On the Rank of the Semigroup $ T_{E} $(X)
Abstract ${\cal T}_X $ denotes the full transformation semigroup on a set $ X $. For a nontrivial equivalence $E$ on $X$, let \[ T_E (X) =\{ f\in {\cal T}_X : \forall \, (a,b)\in E,\, (af,bf)\in E \} . \] Then $T_E (X) $ is exactly the semigroup of continuous selfmaps of the topological space $X$ fo...
Ausführliche Beschreibung
Autor*in: |
Huisheng, Pei [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2004 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer 2004 |
---|
Übergeordnetes Werk: |
Enthalten in: Semigroup forum - Springer-Verlag, 1970, 70(2004), 1 vom: 26. Aug., Seite 107-117 |
---|---|
Übergeordnetes Werk: |
volume:70 ; year:2004 ; number:1 ; day:26 ; month:08 ; pages:107-117 |
Links: |
---|
DOI / URN: |
10.1007/s00233-004-0135-z |
---|
Katalog-ID: |
OLC2044753413 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2044753413 | ||
003 | DE-627 | ||
005 | 20230324013727.0 | ||
007 | tu | ||
008 | 200819s2004 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00233-004-0135-z |2 doi | |
035 | |a (DE-627)OLC2044753413 | ||
035 | |a (DE-He213)s00233-004-0135-z-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Huisheng, Pei |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the Rank of the Semigroup $ T_{E} $(X) |
264 | 1 | |c 2004 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer 2004 | ||
520 | |a Abstract ${\cal T}_X $ denotes the full transformation semigroup on a set $ X $. For a nontrivial equivalence $E$ on $X$, let \[ T_E (X) =\{ f\in {\cal T}_X : \forall \, (a,b)\in E,\, (af,bf)\in E \} . \] Then $T_E (X) $ is exactly the semigroup of continuous selfmaps of the topological space $X$ for which the collection of all $E$-classes is a basis. In this paper, we first discuss the rank of the homeomorphism group $G$, and then consider the rank of $T_E (X)$ for a special case that the set $X$ is finite and that each class of the equivalence $E$ has the same cardinality. Finally, the rank of the closed selfmap semigroup $\Gamma(X)$ of the space $X$ is observed. We conclude that the rank of $G$ is no more than 4, the rank of $T_E (X)$ is no more than 6 and the rank of $\Gamma(X)$ is no more than 5. | ||
650 | 4 | |a Topological Space | |
650 | 4 | |a Transformation Semigroup | |
650 | 4 | |a Full Transformation | |
650 | 4 | |a Full Transformation Semigroup | |
650 | 4 | |a Homeomorphism Group | |
773 | 0 | 8 | |i Enthalten in |t Semigroup forum |d Springer-Verlag, 1970 |g 70(2004), 1 vom: 26. Aug., Seite 107-117 |w (DE-627)129541842 |w (DE-600)217500-9 |w (DE-576)014990733 |x 0037-1912 |7 nnns |
773 | 1 | 8 | |g volume:70 |g year:2004 |g number:1 |g day:26 |g month:08 |g pages:107-117 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00233-004-0135-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2244 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4116 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4325 | ||
951 | |a AR | ||
952 | |d 70 |j 2004 |e 1 |b 26 |c 08 |h 107-117 |
author_variant |
p h ph |
---|---|
matchkey_str |
article:00371912:2004----::nhrnoteei |
hierarchy_sort_str |
2004 |
publishDate |
2004 |
allfields |
10.1007/s00233-004-0135-z doi (DE-627)OLC2044753413 (DE-He213)s00233-004-0135-z-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Huisheng, Pei verfasserin aut On the Rank of the Semigroup $ T_{E} $(X) 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer 2004 Abstract ${\cal T}_X $ denotes the full transformation semigroup on a set $ X $. For a nontrivial equivalence $E$ on $X$, let \[ T_E (X) =\{ f\in {\cal T}_X : \forall \, (a,b)\in E,\, (af,bf)\in E \} . \] Then $T_E (X) $ is exactly the semigroup of continuous selfmaps of the topological space $X$ for which the collection of all $E$-classes is a basis. In this paper, we first discuss the rank of the homeomorphism group $G$, and then consider the rank of $T_E (X)$ for a special case that the set $X$ is finite and that each class of the equivalence $E$ has the same cardinality. Finally, the rank of the closed selfmap semigroup $\Gamma(X)$ of the space $X$ is observed. We conclude that the rank of $G$ is no more than 4, the rank of $T_E (X)$ is no more than 6 and the rank of $\Gamma(X)$ is no more than 5. Topological Space Transformation Semigroup Full Transformation Full Transformation Semigroup Homeomorphism Group Enthalten in Semigroup forum Springer-Verlag, 1970 70(2004), 1 vom: 26. Aug., Seite 107-117 (DE-627)129541842 (DE-600)217500-9 (DE-576)014990733 0037-1912 nnns volume:70 year:2004 number:1 day:26 month:08 pages:107-117 https://doi.org/10.1007/s00233-004-0135-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2244 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4277 GBV_ILN_4325 AR 70 2004 1 26 08 107-117 |
