Finding a contra-risk path between two nodes in undirected graphs
Abstract Given an undirected graph with a source node s and a sink node t. The anti-risk path problem is defined as the problem of finding a path between node s to node t with the least risk under the assumption that at most one edge of each path may be blocked. Xiao et al. (J Comb Optim 17:235–246,...
Ausführliche Beschreibung
Autor*in: |
Ghiyasvand, Mehdi [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of combinatorial optimization - Springer US, 1997, 32(2015), 3 vom: 04. Juni, Seite 917-926 |
---|---|
Übergeordnetes Werk: |
volume:32 ; year:2015 ; number:3 ; day:04 ; month:06 ; pages:917-926 |
Links: |
---|
DOI / URN: |
10.1007/s10878-015-9912-8 |
---|
Katalog-ID: |
OLC2044620820 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2044620820 | ||
003 | DE-627 | ||
005 | 20230503135031.0 | ||
007 | tu | ||
008 | 200819s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10878-015-9912-8 |2 doi | |
035 | |a (DE-627)OLC2044620820 | ||
035 | |a (DE-He213)s10878-015-9912-8-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 3,2 |2 ssgn | ||
100 | 1 | |a Ghiyasvand, Mehdi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Finding a contra-risk path between two nodes in undirected graphs |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2015 | ||
520 | |a Abstract Given an undirected graph with a source node s and a sink node t. The anti-risk path problem is defined as the problem of finding a path between node s to node t with the least risk under the assumption that at most one edge of each path may be blocked. Xiao et al. (J Comb Optim 17:235–246, 2009) defined the problem and presented an $$O(mn+n^2 \log n)$$ time algorithm to find an anti-risk path, where n and m are the number of nodes and edges, respectively. Recently, Mahadeokar and Saxena (J Comb Optim 27:798–807, 2014) solved the problem in $$O(m+n \log n)$$ time. In this paper, first, a new version of the anti-risk path (called contra-risk path) is defined, which is more effective than an anti-risk path in many networks. Then, an algorithm to find a contra-risk path is presented, which runs in $$O(m+n \log n)$$ time. | ||
650 | 4 | |a Network flows | |
650 | 4 | |a The anti-risk path | |
650 | 4 | |a The shortest path problem | |
700 | 1 | |a Keshtkar, Iman |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of combinatorial optimization |d Springer US, 1997 |g 32(2015), 3 vom: 04. Juni, Seite 917-926 |w (DE-627)216539323 |w (DE-600)1339574-9 |w (DE-576)094421935 |x 1382-6905 |7 nnns |
773 | 1 | 8 | |g volume:32 |g year:2015 |g number:3 |g day:04 |g month:06 |g pages:917-926 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10878-015-9912-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-WIW | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2108 | ||
951 | |a AR | ||
952 | |d 32 |j 2015 |e 3 |b 04 |c 06 |h 917-926 |
author_variant |
m g mg i k ik |
---|---|
matchkey_str |
article:13826905:2015----::idnaotaikahewetooei |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s10878-015-9912-8 doi (DE-627)OLC2044620820 (DE-He213)s10878-015-9912-8-p DE-627 ger DE-627 rakwb eng 510 VZ 3,2 ssgn Ghiyasvand, Mehdi verfasserin aut Finding a contra-risk path between two nodes in undirected graphs 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract Given an undirected graph with a source node s and a sink node t. The anti-risk path problem is defined as the problem of finding a path between node s to node t with the least risk under the assumption that at most one edge of each path may be blocked. Xiao et al. (J Comb Optim 17:235–246, 2009) defined the problem and presented an $$O(mn+n^2 \log n)$$ time algorithm to find an anti-risk path, where n and m are the number of nodes and edges, respectively. Recently, Mahadeokar and Saxena (J Comb Optim 27:798–807, 2014) solved the problem in $$O(m+n \log n)$$ time. In this paper, first, a new version of the anti-risk path (called contra-risk path) is defined, which is more effective than an anti-risk path in many networks. Then, an algorithm to find a contra-risk path is presented, which runs in $$O(m+n \log n)$$ time. Network flows The anti-risk path The shortest path problem Keshtkar, Iman aut Enthalten in Journal of combinatorial optimization Springer US, 1997 32(2015), 3 vom: 04. Juni, Seite 917-926 (DE-627)216539323 (DE-600)1339574-9 (DE-576)094421935 1382-6905 nnns volume:32 year:2015 number:3 day:04 month:06 pages:917-926 https://doi.org/10.1007/s10878-015-9912-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_2108 AR 32 2015 3 04 06 917-926 |
