The Laplacian of a uniform hypergraph
Abstract In this paper, we investigate the Laplacian, i.e., the normalized Laplacian tensor of a $$k$$-uniform hypergraph. We show that the real parts of all the eigenvalues of the Laplacian are in the interval $$[0,2]$$, and the real part is zero (respectively two) if and only if the eigenvalue is...
Ausführliche Beschreibung
Autor*in: |
Hu, Shenglong [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2013 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of combinatorial optimization - Springer US, 1997, 29(2013), 2 vom: 05. Feb., Seite 331-366 |
---|---|
Übergeordnetes Werk: |
volume:29 ; year:2013 ; number:2 ; day:05 ; month:02 ; pages:331-366 |
Links: |
---|
DOI / URN: |
10.1007/s10878-013-9596-x |
---|
Katalog-ID: |
OLC2044618281 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2044618281 | ||
003 | DE-627 | ||
005 | 20230503135020.0 | ||
007 | tu | ||
008 | 200819s2013 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10878-013-9596-x |2 doi | |
035 | |a (DE-627)OLC2044618281 | ||
035 | |a (DE-He213)s10878-013-9596-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 3,2 |2 ssgn | ||
100 | 1 | |a Hu, Shenglong |e verfasserin |4 aut | |
245 | 1 | 0 | |a The Laplacian of a uniform hypergraph |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2013 | ||
520 | |a Abstract In this paper, we investigate the Laplacian, i.e., the normalized Laplacian tensor of a $$k$$-uniform hypergraph. We show that the real parts of all the eigenvalues of the Laplacian are in the interval $$[0,2]$$, and the real part is zero (respectively two) if and only if the eigenvalue is zero (respectively two). All the H$$^+$$-eigenvalues of the Laplacian and all the smallest H$$^+$$-eigenvalues of its sub-tensors are characterized through the spectral radii of some nonnegative tensors. All the H$$^+$$-eigenvalues of the Laplacian that are less than one are completely characterized by the spectral components of the hypergraph and vice verse. The smallest H-eigenvalue, which is also an H$$^+$$-eigenvalue, of the Laplacian is zero. When $$k$$ is even, necessary and sufficient conditions for the largest H-eigenvalue of the Laplacian being two are given. If $$k$$ is odd, then its largest H-eigenvalue is always strictly less than two. The largest H$$^+$$-eigenvalue of the Laplacian for a hypergraph having at least one edge is one; and its nonnegative eigenvectors are in one to one correspondence with the flower hearts of the hypergraph. The second smallest H$$^+$$-eigenvalue of the Laplacian is positive if and only if the hypergraph is connected. The number of connected components of a hypergraph is determined by the H$$^+$$-geometric multiplicity of the zero H$$^+$$-eigenvalue of the Lapalacian. | ||
650 | 4 | |a Tensor | |
650 | 4 | |a Eigenvalue | |
650 | 4 | |a Hypergraph | |
650 | 4 | |a Laplacian | |
700 | 1 | |a Qi, Liqun |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of combinatorial optimization |d Springer US, 1997 |g 29(2013), 2 vom: 05. Feb., Seite 331-366 |w (DE-627)216539323 |w (DE-600)1339574-9 |w (DE-576)094421935 |x 1382-6905 |7 nnns |
773 | 1 | 8 | |g volume:29 |g year:2013 |g number:2 |g day:05 |g month:02 |g pages:331-366 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10878-013-9596-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-WIW | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_26 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2108 | ||
951 | |a AR | ||
952 | |d 29 |j 2013 |e 2 |b 05 |c 02 |h 331-366 |
author_variant |
s h sh l q lq |
---|---|
matchkey_str |