spelling |
10.1007/s00233-004-0135-z doi (DE-627)OLC2044753413 (DE-He213)s00233-004-0135-z-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Huisheng, Pei verfasserin aut On the Rank of the Semigroup $ T_{E} $(X) 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer 2004 Abstract ${\cal T}_X $ denotes the full transformation semigroup on a set $ X $. For a nontrivial equivalence $E$ on $X$, let \[ T_E (X) =\{ f\in {\cal T}_X : \forall \, (a,b)\in E,\, (af,bf)\in E \} . \] Then $T_E (X) $ is exactly the semigroup of continuous selfmaps of the topological space $X$ for which the collection of all $E$-classes is a basis. In this paper, we first discuss the rank of the homeomorphism group $G$, and then consider the rank of $T_E (X)$ for a special case that the set $X$ is finite and that each class of the equivalence $E$ has the same cardinality. Finally, the rank of the closed selfmap semigroup $\Gamma(X)$ of the space $X$ is observed. We conclude that the rank of $G$ is no more than 4, the rank of $T_E (X)$ is no more than 6 and the rank of $\Gamma(X)$ is no more than 5. Topological Space Transformation Semigroup Full Transformation Full Transformation Semigroup Homeomorphism Group Enthalten in Semigroup forum Springer-Verlag, 1970 70(2004), 1 vom: 26. Aug., Seite 107-117 (DE-627)129541842 (DE-600)217500-9 (DE-576)014990733 0037-1912 nnns volume:70 year:2004 number:1 day:26 month:08 pages:107-117 https://doi.org/10.1007/s00233-004-0135-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2244 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4277 GBV_ILN_4325 AR 70 2004 1 26 08 107-117 |
allfields_unstemmed |
10.1007/s00233-004-0135-z doi (DE-627)OLC2044753413 (DE-He213)s00233-004-0135-z-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Huisheng, Pei verfasserin aut On the Rank of the Semigroup $ T_{E} $(X) 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer 2004 Abstract ${\cal T}_X $ denotes the full transformation semigroup on a set $ X $. For a nontrivial equivalence $E$ on $X$, let \[ T_E (X) =\{ f\in {\cal T}_X : \forall \, (a,b)\in E,\, (af,bf)\in E \} . \] Then $T_E (X) $ is exactly the semigroup of continuous selfmaps of the topological space $X$ for which the collection of all $E$-classes is a basis. In this paper, we first discuss the rank of the homeomorphism group $G$, and then consider the rank of $T_E (X)$ for a special case that the set $X$ is finite and that each class of the equivalence $E$ has the same cardinality. Finally, the rank of the closed selfmap semigroup $\Gamma(X)$ of the space $X$ is observed. We conclude that the rank of $G$ is no more than 4, the rank of $T_E (X)$ is no more than 6 and the rank of $\Gamma(X)$ is no more than 5. Topological Space Transformation Semigroup Full Transformation Full Transformation Semigroup Homeomorphism Group Enthalten in Semigroup forum Springer-Verlag, 1970 70(2004), 1 vom: 26. Aug., Seite 107-117 (DE-627)129541842 (DE-600)217500-9 (DE-576)014990733 0037-1912 nnns volume:70 year:2004 number:1 day:26 month:08 pages:107-117 https://doi.org/10.1007/s00233-004-0135-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2244 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4277 GBV_ILN_4325 AR 70 2004 1 26 08 107-117 |
allfieldsGer |
10.1007/s00233-004-0135-z doi (DE-627)OLC2044753413 (DE-He213)s00233-004-0135-z-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Huisheng, Pei verfasserin aut On the Rank of the Semigroup $ T_{E} $(X) 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer 2004 Abstract ${\cal T}_X $ denotes the full transformation semigroup on a set $ X $. For a nontrivial equivalence $E$ on $X$, let \[ T_E (X) =\{ f\in {\cal T}_X : \forall \, (a,b)\in E,\, (af,bf)\in E \} . \] Then $T_E (X) $ is exactly the semigroup of continuous selfmaps of the topological space $X$ for which the collection of all $E$-classes is a basis. In this paper, we first discuss the rank of the homeomorphism group $G$, and then consider the rank of $T_E (X)$ for a special case that the set $X$ is finite and that each class of the equivalence $E$ has the same cardinality. Finally, the rank of the closed selfmap semigroup $\Gamma(X)$ of the space $X$ is observed. We conclude that the rank of $G$ is no more than 4, the rank of $T_E (X)$ is no more than 6 and the rank of $\Gamma(X)$ is no more than 5. Topological Space Transformation Semigroup Full Transformation Full Transformation Semigroup Homeomorphism Group Enthalten in Semigroup forum Springer-Verlag, 1970 70(2004), 1 vom: 26. Aug., Seite 107-117 (DE-627)129541842 (DE-600)217500-9 (DE-576)014990733 0037-1912 nnns volume:70 year:2004 number:1 day:26 month:08 pages:107-117 https://doi.org/10.1007/s00233-004-0135-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2244 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4277 GBV_ILN_4325 AR 70 2004 1 26 08 107-117 |