spelling |
10.1007/s10878-015-9912-8 doi (DE-627)OLC2044620820 (DE-He213)s10878-015-9912-8-p DE-627 ger DE-627 rakwb eng 510 VZ 3,2 ssgn Ghiyasvand, Mehdi verfasserin aut Finding a contra-risk path between two nodes in undirected graphs 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract Given an undirected graph with a source node s and a sink node t. The anti-risk path problem is defined as the problem of finding a path between node s to node t with the least risk under the assumption that at most one edge of each path may be blocked. Xiao et al. (J Comb Optim 17:235–246, 2009) defined the problem and presented an $$O(mn+n^2 \log n)$$ time algorithm to find an anti-risk path, where n and m are the number of nodes and edges, respectively. Recently, Mahadeokar and Saxena (J Comb Optim 27:798–807, 2014) solved the problem in $$O(m+n \log n)$$ time. In this paper, first, a new version of the anti-risk path (called contra-risk path) is defined, which is more effective than an anti-risk path in many networks. Then, an algorithm to find a contra-risk path is presented, which runs in $$O(m+n \log n)$$ time. Network flows The anti-risk path The shortest path problem Keshtkar, Iman aut Enthalten in Journal of combinatorial optimization Springer US, 1997 32(2015), 3 vom: 04. Juni, Seite 917-926 (DE-627)216539323 (DE-600)1339574-9 (DE-576)094421935 1382-6905 nnns volume:32 year:2015 number:3 day:04 month:06 pages:917-926 https://doi.org/10.1007/s10878-015-9912-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_2108 AR 32 2015 3 04 06 917-926 |
allfields_unstemmed |
10.1007/s10878-015-9912-8 doi (DE-627)OLC2044620820 (DE-He213)s10878-015-9912-8-p DE-627 ger DE-627 rakwb eng 510 VZ 3,2 ssgn Ghiyasvand, Mehdi verfasserin aut Finding a contra-risk path between two nodes in undirected graphs 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract Given an undirected graph with a source node s and a sink node t. The anti-risk path problem is defined as the problem of finding a path between node s to node t with the least risk under the assumption that at most one edge of each path may be blocked. Xiao et al. (J Comb Optim 17:235–246, 2009) defined the problem and presented an $$O(mn+n^2 \log n)$$ time algorithm to find an anti-risk path, where n and m are the number of nodes and edges, respectively. Recently, Mahadeokar and Saxena (J Comb Optim 27:798–807, 2014) solved the problem in $$O(m+n \log n)$$ time. In this paper, first, a new version of the anti-risk path (called contra-risk path) is defined, which is more effective than an anti-risk path in many networks. Then, an algorithm to find a contra-risk path is presented, which runs in $$O(m+n \log n)$$ time. Network flows The anti-risk path The shortest path problem Keshtkar, Iman aut Enthalten in Journal of combinatorial optimization Springer US, 1997 32(2015), 3 vom: 04. Juni, Seite 917-926 (DE-627)216539323 (DE-600)1339574-9 (DE-576)094421935 1382-6905 nnns volume:32 year:2015 number:3 day:04 month:06 pages:917-926 https://doi.org/10.1007/s10878-015-9912-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_2108 AR 32 2015 3 04 06 917-926 |
allfieldsGer |
10.1007/s10878-015-9912-8 doi (DE-627)OLC2044620820 (DE-He213)s10878-015-9912-8-p DE-627 ger DE-627 rakwb eng 510 VZ 3,2 ssgn Ghiyasvand, Mehdi verfasserin aut Finding a contra-risk path between two nodes in undirected graphs 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract Given an undirected graph with a source node s and a sink node t. The anti-risk path problem is defined as the problem of finding a path between node s to node t with the least risk under the assumption that at most one edge of each path may be blocked. Xiao et al. (J Comb Optim 17:235–246, 2009) defined the problem and presented an $$O(mn+n^2 \log n)$$ time algorithm to find an anti-risk path, where n and m are the number of nodes and edges, respectively. Recently, Mahadeokar and Saxena (J Comb Optim 27:798–807, 2014) solved the problem in $$O(m+n \log n)$$ time. In this paper, first, a new version of the anti-risk path (called contra-risk path) is defined, which is more effective than an anti-risk path in many networks. Then, an algorithm to find a contra-risk path is presented, which runs in $$O(m+n \log n)$$ time. Network flows The anti-risk path The shortest path problem Keshtkar, Iman aut Enthalten in Journal of combinatorial optimization Springer US, 1997 32(2015), 3 vom: 04. Juni, Seite 917-926 (DE-627)216539323 (DE-600)1339574-9 (DE-576)094421935 1382-6905 nnns volume:32 year:2015 number:3 day:04 month:06 pages:917-926 https://doi.org/10.1007/s10878-015-9912-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_2108 AR 32 2015 3 04 06 917-926 |
