Finite-Time and Fixed-Time Synchronization of Inertial Cohen–Grossberg-Type Neural Networks with Time Varying Delays
Abstract This paper is devoted to studying the finite-time and fixed-time of inertial Cohen–Grossberg type neural networks (ICGNNs) with time varying delays. First, by constructing a proper variable substitution, the original (ICGNNs) can be rewritten as first-order differential system. Second, by u...
Ausführliche Beschreibung
Autor*in: |
Aouiti, Chaouki [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: Neural processing letters - Springer US, 1994, 50(2019), 3 vom: 11. März, Seite 2407-2436 |
---|---|
Übergeordnetes Werk: |
volume:50 ; year:2019 ; number:3 ; day:11 ; month:03 ; pages:2407-2436 |
Links: |
---|
DOI / URN: |
10.1007/s11063-019-10018-8 |
---|
Katalog-ID: |
OLC2044714965 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2044714965 | ||
003 | DE-627 | ||
005 | 20230503210530.0 | ||
007 | tu | ||
008 | 200820s2019 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11063-019-10018-8 |2 doi | |
035 | |a (DE-627)OLC2044714965 | ||
035 | |a (DE-He213)s11063-019-10018-8-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 000 |q VZ |
100 | 1 | |a Aouiti, Chaouki |e verfasserin |0 (orcid)0000-0002-8252-9017 |4 aut | |
245 | 1 | 0 | |a Finite-Time and Fixed-Time Synchronization of Inertial Cohen–Grossberg-Type Neural Networks with Time Varying Delays |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2019 | ||
520 | |a Abstract This paper is devoted to studying the finite-time and fixed-time of inertial Cohen–Grossberg type neural networks (ICGNNs) with time varying delays. First, by constructing a proper variable substitution, the original (ICGNNs) can be rewritten as first-order differential system. Second, by utilizing feedback controllers and constructing suitable Lyapunov functionals, several new sufficient conditions guaranteeing the finite-time and the fixed-time synchronization of ICGNNs with time varying delays are obtained based on different finite-time synchronization analysis techniques. The obtained sufficient conditions are simple and easy to verify. Numerical simulations are given to illustrate the effectiveness of the theoretical results. | ||
650 | 4 | |a Inertial Cohen–Grossberg-type | |
650 | 4 | |a Neural networks | |
650 | 4 | |a Finite-time synchronization | |
650 | 4 | |a Fixed-time synchronization | |
650 | 4 | |a Time-varying delays | |
700 | 1 | |a Assali, El Abed |4 aut | |
700 | 1 | |a Foutayeni, Youssef El |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Neural processing letters |d Springer US, 1994 |g 50(2019), 3 vom: 11. März, Seite 2407-2436 |w (DE-627)198692617 |w (DE-600)1316823-X |w (DE-576)052842762 |x 1370-4621 |7 nnns |
773 | 1 | 8 | |g volume:50 |g year:2019 |g number:3 |g day:11 |g month:03 |g pages:2407-2436 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11063-019-10018-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PSY | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 50 |j 2019 |e 3 |b 11 |c 03 |h 2407-2436 |
author_variant |
c a ca e a a ea eaa y e f ye yef |
---|---|
matchkey_str |
article:13704621:2019----::iieienfxdieycrnztooietachnrsbrtpnuant |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s11063-019-10018-8 doi (DE-627)OLC2044714965 (DE-He213)s11063-019-10018-8-p DE-627 ger DE-627 rakwb eng 000 VZ Aouiti, Chaouki verfasserin (orcid)0000-0002-8252-9017 aut Finite-Time and Fixed-Time Synchronization of Inertial Cohen–Grossberg-Type Neural Networks with Time Varying Delays 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract This paper is devoted to studying the finite-time and fixed-time of inertial Cohen–Grossberg type neural networks (ICGNNs) with time varying delays. First, by constructing a proper variable substitution, the original (ICGNNs) can be rewritten as first-order differential system. Second, by utilizing feedback controllers and constructing suitable Lyapunov functionals, several new sufficient conditions guaranteeing the finite-time and the fixed-time synchronization of ICGNNs with time varying delays are obtained based on different finite-time synchronization analysis techniques. The obtained sufficient conditions are simple and easy to verify. Numerical simulations are given to illustrate the effectiveness of the theoretical results. Inertial Cohen–Grossberg-type Neural networks Finite-time synchronization Fixed-time synchronization Time-varying delays Assali, El Abed aut Foutayeni, Youssef El aut Enthalten in Neural processing letters Springer US, 1994 50(2019), 3 vom: 11. März, Seite 2407-2436 (DE-627)198692617 (DE-600)1316823-X (DE-576)052842762 1370-4621 nnns volume:50 year:2019 number:3 day:11 month:03 pages:2407-2436 https://doi.org/10.1007/s11063-019-10018-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PSY SSG-OLC-MAT GBV_ILN_70 AR 50 2019 3 11 03 2407-2436 |
