829 https://doi.org/10.1134/1.2149062 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2185 GBV_ILN_2192 GBV_ILN_4116 GBV_ILN_4305 33.00 VZ AR 101 2005 5 11 817-829 |
allfieldsGer |
10.1134/1.2149062 doi (DE-627)OLC2043151665 (DE-He213)1.2149062-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Popov, V. S. verfasserin aut Feynman disentangling of noncommuting operators in quantum mechanics 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Inc. 2005 Abstract Feynman’s disentangling theorem is applied to noncommuting operators in the problem of quantum parametric oscillator, which is mathematically equivalent to the problem of SU(1, 1) pseudospin rotation. The number states of the oscillator correspond to unitary irreducible representations of the SU(1, 1) group. Feynman disentangling is combined with group-theoretic arguments to obtain simple analytical formulas for the matrix elements and transition probabilities between the initial and final states of the oscillator. Feynman disentangling of time evolution operators is also discussed for an atom or ion interacting with a laser field and for a model Hamiltonian possessing the “ hidden” symmetry of the hydrogen atom. Field Theory Hydrogen Atom Matrix Element Time Evolution Elementary Particle Enthalten in Journal of experimental and theoretical physics Nauka/Interperiodica, 1993 101(2005), 5 vom: Nov., Seite 817-829 (DE-627)131188410 (DE-600)1146369-7 (DE-576)032622368 1063-7761 nnns volume:101 year:2005 number:5 month:11 pages:817-829 https://doi.org/10.1134/1.2149062 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2185 GBV_ILN_2192 GBV_ILN_4116 GBV_ILN_4305 33.00 VZ AR 101 2005 5 11 817-829 |
allfieldsSound |
10.1134/1.2149062 doi (DE-627)OLC2043151665 (DE-He213)1.2149062-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Popov, V. S. verfasserin aut Feynman disentangling of noncommuting operators in quantum mechanics 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Inc. 2005 Abstract Feynman’s disentangling theorem is applied to noncommuting operators in the problem of quantum parametric oscillator, which is mathematically equivalent to the problem of SU(1, 1) pseudospin rotation. The number states of the oscillator correspond to unitary irreducible representations of the SU(1, 1) group. Feynman disentangling is combined with group-theoretic arguments to obtain simple analytical formulas for the matrix elements and transition probabilities between the initial and final states of the oscillator. Feynman disentangling of time evolution operators is also discussed for an atom or ion interacting with a laser field and for a model Hamiltonian possessing the “ hidden” symmetry of the hydrogen atom. Field Theory Hydrogen Atom Matrix Element Time Evolution Elementary Particle Enthalten in Journal of experimental and theoretical physics Nauka/Interperiodica, 1993 101(2005), 5 vom: Nov., Seite 817-829 (DE-627)131188410 (DE-600)1146369-7 (DE-576)032622368 1063-7761 nnns volume:101 year:2005 number:5 month:11 pages:817-829 https://doi.org/10.1134/1.2149062 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2185 GBV_ILN_2192 GBV_ILN_4116 GBV_ILN_4305 33.00 VZ AR 101 2005 5 11 817-829 |
language |
English |
source |
Enthalten in Journal of experimental and theoretical physics 101(2005), 5 vom: Nov., Seite 817-829 volume:101 year:2005 number:5 month:11 pages:817-829 |
sourceStr |
Enthalten in Journal of experimental and theoretical physics 101(2005), 5 vom: Nov., Seite 817-829 volume:101 year:2005 number:5 month:11 pages:817-829 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Field Theory Hydrogen Atom Matrix Element Time Evolution Elementary Particle |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of experimental and theoretical physics |
authorswithroles_txt_mv |
Popov, V. S. @@aut@@ |
publishDateDaySort_date |
2005-11-01T00:00:00Z |
hierarchy_top_id |
131188410 |
dewey-sort |
3530 |
id |
OLC2043151665 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2043151665</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504103753.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2005 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/1.2149062</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2043151665</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)1.2149062-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Popov, V. S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Feynman disentangling of noncommuting operators in quantum mechanics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2005</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Inc. 2005</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Feynman’s disentangling theorem is applied to noncommuting operators in the problem of quantum parametric oscillator, which is mathematically equivalent to the problem of SU(1, 1) pseudospin rotation. The number states of the oscillator correspond to unitary irreducible representations of the SU(1, 1) group. Feynman disentangling is combined with group-theoretic arguments to obtain simple analytical formulas for the matrix elements and transition probabilities between the initial and final states of the oscillator. Feynman disentangling of time evolution operators is also discussed for an atom or ion interacting with a laser field and for a model Hamiltonian possessing the “ hidden” symmetry of the hydrogen atom.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen Atom</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrix Element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time Evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elementary Particle</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of experimental and theoretical physics</subfield><subfield code="d">Nauka/Interperiodica, 1993</subfield><subfield code="g">101(2005), 5 vom: Nov., Seite 817-829</subfield><subfield code="w">(DE-627)131188410</subfield><subfield code="w">(DE-600)1146369-7</subfield><subfield code="w">(DE-576)032622368</subfield><subfield code="x">1063-7761</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:101</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:5</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:817-829</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/1.2149062</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2185</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2192</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">101</subfield><subfield code="j">2005</subfield><subfield code="e">5</subfield><subfield code="c">11</subfield><subfield code="h">817-829</subfield></datafield></record></collection>
|
author |
Popov, V. S. |
spellingShingle |
Popov, V. S. ddc 530 bkl 33.00 misc Field Theory misc Hydrogen Atom misc Matrix Element misc Time Evolution misc Elementary Particle Feynman disentangling of noncommuting operators in quantum mechanics |
authorStr |
Popov, V. S. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)131188410 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1063-7761 |
topic_title |
530 VZ 33.00 bkl Feynman disentangling of noncommuting operators in quantum mechanics Field Theory Hydrogen Atom Matrix Element Time Evolution Elementary Particle |