allfieldsSound |
10.1007/s10878-015-9912-8 doi (DE-627)OLC2044620820 (DE-He213)s10878-015-9912-8-p DE-627 ger DE-627 rakwb eng 510 VZ 3,2 ssgn Ghiyasvand, Mehdi verfasserin aut Finding a contra-risk path between two nodes in undirected graphs 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract Given an undirected graph with a source node s and a sink node t. The anti-risk path problem is defined as the problem of finding a path between node s to node t with the least risk under the assumption that at most one edge of each path may be blocked. Xiao et al. (J Comb Optim 17:235–246, 2009) defined the problem and presented an $$O(mn+n^2 \log n)$$ time algorithm to find an anti-risk path, where n and m are the number of nodes and edges, respectively. Recently, Mahadeokar and Saxena (J Comb Optim 27:798–807, 2014) solved the problem in $$O(m+n \log n)$$ time. In this paper, first, a new version of the anti-risk path (called contra-risk path) is defined, which is more effective than an anti-risk path in many networks. Then, an algorithm to find a contra-risk path is presented, which runs in $$O(m+n \log n)$$ time. Network flows The anti-risk path The shortest path problem Keshtkar, Iman aut Enthalten in Journal of combinatorial optimization Springer US, 1997 32(2015), 3 vom: 04. Juni, Seite 917-926 (DE-627)216539323 (DE-600)1339574-9 (DE-576)094421935 1382-6905 nnns volume:32 year:2015 number:3 day:04 month:06 pages:917-926 https://doi.org/10.1007/s10878-015-9912-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_2108 AR 32 2015 3 04 06 917-926 |
language |
English |
source |
Enthalten in Journal of combinatorial optimization 32(2015), 3 vom: 04. Juni, Seite 917-926 volume:32 year:2015 number:3 day:04 month:06 pages:917-926 |
sourceStr |
Enthalten in Journal of combinatorial optimization 32(2015), 3 vom: 04. Juni, Seite 917-926 volume:32 year:2015 number:3 day:04 month:06 pages:917-926 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Network flows The anti-risk path The shortest path problem |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of combinatorial optimization |
authorswithroles_txt_mv |
Ghiyasvand, Mehdi @@aut@@ Keshtkar, Iman @@aut@@ |
publishDateDaySort_date |
2015-06-04T00:00:00Z |
hierarchy_top_id |
216539323 |
dewey-sort |
3510 |
id |
OLC2044620820 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2044620820</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503135031.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10878-015-9912-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2044620820</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10878-015-9912-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">3,2</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ghiyasvand, Mehdi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Finding a contra-risk path between two nodes in undirected graphs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Given an undirected graph with a source node s and a sink node t. The anti-risk path problem is defined as the problem of finding a path between node s to node t with the least risk under the assumption that at most one edge of each path may be blocked. Xiao et al. (J Comb Optim 17:235–246, 2009) defined the problem and presented an $$O(mn+n^2 \log n)$$ time algorithm to find an anti-risk path, where n and m are the number of nodes and edges, respectively. Recently, Mahadeokar and Saxena (J Comb Optim 27:798–807, 2014) solved the problem in $$O(m+n \log n)$$ time. In this paper, first, a new version of the anti-risk path (called contra-risk path) is defined, which is more effective than an anti-risk path in many networks. Then, an algorithm to find a contra-risk path is presented, which runs in $$O(m+n \log n)$$ time.