article:13826905:2013----::hlpainfuiomy |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.1007/s10878-013-9596-x doi (DE-627)OLC2044618281 (DE-He213)s10878-013-9596-x-p DE-627 ger DE-627 rakwb eng 510 VZ 3,2 ssgn Hu, Shenglong verfasserin aut The Laplacian of a uniform hypergraph 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 Abstract In this paper, we investigate the Laplacian, i.e., the normalized Laplacian tensor of a $$k$$-uniform hypergraph. We show that the real parts of all the eigenvalues of the Laplacian are in the interval $$[0,2]$$, and the real part is zero (respectively two) if and only if the eigenvalue is zero (respectively two). All the H$$^+$$-eigenvalues of the Laplacian and all the smallest H$$^+$$-eigenvalues of its sub-tensors are characterized through the spectral radii of some nonnegative tensors. All the H$$^+$$-eigenvalues of the Laplacian that are less than one are completely characterized by the spectral components of the hypergraph and vice verse. The smallest H-eigenvalue, which is also an H$$^+$$-eigenvalue, of the Laplacian is zero. When $$k$$ is even, necessary and sufficient conditions for the largest H-eigenvalue of the Laplacian being two are given. If $$k$$ is odd, then its largest H-eigenvalue is always strictly less than two. The largest H$$^+$$-eigenvalue of the Laplacian for a hypergraph having at least one edge is one; and its nonnegative eigenvectors are in one to one correspondence with the flower hearts of the hypergraph. The second smallest H$$^+$$-eigenvalue of the Laplacian is positive if and only if the hypergraph is connected. The number of connected components of a hypergraph is determined by the H$$^+$$-geometric multiplicity of the zero H$$^+$$-eigenvalue of the Lapalacian. Tensor Eigenvalue Hypergraph Laplacian Qi, Liqun aut Enthalten in Journal of combinatorial optimization Springer US, 1997 29(2013), 2 vom: 05. Feb., Seite 331-366 (DE-627)216539323 (DE-600)1339574-9 (DE-576)094421935 1382-6905 nnns volume:29 year:2013 number:2 day:05 month:02 pages:331-366 https://doi.org/10.1007/s10878-013-9596-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_24 GBV_ILN_26 GBV_ILN_70 GBV_ILN_2108 AR 29 2013 2 05 02 331-366 |
spelling |
10.1007/s10878-013-9596-x doi (DE-627)OLC2044618281 (DE-He213)s10878-013-9596-x-p DE-627 ger DE-627 rakwb eng 510 VZ 3,2 ssgn Hu, Shenglong verfasserin aut The Laplacian of a uniform hypergraph 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 Abstract In this paper, we investigate the Laplacian, i.e., the normalized Laplacian tensor of a $$k$$-uniform hypergraph. We show that the real parts of all the eigenvalues of the Laplacian are in the interval $$[0,2]$$, and the real part is zero (respectively two) if and only if the eigenvalue is zero (respectively two). All the H$$^+$$-eigenvalues of the Laplacian and all the smallest H$$^+$$-eigenvalues of its sub-tensors are characterized through the spectral radii of some nonnegative tensors. All the H$$^+$$-eigenvalues of the Laplacian that are less than one are completely characterized by the spectral components of the hypergraph and vice verse. The smallest H-eigenvalue, which is also an H$$^+$$-eigenvalue, of the Laplacian is zero. When $$k$$ is even, necessary and sufficient conditions for the largest H-eigenvalue of the Laplacian being two are given. If $$k$$ is odd, then its largest H-eigenvalue is always strictly less than two. The largest H$$^+$$-eigenvalue of the Laplacian for a hypergraph having at least one edge is one; and its nonnegative eigenvectors are in one to one correspondence with the flower hearts of the hypergraph. The second smallest H$$^+$$-eigenvalue of the Laplacian is positive if and only if the hypergraph is connected. The number of connected components of a hypergraph is determined by the H$$^+$$-geometric multiplicity of the zero H$$^+$$-eigenvalue of the Lapalacian. Tensor Eigenvalue Hypergraph Laplacian Qi, Liqun aut Enthalten in Journal of combinatorial optimization Springer US, 1997 29(2013), 2 vom: 05. Feb., Seite 331-366 (DE-627)216539323 (DE-600)1339574-9 (DE-576)094421935 1382-6905 nnns volume:29 year:2013 number:2 day:05 month:02 pages:331-366 https://doi.org/10.1007/s10878-013-9596-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_24 GBV_ILN_26 GBV_ILN_70 GBV_ILN_2108 AR 29 2013 2 05 02 331-366 |
allfields_unstemmed |