spelling |
10.1007/s11063-019-10018-8 doi (DE-627)OLC2044714965 (DE-He213)s11063-019-10018-8-p DE-627 ger DE-627 rakwb eng 000 VZ Aouiti, Chaouki verfasserin (orcid)0000-0002-8252-9017 aut Finite-Time and Fixed-Time Synchronization of Inertial Cohen–Grossberg-Type Neural Networks with Time Varying Delays 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract This paper is devoted to studying the finite-time and fixed-time of inertial Cohen–Grossberg type neural networks (ICGNNs) with time varying delays. First, by constructing a proper variable substitution, the original (ICGNNs) can be rewritten as first-order differential system. Second, by utilizing feedback controllers and constructing suitable Lyapunov functionals, several new sufficient conditions guaranteeing the finite-time and the fixed-time synchronization of ICGNNs with time varying delays are obtained based on different finite-time synchronization analysis techniques. The obtained sufficient conditions are simple and easy to verify. Numerical simulations are given to illustrate the effectiveness of the theoretical results. Inertial Cohen–Grossberg-type Neural networks Finite-time synchronization Fixed-time synchronization Time-varying delays Assali, El Abed aut Foutayeni, Youssef El aut Enthalten in Neural processing letters Springer US, 1994 50(2019), 3 vom: 11. März, Seite 2407-2436 (DE-627)198692617 (DE-600)1316823-X (DE-576)052842762 1370-4621 nnns volume:50 year:2019 number:3 day:11 month:03 pages:2407-2436 https://doi.org/10.1007/s11063-019-10018-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PSY SSG-OLC-MAT GBV_ILN_70 AR 50 2019 3 11 03 2407-2436 |
allfields_unstemmed |
10.1007/s11063-019-10018-8 doi (DE-627)OLC2044714965 (DE-He213)s11063-019-10018-8-p DE-627 ger DE-627 rakwb eng 000 VZ Aouiti, Chaouki verfasserin (orcid)0000-0002-8252-9017 aut Finite-Time and Fixed-Time Synchronization of Inertial Cohen–Grossberg-Type Neural Networks with Time Varying Delays 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract This paper is devoted to studying the finite-time and fixed-time of inertial Cohen–Grossberg type neural networks (ICGNNs) with time varying delays. First, by constructing a proper variable substitution, the original (ICGNNs) can be rewritten as first-order differential system. Second, by utilizing feedback controllers and constructing suitable Lyapunov functionals, several new sufficient conditions guaranteeing the finite-time and the fixed-time synchronization of ICGNNs with time varying delays are obtained based on different finite-time synchronization analysis techniques. The obtained sufficient conditions are simple and easy to verify. Numerical simulations are given to illustrate the effectiveness of the theoretical results. Inertial Cohen–Grossberg-type Neural networks Finite-time synchronization Fixed-time synchronization Time-varying delays Assali, El Abed aut Foutayeni, Youssef El aut Enthalten in Neural processing letters Springer US, 1994 50(2019), 3 vom: 11. März, Seite 2407-2436 (DE-627)198692617 (DE-600)1316823-X (DE-576)052842762 1370-4621 nnns volume:50 year:2019 number:3 day:11 month:03 pages:2407-2436 https://doi.org/10.1007/s11063-019-10018-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PSY SSG-OLC-MAT GBV_ILN_70 AR 50 2019 3 11 03 2407-2436 |
allfieldsGer |
10.1007/s11063-019-10018-8 doi (DE-627)OLC2044714965 (DE-He213)s11063-019-10018-8-p DE-627 ger DE-627 rakwb eng 000 VZ Aouiti, Chaouki verfasserin (orcid)0000-0002-8252-9017 aut Finite-Time and Fixed-Time Synchronization of Inertial Cohen–Grossberg-Type Neural Networks with Time Varying Delays 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract This paper is devoted to studying the finite-time and fixed-time of inertial Cohen–Grossberg type neural networks (ICGNNs) with time varying delays. First, by constructing a proper variable substitution, the original (ICGNNs) can be rewritten as first-order differential system. Second, by utilizing feedback controllers and constructing suitable Lyapunov functionals, several new sufficient conditions guaranteeing the finite-time and the fixed-time synchronization of ICGNNs with time varying delays are obtained based on different finite-time synchronization analysis techniques. The obtained sufficient conditions are simple and easy to verify. Numerical simulations are given to illustrate the effectiveness of the theoretical results. Inertial Cohen–Grossberg-type Neural networks Finite-time synchronization Fixed-time synchronization Time-varying delays Assali, El Abed aut Foutayeni, Youssef El aut Enthalten in Neural processing letters Springer US, 1994 50(2019), 3 vom: 11. März, Seite 2407-2436 (DE-627)198692617 (DE-600)1316823-X (DE-576)052842762 1370-4621 nnns volume:50 year:2019 number:3 day:11 month:03 pages:2407-2436 https://doi.org/10.1007/s11063-019-10018-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PSY SSG-OLC-MAT GBV_ILN_70 AR 50 2019 3 11 03 2407-2436 |