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Network flows</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">The anti-risk path</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">The shortest path problem</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Keshtkar, Iman</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of combinatorial optimization</subfield><subfield code="d">Springer US, 1997</subfield><subfield code="g">32(2015), 3 vom: 04. Juni, Seite 917-926</subfield><subfield code="w">(DE-627)216539323</subfield><subfield code="w">(DE-600)1339574-9</subfield><subfield code="w">(DE-576)094421935</subfield><subfield code="x">1382-6905</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:32</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">day:04</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:917-926</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10878-015-9912-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">32</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="b">04</subfield><subfield code="c">06</subfield><subfield code="h">917-926</subfield></datafield></record></collection>
|
author |
Ghiyasvand, Mehdi |
spellingShingle |
Ghiyasvand, Mehdi ddc 510 ssgn 3,2 misc Network flows misc The anti-risk path misc The shortest path problem Finding a contra-risk path between two nodes in undirected graphs |
authorStr |
Ghiyasvand, Mehdi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)216539323 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1382-6905 |
topic_title |
510 VZ 3,2 ssgn Finding a contra-risk path between two nodes in undirected graphs Network flows The anti-risk path The shortest path problem |
topic |
ddc 510 ssgn 3,2 misc Network flows misc The anti-risk path misc The shortest path problem |
topic_unstemmed |
ddc 510 ssgn 3,2 misc Network flows misc The anti-risk path misc The shortest path problem |
topic_browse |
ddc 510 ssgn 3,2 misc Network flows misc The anti-risk path misc The shortest path problem |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of combinatorial optimization |
hierarchy_parent_id |
216539323 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of combinatorial optimization |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)216539323 (DE-600)1339574-9 (DE-576)094421935 |
title |
Finding a contra-risk path between two nodes in undirected graphs |
ctrlnum |
(DE-627)OLC2044620820 (DE-He213)s10878-015-9912-8-p |
title_full |
Finding a contra-risk path between two nodes in undirected graphs |
author_sort |
Ghiyasvand, Mehdi |
journal |
Journal of combinatorial optimization |
journalStr |
Journal of combinatorial optimization |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
917 |
author_browse |
Ghiyasvand, Mehdi Keshtkar, Iman |
container_volume |
32 |
class |
510 VZ 3,2 ssgn |
format_se |
Aufsätze |
author-letter |
Ghiyasvand, Mehdi |
doi_str_mv |
10.1007/s10878-015-9912-8 |
dewey-full |
510 |
title_sort |
finding a contra-risk path between two nodes in undirected graphs |
title_auth |
Finding a contra-risk path between two nodes in undirected graphs |
abstract |
Abstract Given an undirected graph with a source node s and a sink node t. The anti-risk path problem is defined as the problem of finding a path between node s to node t with the least risk under the assumption that at most one edge of each path may be blocked. Xiao et al. (J Comb Optim 17:235–246, 2009) defined the problem and presented an $$O(mn+n^2 \log n)$$ time algorithm to find an anti-risk path, where n and m are the number of nodes and edges, respectively. Recently, Mahadeokar and Saxena (J Comb Optim 27:798–807, 2014) solved the problem in $$O(m+n \log n)$$ time. In this paper, first, a new version of the anti-risk path (called contra-risk path) is defined, which is more effective than an anti-risk path in many networks. Then, an algorithm to find a contra-risk path is presented, which runs in $$O(m+n \log n)$$ time. © Springer Science+Business Media New York 2015 |
abstractGer |
Abstract Given an undirected graph with a source node s and a sink node t. The anti-risk path problem is defined as the problem of finding a path between node s to node t with the least risk under the assumption that at most one edge of each path may be blocked. Xiao et al. (J Comb Optim 17:235–246, 2009) defined the problem and presented an $$O(mn+n^2 \log n)$$ time algorithm to find an anti-risk path, where n and m are the number of nodes and edges, respectively. Recently, Mahadeokar and Saxena (J Comb Optim 27:798–807, 2014) solved the problem in $$O(m+n \log n)$$ time. In this paper, first, a new version of the anti-risk path (called contra-risk path) is defined, which is more effective than an anti-risk path in many networks. Then, an algorithm to find a contra-risk path is presented, which runs in $$O(m+n \log n)$$ time. © Springer Science+Business Media New York 2015 |
