Fixed points of continuous DCPOs
Abstract In this article we show that for a continuous DCPO D, the set of fixed points of every self-map is a continuous DCPO if and only if x<y implies x is way below y. We also prove that some classes of continuous functions have the property that if a self-map on a DCPO is in the class then th...
Ausführliche Beschreibung
Autor*in: |
Jordan, Francis [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2012 |
---|
Übergeordnetes Werk: |
Enthalten in: Semigroup forum - Springer-Verlag, 1970, 84(2012), 3 vom: 01. März, Seite 505-514 |
---|---|
Übergeordnetes Werk: |
volume:84 ; year:2012 ; number:3 ; day:01 ; month:03 ; pages:505-514 |
Links: |
---|
DOI / URN: |
10.1007/s00233-012-9376-4 |
---|
Katalog-ID: |
OLC2044758652 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2044758652 | ||
003 | DE-627 | ||
005 | 20230324014147.0 | ||
007 | tu | ||
008 | 200819s2012 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00233-012-9376-4 |2 doi | |
035 | |a (DE-627)OLC2044758652 | ||
035 | |a (DE-He213)s00233-012-9376-4-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Jordan, Francis |e verfasserin |4 aut | |
245 | 1 | 0 | |a Fixed points of continuous DCPOs |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2012 | ||
520 | |a Abstract In this article we show that for a continuous DCPO D, the set of fixed points of every self-map is a continuous DCPO if and only if x<y implies x is way below y. We also prove that some classes of continuous functions have the property that if a self-map on a DCPO is in the class then the set of fixed points is a continuous DCPO. We also investigate when the set of fixed points is a retract. | ||
650 | 4 | |a Fixed point | |
650 | 4 | |a Scott topology | |
650 | 4 | |a Scott continuous | |
700 | 1 | |a Pajoohesh, Homeira |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Semigroup forum |d Springer-Verlag, 1970 |g 84(2012), 3 vom: 01. März, Seite 505-514 |w (DE-627)129541842 |w (DE-600)217500-9 |w (DE-576)014990733 |x 0037-1912 |7 nnns |
773 | 1 | 8 | |g volume:84 |g year:2012 |g number:3 |g day:01 |g month:03 |g pages:505-514 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00233-012-9376-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4325 | ||
951 | |a AR | ||
952 | |d 84 |j 2012 |e 3 |b 01 |c 03 |h 505-514 |
author_variant |
f j fj h p hp |
---|---|
matchkey_str |
article:00371912:2012----::iepitocniu |
hierarchy_sort_str |
2012 |
publishDate |
2012 |
allfields |
10.1007/s00233-012-9376-4 doi (DE-627)OLC2044758652 (DE-He213)s00233-012-9376-4-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Jordan, Francis verfasserin aut Fixed points of continuous DCPOs 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2012 Abstract In this article we show that for a continuous DCPO D, the set of fixed points of every self-map is a continuous DCPO if and only if x<y implies x is way below y. We also prove that some classes of continuous functions have the property that if a self-map on a DCPO is in the class then the set of fixed points is a continuous DCPO. We also investigate when the set of fixed points is a retract. Fixed point Scott topology Scott continuous Pajoohesh, Homeira aut Enthalten in Semigroup forum Springer-Verlag, 1970 84(2012), 3 vom: 01. März, Seite 505-514 (DE-627)129541842 (DE-600)217500-9 (DE-576)014990733 0037-1912 nnns volume:84 year:2012 number:3 day:01 month:03 pages:505-514 https://doi.org/10.1007/s00233-012-9376-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4036 GBV_ILN_4325 AR 84 2012 3 01 03 505-514 |
spelling |
10.1007/s00233-012-9376-4 doi (DE-627)OLC2044758652 (DE-He213)s00233-012-9376-4-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Jordan, Francis verfasserin aut Fixed points of continuous DCPOs 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2012 Abstract In this article we show that for a continuous DCPO D, the set of fixed points of every self-map is a continuous DCPO if and only if x<y implies x is way below y. We also prove that some classes of continuous functions have the property that if a self-map on a DCPO is in the class then the set of fixed points is a continuous DCPO. We also investigate when the set of fixed points is a retract. Fixed point Scott topology Scott continuous Pajoohesh, Homeira aut Enthalten in Semigroup forum Springer-Verlag, 1970 84(2012), 3 vom: 01. März, Seite 505-514 (DE-627)129541842 (DE-600)217500-9 (DE-576)014990733 0037-1912 nnns volume:84 year:2012 number:3 day:01 month:03 pages:505-514 https://doi.org/10.1007/s00233-012-9376-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4036 GBV_ILN_4325 AR 84 2012 3 01 03 505-514 |