10.1007/s10878-013-9596-x doi (DE-627)OLC2044618281 (DE-He213)s10878-013-9596-x-p DE-627 ger DE-627 rakwb eng 510 VZ 3,2 ssgn Hu, Shenglong verfasserin aut The Laplacian of a uniform hypergraph 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 Abstract In this paper, we investigate the Laplacian, i.e., the normalized Laplacian tensor of a $$k$$-uniform hypergraph. We show that the real parts of all the eigenvalues of the Laplacian are in the interval $$[0,2]$$, and the real part is zero (respectively two) if and only if the eigenvalue is zero (respectively two). All the H$$^+$$-eigenvalues of the Laplacian and all the smallest H$$^+$$-eigenvalues of its sub-tensors are characterized through the spectral radii of some nonnegative tensors. All the H$$^+$$-eigenvalues of the Laplacian that are less than one are completely characterized by the spectral components of the hypergraph and vice verse. The smallest H-eigenvalue, which is also an H$$^+$$-eigenvalue, of the Laplacian is zero. When $$k$$ is even, necessary and sufficient conditions for the largest H-eigenvalue of the Laplacian being two are given. If $$k$$ is odd, then its largest H-eigenvalue is always strictly less than two. The largest H$$^+$$-eigenvalue of the Laplacian for a hypergraph having at least one edge is one; and its nonnegative eigenvectors are in one to one correspondence with the flower hearts of the hypergraph. The second smallest H$$^+$$-eigenvalue of the Laplacian is positive if and only if the hypergraph is connected. The number of connected components of a hypergraph is determined by the H$$^+$$-geometric multiplicity of the zero H$$^+$$-eigenvalue of the Lapalacian. Tensor Eigenvalue Hypergraph Laplacian Qi, Liqun aut Enthalten in Journal of combinatorial optimization Springer US, 1997 29(2013), 2 vom: 05. Feb., Seite 331-366 (DE-627)216539323 (DE-600)1339574-9 (DE-576)094421935 1382-6905 nnns volume:29 year:2013 number:2 day:05 month:02 pages:331-366 https://doi.org/10.1007/s10878-013-9596-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_24 GBV_ILN_26 GBV_ILN_70 GBV_ILN_2108 AR 29 2013 2 05 02 331-366 |
allfieldsGer |
10.1007/s10878-013-9596-x doi (DE-627)OLC2044618281 (DE-He213)s10878-013-9596-x-p DE-627 ger DE-627 rakwb eng 510 VZ 3,2 ssgn Hu, Shenglong verfasserin aut The Laplacian of a uniform hypergraph 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 Abstract In this paper, we investigate the Laplacian, i.e., the normalized Laplacian tensor of a $$k$$-uniform hypergraph. We show that the real parts of all the eigenvalues of the Laplacian are in the interval $$[0,2]$$, and the real part is zero (respectively two) if and only if the eigenvalue is zero (respectively two). All the H$$^+$$-eigenvalues of the Laplacian and all the smallest H$$^+$$-eigenvalues of its sub-tensors are characterized through the spectral radii of some nonnegative tensors. All the H$$^+$$-eigenvalues of the Laplacian that are less than one are completely characterized by the spectral components of the hypergraph and vice verse. The smallest H-eigenvalue, which is also an H$$^+$$-eigenvalue, of the Laplacian is zero. When $$k$$ is even, necessary and sufficient conditions for the largest H-eigenvalue of the Laplacian being two are given. If $$k$$ is odd, then its largest H-eigenvalue is always strictly less than two. The largest H$$^+$$-eigenvalue of the Laplacian for a hypergraph having at least one edge is one; and its nonnegative eigenvectors are in one to one correspondence with the flower hearts of the hypergraph. The second smallest H$$^+$$-eigenvalue of the Laplacian is positive if and only if the hypergraph is connected. The number of connected components of a hypergraph is determined by the H$$^+$$-geometric multiplicity of the zero H$$^+$$-eigenvalue of the Lapalacian. Tensor Eigenvalue Hypergraph Laplacian Qi, Liqun aut Enthalten in Journal of combinatorial optimization Springer US, 1997 29(2013), 2 vom: 05. Feb., Seite 331-366 (DE-627)216539323 (DE-600)1339574-9 (DE-576)094421935 1382-6905 nnns volume:29 year:2013 number:2 day:05 month:02 pages:331-366 https://doi.org/10.1007/s10878-013-9596-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_24 GBV_ILN_26 GBV_ILN_70 GBV_ILN_2108 AR 29 2013 2 05 02 331-366 |