abstract_unstemmed |
Abstract Given an undirected graph with a source node s and a sink node t. The anti-risk path problem is defined as the problem of finding a path between node s to node t with the least risk under the assumption that at most one edge of each path may be blocked. Xiao et al. (J Comb Optim 17:235–246, 2009) defined the problem and presented an $$O(mn+n^2 \log n)$$ time algorithm to find an anti-risk path, where n and m are the number of nodes and edges, respectively. Recently, Mahadeokar and Saxena (J Comb Optim 27:798–807, 2014) solved the problem in $$O(m+n \log n)$$ time. In this paper, first, a new version of the anti-risk path (called contra-risk path) is defined, which is more effective than an anti-risk path in many networks. Then, an algorithm to find a contra-risk path is presented, which runs in $$O(m+n \log n)$$ time. © Springer Science+Business Media New York 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_2108 |
container_issue |
3 |
title_short |
Finding a contra-risk path between two nodes in undirected graphs |
url |
https://doi.org/10.1007/s10878-015-9912-8 |
remote_bool |
false |
author2 |
Keshtkar, Iman |
author2Str |
Keshtkar, Iman |
ppnlink |
216539323 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10878-015-9912-8 |
up_date |
2024-07-04T00:11:13.895Z |
_version_ |
1803605113723420672 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2044620820</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503135031.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10878-015-9912-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2044620820</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10878-015-9912-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">3,2</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ghiyasvand, Mehdi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Finding a contra-risk path between two nodes in undirected graphs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Given an undirected graph with a source node s and a sink node t. The anti-risk path problem is defined as the problem of finding a path between node s to node t with the least risk under the assumption that at most one edge of each path may be blocked. Xiao et al. (J Comb Optim 17:235–246, 2009) defined the problem and presented an $$O(mn+n^2 \log n)$$ time algorithm to find an anti-risk path, where n and m are the number of nodes and edges, respectively. Recently, Mahadeokar and Saxena (J Comb Optim 27:798–807, 2014) solved the problem in $$O(m+n \log n)$$ time. In this paper, first, a new version of the anti-risk path (called contra-risk path) is defined, which is more effective than an anti-risk path in many networks. Then, an algorithm to find a contra-risk path is presented, which runs in $$O(m+n \log n)$$ time.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Network flows</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">The anti-risk path</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">The shortest path problem</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Keshtkar, Iman</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of combinatorial optimization</subfield><subfield code="d">Springer US, 1997</subfield><subfield code="g">32(2015), 3 vom: 04. Juni, Seite 917-926</subfield><subfield code="w">(DE-627)216539323</subfield><subfield code="w">(DE-600)1339574-9</subfield><subfield code="w">(DE-576)094421935</subfield><subfield code="x">1382-6905</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:32</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">day:04</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:917-926</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10878-015-9912-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">32</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="b">04</subfield><subfield code="c">06</subfield><subfield code="h">917-926</subfield></datafield></record></collection>
|
score |
7.402648 |