allfieldsSound |
10.1007/s00233-004-0135-z doi (DE-627)OLC2044753413 (DE-He213)s00233-004-0135-z-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Huisheng, Pei verfasserin aut On the Rank of the Semigroup $ T_{E} $(X) 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer 2004 Abstract ${\cal T}_X $ denotes the full transformation semigroup on a set $ X $. For a nontrivial equivalence $E$ on $X$, let \[ T_E (X) =\{ f\in {\cal T}_X : \forall \, (a,b)\in E,\, (af,bf)\in E \} . \] Then $T_E (X) $ is exactly the semigroup of continuous selfmaps of the topological space $X$ for which the collection of all $E$-classes is a basis. In this paper, we first discuss the rank of the homeomorphism group $G$, and then consider the rank of $T_E (X)$ for a special case that the set $X$ is finite and that each class of the equivalence $E$ has the same cardinality. Finally, the rank of the closed selfmap semigroup $\Gamma(X)$ of the space $X$ is observed. We conclude that the rank of $G$ is no more than 4, the rank of $T_E (X)$ is no more than 6 and the rank of $\Gamma(X)$ is no more than 5. Topological Space Transformation Semigroup Full Transformation Full Transformation Semigroup Homeomorphism Group Enthalten in Semigroup forum Springer-Verlag, 1970 70(2004), 1 vom: 26. Aug., Seite 107-117 (DE-627)129541842 (DE-600)217500-9 (DE-576)014990733 0037-1912 nnns volume:70 year:2004 number:1 day:26 month:08 pages:107-117 https://doi.org/10.1007/s00233-004-0135-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2244 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4277 GBV_ILN_4325 AR 70 2004 1 26 08 107-117 |
language |
English |
source |
Enthalten in Semigroup forum 70(2004), 1 vom: 26. Aug., Seite 107-117 volume:70 year:2004 number:1 day:26 month:08 pages:107-117 |
sourceStr |
Enthalten in Semigroup forum 70(2004), 1 vom: 26. Aug., Seite 107-117 volume:70 year:2004 number:1 day:26 month:08 pages:107-117 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Topological Space Transformation Semigroup Full Transformation Full Transformation Semigroup Homeomorphism Group |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Semigroup forum |
authorswithroles_txt_mv |
Huisheng, Pei @@aut@@ |
publishDateDaySort_date |
2004-08-26T00:00:00Z |
hierarchy_top_id |
129541842 |
dewey-sort |
3510 |
id |
OLC2044753413 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2044753413</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230324013727.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2004 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00233-004-0135-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2044753413</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00233-004-0135-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huisheng, Pei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the Rank of the Semigroup $ T_{E} $(X)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2004</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer 2004</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract ${\cal T}_X $ denotes the full transformation semigroup on a set $ X $. For a nontrivial equivalence $E$ on $X$, let \[ T_E (X) =\{ f\in {\cal T}_X : \forall \, (a,b)\in E,\, (af,bf)\in E \} . \] Then $T_E (X) $ is exactly the semigroup of continuous selfmaps of the topological space $X$ for which the collection of all $E$-classes is a basis. In this paper, we first discuss the rank of the homeomorphism group $G$, and then consider the rank of $T_E (X)$ for a special case that the set $X$ is finite and that each class of the equivalence $E$ has the same cardinality. Finally, the rank of the closed selfmap semigroup $\Gamma(X)$ of the space $X$ is observed. We conclude that the rank of $G$ is no more than 4, the rank of $T_E (X)$ is no more than 6 and the rank of $\Gamma(X)$ is no more than 5.