allfieldsSound |
10.1007/s10878-013-9596-x doi (DE-627)OLC2044618281 (DE-He213)s10878-013-9596-x-p DE-627 ger DE-627 rakwb eng 510 VZ 3,2 ssgn Hu, Shenglong verfasserin aut The Laplacian of a uniform hypergraph 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 Abstract In this paper, we investigate the Laplacian, i.e., the normalized Laplacian tensor of a $$k$$-uniform hypergraph. We show that the real parts of all the eigenvalues of the Laplacian are in the interval $$[0,2]$$, and the real part is zero (respectively two) if and only if the eigenvalue is zero (respectively two). All the H$$^+$$-eigenvalues of the Laplacian and all the smallest H$$^+$$-eigenvalues of its sub-tensors are characterized through the spectral radii of some nonnegative tensors. All the H$$^+$$-eigenvalues of the Laplacian that are less than one are completely characterized by the spectral components of the hypergraph and vice verse. The smallest H-eigenvalue, which is also an H$$^+$$-eigenvalue, of the Laplacian is zero. When $$k$$ is even, necessary and sufficient conditions for the largest H-eigenvalue of the Laplacian being two are given. If $$k$$ is odd, then its largest H-eigenvalue is always strictly less than two. The largest H$$^+$$-eigenvalue of the Laplacian for a hypergraph having at least one edge is one; and its nonnegative eigenvectors are in one to one correspondence with the flower hearts of the hypergraph. The second smallest H$$^+$$-eigenvalue of the Laplacian is positive if and only if the hypergraph is connected. The number of connected components of a hypergraph is determined by the H$$^+$$-geometric multiplicity of the zero H$$^+$$-eigenvalue of the Lapalacian. Tensor Eigenvalue Hypergraph Laplacian Qi, Liqun aut Enthalten in Journal of combinatorial optimization Springer US, 1997 29(2013), 2 vom: 05. Feb., Seite 331-366 (DE-627)216539323 (DE-600)1339574-9 (DE-576)094421935 1382-6905 nnns volume:29 year:2013 number:2 day:05 month:02 pages:331-366 https://doi.org/10.1007/s10878-013-9596-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_24 GBV_ILN_26 GBV_ILN_70 GBV_ILN_2108 AR 29 2013 2 05 02 331-366 |
language |
English |
source |
Enthalten in Journal of combinatorial optimization 29(2013), 2 vom: 05. Feb., Seite 331-366 volume:29 year:2013 number:2 day:05 month:02 pages:331-366 |
sourceStr |
Enthalten in Journal of combinatorial optimization 29(2013), 2 vom: 05. Feb., Seite 331-366 volume:29 year:2013 number:2 day:05 month:02 pages:331-366 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Tensor Eigenvalue Hypergraph Laplacian |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of combinatorial optimization |
authorswithroles_txt_mv |
Hu, Shenglong @@aut@@ Qi, Liqun @@aut@@ |
publishDateDaySort_date |
2013-02-05T00:00:00Z |
hierarchy_top_id |
216539323 |
dewey-sort |
3510 |
id |
OLC2044618281 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2044618281</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503135020.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10878-013-9596-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2044618281</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10878-013-9596-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">3,2</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hu, Shenglong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Laplacian of a uniform hypergraph</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we investigate the Laplacian, i.e., the normalized Laplacian tensor of a $$k$$-uniform hypergraph. We show that the real parts of all the eigenvalues of the Laplacian are in the interval $$[0,2]$$, and the real part is zero (respectively two) if and only if the eigenvalue is zero (respectively two). All the H$$^+$$-eigenvalues of the Laplacian and all the smallest