allfields_unstemmed |
10.1007/s00233-012-9376-4 doi (DE-627)OLC2044758652 (DE-He213)s00233-012-9376-4-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Jordan, Francis verfasserin aut Fixed points of continuous DCPOs 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2012 Abstract In this article we show that for a continuous DCPO D, the set of fixed points of every self-map is a continuous DCPO if and only if x<y implies x is way below y. We also prove that some classes of continuous functions have the property that if a self-map on a DCPO is in the class then the set of fixed points is a continuous DCPO. We also investigate when the set of fixed points is a retract. Fixed point Scott topology Scott continuous Pajoohesh, Homeira aut Enthalten in Semigroup forum Springer-Verlag, 1970 84(2012), 3 vom: 01. März, Seite 505-514 (DE-627)129541842 (DE-600)217500-9 (DE-576)014990733 0037-1912 nnns volume:84 year:2012 number:3 day:01 month:03 pages:505-514 https://doi.org/10.1007/s00233-012-9376-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4036 GBV_ILN_4325 AR 84 2012 3 01 03 505-514 |
allfieldsGer |
10.1007/s00233-012-9376-4 doi (DE-627)OLC2044758652 (DE-He213)s00233-012-9376-4-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Jordan, Francis verfasserin aut Fixed points of continuous DCPOs 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2012 Abstract In this article we show that for a continuous DCPO D, the set of fixed points of every self-map is a continuous DCPO if and only if x<y implies x is way below y. We also prove that some classes of continuous functions have the property that if a self-map on a DCPO is in the class then the set of fixed points is a continuous DCPO. We also investigate when the set of fixed points is a retract. Fixed point Scott topology Scott continuous Pajoohesh, Homeira aut Enthalten in Semigroup forum Springer-Verlag, 1970 84(2012), 3 vom: 01. März, Seite 505-514 (DE-627)129541842 (DE-600)217500-9 (DE-576)014990733 0037-1912 nnns volume:84 year:2012 number:3 day:01 month:03 pages:505-514 https://doi.org/10.1007/s00233-012-9376-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4036 GBV_ILN_4325 AR 84 2012 3 01 03 505-514 |
allfieldsSound |
10.1007/s00233-012-9376-4 doi (DE-627)OLC2044758652 (DE-He213)s00233-012-9376-4-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Jordan, Francis verfasserin aut Fixed points of continuous DCPOs 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2012 Abstract In this article we show that for a continuous DCPO D, the set of fixed points of every self-map is a continuous DCPO if and only if x<y implies x is way below y. We also prove that some classes of continuous functions have the property that if a self-map on a DCPO is in the class then the set of fixed points is a continuous DCPO. We also investigate when the set of fixed points is a retract. Fixed point Scott topology Scott continuous Pajoohesh, Homeira aut Enthalten in Semigroup forum Springer-Verlag, 1970 84(2012), 3 vom: 01. März, Seite 505-514 (DE-627)129541842 (DE-600)217500-9 (DE-576)014990733 0037-1912 nnns volume:84 year:2012 number:3 day:01 month:03 pages:505-514 https://doi.org/10.1007/s00233-012-9376-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4036 GBV_ILN_4325 AR 84 2012 3 01 03 505-514 |
language |
English |
source |
Enthalten in Semigroup forum 84(2012), 3 vom: 01. März, Seite 505-514 volume:84 year:2012 number:3 day:01 month:03 pages:505-514 |
sourceStr |
Enthalten in Semigroup forum 84(2012), 3 vom: 01. März, Seite 505-514 volume:84 year:2012 number:3 day:01 month:03 pages:505-514 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Fixed point Scott topology Scott continuous |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Semigroup forum |
authorswithroles_txt_mv |
Jordan, Francis @@aut@@ Pajoohesh, Homeira @@aut@@ |
publishDateDaySort_date |
2012-03-01T00:00:00Z |
hierarchy_top_id |
129541842 |
dewey-sort |
3510 |
id |