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transformation Semigroup</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Full Transformation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Full Transformation Semigroup</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homeomorphism Group</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Semigroup forum</subfield><subfield code="d">Springer-Verlag, 1970</subfield><subfield code="g">70(2004), 1 vom: 26. Aug., Seite 107-117</subfield><subfield code="w">(DE-627)129541842</subfield><subfield code="w">(DE-600)217500-9</subfield><subfield code="w">(DE-576)014990733</subfield><subfield code="x">0037-1912</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:70</subfield><subfield code="g">year:2004</subfield><subfield code="g">number:1</subfield><subfield code="g">day:26</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:107-117</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00233-004-0135-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">70</subfield><subfield code="j">2004</subfield><subfield code="e">1</subfield><subfield code="b">26</subfield><subfield code="c">08</subfield><subfield code="h">107-117</subfield></datafield></record></collection>
|
author |
Huisheng, Pei |
spellingShingle |
Huisheng, Pei ddc 510 ssgn 17,1 misc Topological Space misc Transformation Semigroup misc Full Transformation misc Full Transformation Semigroup misc Homeomorphism Group On the Rank of the Semigroup $ T_{E} $(X) |
authorStr |
Huisheng, Pei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129541842 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0037-1912 |
topic_title |
510 VZ 17,1 ssgn On the Rank of the Semigroup $ T_{E} $(X) Topological Space Transformation Semigroup Full Transformation Full Transformation Semigroup Homeomorphism Group |
topic |
ddc 510 ssgn 17,1 misc Topological Space misc Transformation Semigroup misc Full Transformation misc Full Transformation Semigroup misc Homeomorphism Group |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Topological Space misc Transformation Semigroup misc Full Transformation misc Full Transformation Semigroup misc Homeomorphism Group |
topic_browse |
ddc 510 ssgn 17,1 misc Topological Space misc Transformation Semigroup misc Full Transformation misc Full Transformation Semigroup misc Homeomorphism Group |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Semigroup forum |
hierarchy_parent_id |
129541842 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Semigroup forum |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129541842 (DE-600)217500-9 (DE-576)014990733 |
title |
On the Rank of the Semigroup $ T_{E} $(X) |
ctrlnum |
(DE-627)OLC2044753413 (DE-He213)s00233-004-0135-z-p |
title_full |
On the Rank of the Semigroup $ T_{E} $(X) |
author_sort |
Huisheng, Pei |
journal |
Semigroup forum |
journalStr |
Semigroup forum |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2004 |
contenttype_str_mv |
txt |
container_start_page |
107 |
author_browse |
Huisheng, Pei |
container_volume |
70 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Huisheng, Pei |
doi_str_mv |
10.1007/s00233-004-0135-z |
dewey-full |
510 |
title_sort |
on the rank of the semigroup $ t_{e} $(x) |
title_auth |
On the Rank of the Semigroup $ T_{E} $(X) |
abstract |
Abstract ${\cal T}_X $ denotes the full transformation semigroup on a set $ X $. For a nontrivial equivalence $E$ on $X$, let \[ T_E (X) =\{ f\in {\cal T}_X : \forall \, (a,b)\in E,\, (af,bf)\in E \} . \] Then $T_E (X) $ is exactly the semigroup of continuous selfmaps of the topological space $X$ for which the collection of all $E$-classes is a basis. In this paper, we first discuss the rank of the homeomorphism group $G$, and then consider the rank of $T_E (X)$ for a special case that the set $X$ is finite and that each class of the equivalence $E$ has the same cardinality. Finally, the rank of the closed selfmap semigroup $\Gamma(X)$ of the space $X$ is observed. We conclude that the rank of $G$ is no more than 4, the rank of $T_E (X)$ is no more than 6 and the rank of $\Gamma(X)$ is no more than 5. © Springer 2004 |
abstractGer |