H$$^+$$-eigenvalues of its sub-tensors are characterized through the spectral radii of some nonnegative tensors. All the H$$^+$$-eigenvalues of the Laplacian that are less than one are completely characterized by the spectral components of the hypergraph and vice verse. The smallest H-eigenvalue, which is also an H$$^+$$-eigenvalue, of the Laplacian is zero. When $$k$$ is even, necessary and sufficient conditions for the largest H-eigenvalue of the Laplacian being two are given. If $$k$$ is odd, then its largest H-eigenvalue is always strictly less than two. The largest H$$^+$$-eigenvalue of the Laplacian for a hypergraph having at least one edge is one; and its nonnegative eigenvectors are in one to one correspondence with the flower hearts of the hypergraph. The second smallest H$$^+$$-eigenvalue of the Laplacian is positive if and only if the hypergraph is connected. The number of connected components of a hypergraph is determined by the H$$^+$$-geometric multiplicity of the zero H$$^+$$-eigenvalue of the Lapalacian.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eigenvalue</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hypergraph</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laplacian</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qi, Liqun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of combinatorial optimization</subfield><subfield code="d">Springer US, 1997</subfield><subfield code="g">29(2013), 2 vom: 05. Feb., Seite 331-366</subfield><subfield code="w">(DE-627)216539323</subfield><subfield code="w">(DE-600)1339574-9</subfield><subfield code="w">(DE-576)094421935</subfield><subfield code="x">1382-6905</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:29</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:2</subfield><subfield code="g">day:05</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:331-366</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10878-013-9596-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">29</subfield><subfield code="j">2013</subfield><subfield code="e">2</subfield><subfield code="b">05</subfield><subfield code="c">02</subfield><subfield code="h">331-366</subfield></datafield></record></collection>
|
author |
Hu, Shenglong |
spellingShingle |
Hu, Shenglong ddc 510 ssgn 3,2 misc Tensor misc Eigenvalue misc Hypergraph misc Laplacian The Laplacian of a uniform hypergraph |
authorStr |
Hu, Shenglong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)216539323 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1382-6905 |
topic_title |
510 VZ 3,2 ssgn The Laplacian of a uniform hypergraph Tensor Eigenvalue Hypergraph Laplacian |
topic |
ddc 510 ssgn 3,2 misc Tensor misc Eigenvalue misc Hypergraph misc Laplacian |
topic_unstemmed |
ddc 510 ssgn 3,2 misc Tensor misc Eigenvalue misc Hypergraph misc Laplacian |
topic_browse |
ddc 510 ssgn 3,2 misc Tensor misc Eigenvalue misc Hypergraph misc Laplacian |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of combinatorial optimization |
hierarchy_parent_id |
216539323 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of combinatorial optimization |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)216539323 (DE-600)1339574-9 (DE-576)094421935 |
title |
The Laplacian of a uniform hypergraph |
ctrlnum |
(DE-627)OLC2044618281 (DE-He213)s10878-013-9596-x-p |
title_full |
The Laplacian of a uniform hypergraph |
author_sort |
Hu, Shenglong |
journal |
Journal of combinatorial optimization |
journalStr |
Journal of combinatorial optimization |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
container_start_page |
331 |
author_browse |
Hu, Shenglong Qi, Liqun |
container_volume |
29 |
class |
510 VZ 3,2 ssgn |
format_se |
Aufsätze |
author-letter |
Hu, Shenglong |
doi_str_mv |
10.1007/s10878-013-9596-x |
dewey-full |
510 |
title_sort |
the laplacian of a uniform hypergraph |
title_auth |
The Laplacian of a uniform hypergraph |
abstract |