allfieldsSound |
10.1007/s11063-019-10018-8 doi (DE-627)OLC2044714965 (DE-He213)s11063-019-10018-8-p DE-627 ger DE-627 rakwb eng 000 VZ Aouiti, Chaouki verfasserin (orcid)0000-0002-8252-9017 aut Finite-Time and Fixed-Time Synchronization of Inertial Cohen–Grossberg-Type Neural Networks with Time Varying Delays 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract This paper is devoted to studying the finite-time and fixed-time of inertial Cohen–Grossberg type neural networks (ICGNNs) with time varying delays. First, by constructing a proper variable substitution, the original (ICGNNs) can be rewritten as first-order differential system. Second, by utilizing feedback controllers and constructing suitable Lyapunov functionals, several new sufficient conditions guaranteeing the finite-time and the fixed-time synchronization of ICGNNs with time varying delays are obtained based on different finite-time synchronization analysis techniques. The obtained sufficient conditions are simple and easy to verify. Numerical simulations are given to illustrate the effectiveness of the theoretical results. Inertial Cohen–Grossberg-type Neural networks Finite-time synchronization Fixed-time synchronization Time-varying delays Assali, El Abed aut Foutayeni, Youssef El aut Enthalten in Neural processing letters Springer US, 1994 50(2019), 3 vom: 11. März, Seite 2407-2436 (DE-627)198692617 (DE-600)1316823-X (DE-576)052842762 1370-4621 nnns volume:50 year:2019 number:3 day:11 month:03 pages:2407-2436 https://doi.org/10.1007/s11063-019-10018-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PSY SSG-OLC-MAT GBV_ILN_70 AR 50 2019 3 11 03 2407-2436 |
language |
English |
source |
Enthalten in Neural processing letters 50(2019), 3 vom: 11. März, Seite 2407-2436 volume:50 year:2019 number:3 day:11 month:03 pages:2407-2436 |
sourceStr |
Enthalten in Neural processing letters 50(2019), 3 vom: 11. März, Seite 2407-2436 volume:50 year:2019 number:3 day:11 month:03 pages:2407-2436 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Inertial Cohen–Grossberg-type Neural networks Finite-time synchronization Fixed-time synchronization Time-varying delays |
dewey-raw |
000 |
isfreeaccess_bool |
false |
container_title |
Neural processing letters |
authorswithroles_txt_mv |
Aouiti, Chaouki @@aut@@ Assali, El Abed @@aut@@ Foutayeni, Youssef El @@aut@@ |
publishDateDaySort_date |
2019-03-11T00:00:00Z |
hierarchy_top_id |
198692617 |
dewey-sort |
0 |
id |
OLC2044714965 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2044714965</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503210530.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11063-019-10018-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2044714965</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11063-019-10018-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">000</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aouiti, Chaouki</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-8252-9017</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Finite-Time and Fixed-Time Synchronization of Inertial Cohen–Grossberg-Type Neural Networks with Time Varying Delays</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper is devoted to studying the finite-time and fixed-time of inertial Cohen–Grossberg type neural networks (ICGNNs) with time varying delays. First, by constructing a proper variable substitution, the original (ICGNNs) can be rewritten as first-order differential system. Second, by utilizing feedback controllers and constructing suitable Lyapunov functionals, several new sufficient conditions guaranteeing the finite-time and the fixed-time synchronization of ICGNNs with time varying delays are obtained based on different finite-time synchronization analysis techniques. The obtained sufficient conditions are simple and easy to verify. Numerical simulations are given to illustrate the effectiveness of the theoretical results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inertial Cohen–Grossberg-type</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite-time synchronization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fixed-time synchronization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time-varying delays</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Assali, El Abed</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Foutayeni, Youssef El</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neural processing letters</subfield><subfield code="d">Springer US, 