Abstract ${\cal T}_X $ denotes the full transformation semigroup on a set $ X $. For a nontrivial equivalence $E$ on $X$, let \[ T_E (X) =\{ f\in {\cal T}_X : \forall \, (a,b)\in E,\, (af,bf)\in E \} . \] Then $T_E (X) $ is exactly the semigroup of continuous selfmaps of the topological space $X$ for which the collection of all $E$-classes is a basis. In this paper, we first discuss the rank of the homeomorphism group $G$, and then consider the rank of $T_E (X)$ for a special case that the set $X$ is finite and that each class of the equivalence $E$ has the same cardinality. Finally, the rank of the closed selfmap semigroup $\Gamma(X)$ of the space $X$ is observed. We conclude that the rank of $G$ is no more than 4, the rank of $T_E (X)$ is no more than 6 and the rank of $\Gamma(X)$ is no more than 5. © Springer 2004 |
abstract_unstemmed |
Abstract ${\cal T}_X $ denotes the full transformation semigroup on a set $ X $. For a nontrivial equivalence $E$ on $X$, let \[ T_E (X) =\{ f\in {\cal T}_X : \forall \, (a,b)\in E,\, (af,bf)\in E \} . \] Then $T_E (X) $ is exactly the semigroup of continuous selfmaps of the topological space $X$ for which the collection of all $E$-classes is a basis. In this paper, we first discuss the rank of the homeomorphism group $G$, and then consider the rank of $T_E (X)$ for a special case that the set $X$ is finite and that each class of the equivalence $E$ has the same cardinality. Finally, the rank of the closed selfmap semigroup $\Gamma(X)$ of the space $X$ is observed. We conclude that the rank of $G$ is no more than 4, the rank of $T_E (X)$ is no more than 6 and the rank of $\Gamma(X)$ is no more than 5. © Springer 2004 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2244 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4277 GBV_ILN_4325 |
container_issue |
1 |
title_short |
On the Rank of the Semigroup $ T_{E} $(X) |
url |
https://doi.org/10.1007/s00233-004-0135-z |
remote_bool |
false |
ppnlink |
129541842 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00233-004-0135-z |
up_date |
2024-07-04T00:39:03.769Z |
_version_ |
1803606864713220096 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2044753413</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230324013727.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2004 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00233-004-0135-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2044753413</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00233-004-0135-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huisheng, Pei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the Rank of the Semigroup $ T_{E} $(X)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2004</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer 2004</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract ${\cal T}_X $ denotes the full transformation semigroup on a set $ X $. For a nontrivial equivalence $E$ on $X$, let \[ T_E (X) =\{ f\in {\cal T}_X : \forall \, (a,b)\in E,\, (af,bf)\in E \} . \] Then $T_E (X) $ is exactly the semigroup of continuous selfmaps of the topological space $X$ for which the collection of all $E$-classes is a basis. In this paper, we first discuss the rank of the homeomorphism group $G$, and then consider the rank of $T_E (X)$ for a special case that the set $X$ is finite and that each class of the equivalence $E$ has the same cardinality. Finally, the rank of the closed selfmap semigroup $\Gamma(X)$ of the space $X$ is observed. We conclude that the rank of $G$ is no more than 4, the rank of $T_E (X)$ is no more than 6 and the rank of $\Gamma(X)$ is no more than 5.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transformation Semigroup</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Full Transformation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Full Transformation Semigroup</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homeomorphism Group</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Semigroup forum</subfield><subfield code="d">Springer-Verlag, 1970</subfield><subfield code="g">70(2004), 1 vom: 26. Aug., Seite 107-117</subfield><subfield code="w">(DE-627)129541842</subfield><subfield code="w">(DE-600)217500-9</subfield><subfield code="w">(DE-576)014990733</subfield><subfield code="x">0037-1912</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:70</subfield><subfield code="g">year:2004</subfield><subfield code="g">number:1</subfield><subfield code="g">day:26</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:107-117</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00233-004-0135-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">70</subfield><subfield code="j">2004</subfield><subfield code="e">1</subfield><subfield code="b">26</subfield><subfield code="c">08</subfield><subfield code="h">107-117</subfield></datafield></record></collection>
|
score |
7.399102 |