Abstract In this paper, we investigate the Laplacian, i.e., the normalized Laplacian tensor of a $$k$$-uniform hypergraph. We show that the real parts of all the eigenvalues of the Laplacian are in the interval $$[0,2]$$, and the real part is zero (respectively two) if and only if the eigenvalue is zero (respectively two). All the H$$^+$$-eigenvalues of the Laplacian and all the smallest H$$^+$$-eigenvalues of its sub-tensors are characterized through the spectral radii of some nonnegative tensors. All the H$$^+$$-eigenvalues of the Laplacian that are less than one are completely characterized by the spectral components of the hypergraph and vice verse. The smallest H-eigenvalue, which is also an H$$^+$$-eigenvalue, of the Laplacian is zero. When $$k$$ is even, necessary and sufficient conditions for the largest H-eigenvalue of the Laplacian being two are given. If $$k$$ is odd, then its largest H-eigenvalue is always strictly less than two. The largest H$$^+$$-eigenvalue of the Laplacian for a hypergraph having at least one edge is one; and its nonnegative eigenvectors are in one to one correspondence with the flower hearts of the hypergraph. The second smallest H$$^+$$-eigenvalue of the Laplacian is positive if and only if the hypergraph is connected. The number of connected components of a hypergraph is determined by the H$$^+$$-geometric multiplicity of the zero H$$^+$$-eigenvalue of the Lapalacian. © Springer Science+Business Media New York 2013 |
abstractGer |
Abstract In this paper, we investigate the Laplacian, i.e., the normalized Laplacian tensor of a $$k$$-uniform hypergraph. We show that the real parts of all the eigenvalues of the Laplacian are in the interval $$[0,2]$$, and the real part is zero (respectively two) if and only if the eigenvalue is zero (respectively two). All the H$$^+$$-eigenvalues of the Laplacian and all the smallest H$$^+$$-eigenvalues of its sub-tensors are characterized through the spectral radii of some nonnegative tensors. All the H$$^+$$-eigenvalues of the Laplacian that are less than one are completely characterized by the spectral components of the hypergraph and vice verse. The smallest H-eigenvalue, which is also an H$$^+$$-eigenvalue, of the Laplacian is zero. When $$k$$ is even, necessary and sufficient conditions for the largest H-eigenvalue of the Laplacian being two are given. If $$k$$ is odd, then its largest H-eigenvalue is always strictly less than two. The largest H$$^+$$-eigenvalue of the Laplacian for a hypergraph having at least one edge is one; and its nonnegative eigenvectors are in one to one correspondence with the flower hearts of the hypergraph. The second smallest H$$^+$$-eigenvalue of the Laplacian is positive if and only if the hypergraph is connected. The number of connected components of a hypergraph is determined by the H$$^+$$-geometric multiplicity of the zero H$$^+$$-eigenvalue of the Lapalacian. © Springer Science+Business Media New York 2013 |
abstract_unstemmed |
Abstract In this paper, we investigate the Laplacian, i.e., the normalized Laplacian tensor of a $$k$$-uniform hypergraph. We show that the real parts of all the eigenvalues of the Laplacian are in the interval $$[0,2]$$, and the real part is zero (respectively two) if and only if the eigenvalue is zero (respectively two). All the H$$^+$$-eigenvalues of the Laplacian and all the smallest H$$^+$$-eigenvalues of its sub-tensors are characterized through the spectral radii of some nonnegative tensors. All the H$$^+$$-eigenvalues of the Laplacian that are less than one are completely characterized by the spectral components of the hypergraph and vice verse. The smallest H-eigenvalue, which is also an H$$^+$$-eigenvalue, of the Laplacian is zero. When $$k$$ is even, necessary and sufficient conditions for the largest H-eigenvalue of the Laplacian being two are given. If $$k$$ is odd, then its largest H-eigenvalue is always strictly less than two. The largest H$$^+$$-eigenvalue of the Laplacian for a hypergraph having at least one edge is one; and its nonnegative eigenvectors are in one to one correspondence with the flower hearts of the hypergraph. The second smallest H$$^+$$-eigenvalue of the Laplacian is positive if and only if the hypergraph is connected. The number of connected components of a hypergraph is determined by the H$$^+$$-geometric multiplicity of the zero H$$^+$$-eigenvalue of the Lapalacian. © Springer Science+Business Media New York 2013 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_24 GBV_ILN_26 GBV_ILN_70 GBV_ILN_2108 |