1994</subfield><subfield code="g">50(2019), 3 vom: 11. März, Seite 2407-2436</subfield><subfield code="w">(DE-627)198692617</subfield><subfield code="w">(DE-600)1316823-X</subfield><subfield code="w">(DE-576)052842762</subfield><subfield code="x">1370-4621</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:50</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:3</subfield><subfield code="g">day:11</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:2407-2436</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11063-019-10018-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PSY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">50</subfield><subfield code="j">2019</subfield><subfield code="e">3</subfield><subfield code="b">11</subfield><subfield code="c">03</subfield><subfield code="h">2407-2436</subfield></datafield></record></collection>
|
author |
Aouiti, Chaouki |
spellingShingle |
Aouiti, Chaouki ddc 000 misc Inertial Cohen–Grossberg-type misc Neural networks misc Finite-time synchronization misc Fixed-time synchronization misc Time-varying delays Finite-Time and Fixed-Time Synchronization of Inertial Cohen–Grossberg-Type Neural Networks with Time Varying Delays |
authorStr |
Aouiti, Chaouki |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)198692617 |
format |
Article |
dewey-ones |
000 - Computer science, information & general works |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1370-4621 |
topic_title |
000 VZ Finite-Time and Fixed-Time Synchronization of Inertial Cohen–Grossberg-Type Neural Networks with Time Varying Delays Inertial Cohen–Grossberg-type Neural networks Finite-time synchronization Fixed-time synchronization Time-varying delays |
topic |
ddc 000 misc Inertial Cohen–Grossberg-type misc Neural networks misc Finite-time synchronization misc Fixed-time synchronization misc Time-varying delays |
topic_unstemmed |
ddc 000 misc Inertial Cohen–Grossberg-type misc Neural networks misc Finite-time synchronization misc Fixed-time synchronization misc Time-varying delays |
topic_browse |
ddc 000 misc Inertial Cohen–Grossberg-type misc Neural networks misc Finite-time synchronization misc Fixed-time synchronization misc Time-varying delays |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Neural processing letters |
hierarchy_parent_id |
198692617 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Neural processing letters |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)198692617 (DE-600)1316823-X (DE-576)052842762 |
title |
Finite-Time and Fixed-Time Synchronization of Inertial Cohen–Grossberg-Type Neural Networks with Time Varying Delays |
ctrlnum |
(DE-627)OLC2044714965 (DE-He213)s11063-019-10018-8-p |
title_full |
Finite-Time and Fixed-Time Synchronization of Inertial Cohen–Grossberg-Type Neural Networks with Time Varying Delays |
author_sort |
Aouiti, Chaouki |
journal |
Neural processing letters |
journalStr |
Neural processing letters |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
2407 |
author_browse |
Aouiti, Chaouki Assali, El Abed Foutayeni, Youssef El |
container_volume |
50 |
class |
000 VZ |
format_se |
Aufsätze |
author-letter |
Aouiti, Chaouki |
doi_str_mv |
10.1007/s11063-019-10018-8 |
normlink |
(ORCID)0000-0002-8252-9017 |
normlink_prefix_str_mv |
(orcid)0000-0002-8252-9017 |
dewey-full |
000 |
title_sort |
finite-time and fixed-time synchronization of inertial cohen–grossberg-type neural networks with time varying delays |
title_auth |
Finite-Time and Fixed-Time Synchronization of Inertial Cohen–Grossberg-Type Neural Networks with Time Varying Delays |
abstract |
Abstract This paper is devoted to studying the finite-time and fixed-time of inertial Cohen–Grossberg type neural networks (ICGNNs) with time varying delays. First, by constructing a proper variable substitution, the original (ICGNNs) can be rewritten as first-order differential system. Second, by utilizing feedback controllers and constructing suitable Lyapunov functionals, several new sufficient conditions guaranteeing the finite-time and the fixed-time synchronization of ICGNNs with time varying delays are obtained based on different finite-time synchronization analysis techniques. The obtained sufficient conditions are simple and easy to verify. Numerical simulations are given to illustrate the effectiveness of the theoretical results. © Springer Science+Business Media, LLC, part of Springer Nature 2019 |
abstractGer |