topic |
ddc 530 bkl 33.00 misc Field Theory misc Hydrogen Atom misc Matrix Element misc Time Evolution misc Elementary Particle |
topic_unstemmed |
ddc 530 bkl 33.00 misc Field Theory misc Hydrogen Atom misc Matrix Element misc Time Evolution misc Elementary Particle |
topic_browse |
ddc 530 bkl 33.00 misc Field Theory misc Hydrogen Atom misc Matrix Element misc Time Evolution misc Elementary Particle |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of experimental and theoretical physics |
hierarchy_parent_id |
131188410 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Journal of experimental and theoretical physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)131188410 (DE-600)1146369-7 (DE-576)032622368 |
title |
Feynman disentangling of noncommuting operators in quantum mechanics |
ctrlnum |
(DE-627)OLC2043151665 (DE-He213)1.2149062-p |
title_full |
Feynman disentangling of noncommuting operators in quantum mechanics |
author_sort |
Popov, V. S. |
journal |
Journal of experimental and theoretical physics |
journalStr |
Journal of experimental and theoretical physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2005 |
contenttype_str_mv |
txt |
container_start_page |
817 |
author_browse |
Popov, V. S. |
container_volume |
101 |
class |
530 VZ 33.00 bkl |
format_se |
Aufsätze |
author-letter |
Popov, V. S. |
doi_str_mv |
10.1134/1.2149062 |
dewey-full |
530 |
title_sort |
feynman disentangling of noncommuting operators in quantum mechanics |
title_auth |
Feynman disentangling of noncommuting operators in quantum mechanics |
abstract |
Abstract Feynman’s disentangling theorem is applied to noncommuting operators in the problem of quantum parametric oscillator, which is mathematically equivalent to the problem of SU(1, 1) pseudospin rotation. The number states of the oscillator correspond to unitary irreducible representations of the SU(1, 1) group. Feynman disentangling is combined with group-theoretic arguments to obtain simple analytical formulas for the matrix elements and transition probabilities between the initial and final states of the oscillator. Feynman disentangling of time evolution operators is also discussed for an atom or ion interacting with a laser field and for a model Hamiltonian possessing the “ hidden” symmetry of the hydrogen atom. © Pleiades Publishing, Inc. 2005 |
abstractGer |
Abstract Feynman’s disentangling theorem is applied to noncommuting operators in the problem of quantum parametric oscillator, which is mathematically equivalent to the problem of SU(1, 1) pseudospin rotation. The number states of the oscillator correspond to unitary irreducible representations of the SU(1, 1) group. Feynman disentangling is combined with group-theoretic arguments to obtain simple analytical formulas for the matrix elements and transition probabilities between the initial and final states of the oscillator. Feynman disentangling of time evolution operators is also discussed for an atom or ion interacting with a laser field and for a model Hamiltonian possessing the “ hidden” symmetry of the hydrogen atom. © Pleiades Publishing, Inc. 2005 |
abstract_unstemmed |
Abstract Feynman’s disentangling theorem is applied to noncommuting operators in the problem of quantum parametric oscillator, which is mathematically equivalent to the problem of SU(1, 1) pseudospin rotation. The number states of the oscillator correspond to unitary irreducible representations of the SU(1, 1) group. Feynman disentangling is combined with group-theoretic arguments to obtain simple analytical formulas for the matrix elements and transition probabilities between the initial and final states of the oscillator. Feynman disentangling of time evolution operators is also discussed for an atom or ion interacting with a laser field and for a model Hamiltonian possessing the “ hidden” symmetry of the hydrogen atom. © Pleiades Publishing, Inc. 2005 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2185 GBV_ILN_2192 GBV_ILN_4116 GBV_ILN_4305 |
container_issue |
5 |
title_short |
Feynman disentangling of noncommuting operators in quantum mechanics |
url |
https://doi.org/10.1134/1.2149062 |
remote_bool |
false |
ppnlink |
131188410 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1134/1.2149062 |
up_date |
2024-07-03T18:16:36.827Z |
_version_ |
1803582803099516928 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2043151665</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504103753.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2005 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/1.2149062</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2043151665</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)1.2149062-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Popov, V. S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Feynman disentangling of noncommuting operators in quantum mechanics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2005</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Inc. 2005</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Feynman’s disentangling theorem is applied to noncommuting operators in the problem of quantum parametric oscillator, which is mathematically equivalent to the problem of SU(1, 1) pseudospin rotation. The number states of the oscillator correspond to unitary irreducible representations of the SU(1, 1) group. Feynman disentangling is combined with group-theoretic arguments to obtain simple analytical formulas for the matrix elements and transition probabilities between the initial and final states of the oscillator. Feynman disentangling of time evolution operators is also discussed for an atom or ion interacting with a laser field and for a model Hamiltonian possessing the “ hidden” symmetry of the hydrogen atom.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen Atom</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrix Element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time Evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elementary Particle</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of experimental and theoretical physics</subfield><subfield code="d">Nauka/Interperiodica, 1993</subfield><subfield code="g">101(2005), 5 vom: Nov., Seite 817-829</subfield><subfield code="w">(DE-627)131188410</subfield><subfield code="w">(DE-600)1146369-7</subfield><subfield code="w">(DE-576)032622368</subfield><subfield code="x">1063-7761</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:101</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:5</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:817-829</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/1.2149062</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2185</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2192</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">101</subfield><subfield code="j">2005</subfield><subfield code="e">5</subfield><subfield code="c">11</subfield><subfield code="h">817-829</subfield></datafield></record></collection>
|
score |
7.4009867 |