container_issue |
2 |
title_short |
The Laplacian of a uniform hypergraph |
url |
https://doi.org/10.1007/s10878-013-9596-x |
remote_bool |
false |
author2 |
Qi, Liqun |
author2Str |
Qi, Liqun |
ppnlink |
216539323 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10878-013-9596-x |
up_date |
2024-07-04T00:10:42.832Z |
_version_ |
1803605081150455808 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2044618281</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503135020.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10878-013-9596-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2044618281</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10878-013-9596-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">3,2</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hu, Shenglong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Laplacian of a uniform hypergraph</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we investigate the Laplacian, i.e., the normalized Laplacian tensor of a $$k$$-uniform hypergraph. We show that the real parts of all the eigenvalues of the Laplacian are in the interval $$[0,2]$$, and the real part is zero (respectively two) if and only if the eigenvalue is zero (respectively two). All the H$$^+$$-eigenvalues of the Laplacian and all the smallest H$$^+$$-eigenvalues of its sub-tensors are characterized through the spectral radii of some nonnegative tensors. All the H$$^+$$-eigenvalues of the Laplacian that are less than one are completely characterized by the spectral components of the hypergraph and vice verse. The smallest H-eigenvalue, which is also an H$$^+$$-eigenvalue, of the Laplacian is zero. When $$k$$ is even, necessary and sufficient conditions for the largest H-eigenvalue of the Laplacian being two are given. If $$k$$ is odd, then its largest H-eigenvalue is always strictly less than two. The largest H$$^+$$-eigenvalue of the Laplacian for a hypergraph having at least one edge is one; and its nonnegative eigenvectors are in one to one correspondence with the flower hearts of the hypergraph. The second smallest H$$^+$$-eigenvalue of the Laplacian is positive if and only if the hypergraph is connected. The number of connected components of a hypergraph is determined by the H$$^+$$-geometric multiplicity of the zero H$$^+$$-eigenvalue of the Lapalacian.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eigenvalue</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hypergraph</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laplacian</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qi, Liqun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of combinatorial optimization</subfield><subfield code="d">Springer US, 1997</subfield><subfield code="g">29(2013), 2 vom: 05. Feb., Seite 331-366</subfield><subfield code="w">(DE-627)216539323</subfield><subfield code="w">(DE-600)1339574-9</subfield><subfield code="w">(DE-576)094421935</subfield><subfield code="x">1382-6905</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:29</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:2</subfield><subfield code="g">day:05</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:331-366</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10878-013-9596-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">29</subfield><subfield code="j">2013</subfield><subfield code="e">2</subfield><subfield code="b">05</subfield><subfield code="c">02</subfield><subfield code="h">331-366</subfield></datafield></record></collection>
|
score |
7.401102 |