Abstract This paper is devoted to studying the finite-time and fixed-time of inertial Cohen–Grossberg type neural networks (ICGNNs) with time varying delays. First, by constructing a proper variable substitution, the original (ICGNNs) can be rewritten as first-order differential system. Second, by utilizing feedback controllers and constructing suitable Lyapunov functionals, several new sufficient conditions guaranteeing the finite-time and the fixed-time synchronization of ICGNNs with time varying delays are obtained based on different finite-time synchronization analysis techniques. The obtained sufficient conditions are simple and easy to verify. Numerical simulations are given to illustrate the effectiveness of the theoretical results. © Springer Science+Business Media, LLC, part of Springer Nature 2019 |
abstract_unstemmed |
Abstract This paper is devoted to studying the finite-time and fixed-time of inertial Cohen–Grossberg type neural networks (ICGNNs) with time varying delays. First, by constructing a proper variable substitution, the original (ICGNNs) can be rewritten as first-order differential system. Second, by utilizing feedback controllers and constructing suitable Lyapunov functionals, several new sufficient conditions guaranteeing the finite-time and the fixed-time synchronization of ICGNNs with time varying delays are obtained based on different finite-time synchronization analysis techniques. The obtained sufficient conditions are simple and easy to verify. Numerical simulations are given to illustrate the effectiveness of the theoretical results. © Springer Science+Business Media, LLC, part of Springer Nature 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PSY SSG-OLC-MAT GBV_ILN_70 |
container_issue |
3 |
title_short |
Finite-Time and Fixed-Time Synchronization of Inertial Cohen–Grossberg-Type Neural Networks with Time Varying Delays |
url |
https://doi.org/10.1007/s11063-019-10018-8 |
remote_bool |
false |
author2 |
Assali, El Abed Foutayeni, Youssef El |
author2Str |
Assali, El Abed Foutayeni, Youssef El |
ppnlink |
198692617 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11063-019-10018-8 |
up_date |
2024-07-04T00:31:56.519Z |
_version_ |
1803606416707026944 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2044714965</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503210530.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11063-019-10018-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2044714965</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11063-019-10018-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">000</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aouiti, Chaouki</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-8252-9017</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Finite-Time and Fixed-Time Synchronization of Inertial Cohen–Grossberg-Type Neural Networks with Time Varying Delays</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper is devoted to studying the finite-time and fixed-time of inertial Cohen–Grossberg type neural networks (ICGNNs) with time varying delays. First, by constructing a proper variable substitution, the original (ICGNNs) can be rewritten as first-order differential system. Second, by utilizing feedback controllers and constructing suitable Lyapunov functionals, several new sufficient conditions guaranteeing the finite-time and the fixed-time synchronization of ICGNNs with time varying delays are obtained based on different finite-time synchronization analysis techniques. The obtained sufficient conditions are simple and easy to verify. Numerical simulations are given to illustrate the effectiveness of the theoretical results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inertial Cohen–Grossberg-type</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite-time synchronization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fixed-time synchronization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time-varying delays</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Assali, El Abed</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Foutayeni, Youssef El</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neural processing letters</subfield><subfield code="d">Springer US, 1994</subfield><subfield code="g">50(2019), 3 vom: 11. März, Seite 2407-2436</subfield><subfield code="w">(DE-627)198692617</subfield><subfield code="w">(DE-600)1316823-X</subfield><subfield code="w">(DE-576)052842762</subfield><subfield code="x">1370-4621</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:50</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:3</subfield><subfield code="g">day:11</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:2407-2436</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11063-019-10018-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PSY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">50</subfield><subfield code="j">2019</subfield><subfield code="e">3</subfield><subfield code="b">11</subfield><subfield code="c">03</subfield><subfield code="h">2407-2436</subfield></datafield></record></collection>
|
score |
7.402128 |