OLC2044758652 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2044758652</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230324014147.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00233-012-9376-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2044758652</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00233-012-9376-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jordan, Francis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fixed points of continuous DCPOs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this article we show that for a continuous DCPO D, the set of fixed points of every self-map is a continuous DCPO if and only if x<y implies x is way below y. We also prove that some classes of continuous functions have the property that if a self-map on a DCPO is in the class then the set of fixed points is a continuous DCPO. We also investigate when the set of fixed points is a retract.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fixed point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scott topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scott continuous</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pajoohesh, Homeira</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Semigroup forum</subfield><subfield code="d">Springer-Verlag, 1970</subfield><subfield code="g">84(2012), 3 vom: 01. März, Seite 505-514</subfield><subfield code="w">(DE-627)129541842</subfield><subfield code="w">(DE-600)217500-9</subfield><subfield code="w">(DE-576)014990733</subfield><subfield code="x">0037-1912</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:84</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:3</subfield><subfield code="g">day:01</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:505-514</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00233-012-9376-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">84</subfield><subfield code="j">2012</subfield><subfield code="e">3</subfield><subfield code="b">01</subfield><subfield code="c">03</subfield><subfield code="h">505-514</subfield></datafield></record></collection>
|
author |
Jordan, Francis |
spellingShingle |
Jordan, Francis ddc 510 ssgn 17,1 misc Fixed point misc Scott topology misc Scott continuous Fixed points of continuous DCPOs |
authorStr |
Jordan, Francis |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129541842 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0037-1912 |
topic_title |
510 VZ 17,1 ssgn Fixed points of continuous DCPOs Fixed point Scott topology Scott continuous |
topic |
ddc 510 ssgn 17,1 misc Fixed point misc Scott topology misc Scott continuous |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Fixed point misc Scott topology misc Scott continuous |
topic_browse |
ddc 510 ssgn 17,1 misc Fixed point misc Scott topology misc Scott continuous |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Semigroup forum |
hierarchy_parent_id |
129541842 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Semigroup forum |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129541842 (DE-600)217500-9 (DE-576)014990733 |
title |
Fixed points of continuous DCPOs |
ctrlnum |
(DE-627)OLC2044758652 (DE-He213)s00233-012-9376-4-p |
title_full |
Fixed points of continuous DCPOs |
author_sort |
Jordan, Francis |
journal |
Semigroup forum |
journalStr |
Semigroup forum |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
505 |
author_browse |
Jordan, Francis Pajoohesh, Homeira |
container_volume |
84 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Jordan, Francis |
doi_str_mv |
10.1007/s00233-012-9376-4 |
dewey-full |
510 |
title_sort |
fixed points of continuous dcpos |
title_auth |
Fixed points of continuous DCPOs |
abstract |
Abstract In this article we show that for a continuous DCPO D, the set of fixed points of every self-map is a continuous DCPO if and only if x<y implies x is way below y. We also prove that some classes of continuous functions have the property that if a self-map on a DCPO is in the class then the set of fixed points is a continuous DCPO. We also investigate when the set of fixed points is a retract. © Springer Science+Business Media, LLC 2012 |
abstractGer |
Abstract In this article we show that for a continuous DCPO D, the set of fixed points of every self-map is a continuous DCPO if and only if x<y implies x is way below y. We also prove that some classes of continuous functions have the property that if a self-map on a DCPO is in the class then the set of fixed points is a continuous DCPO. We also investigate when the set of fixed points is a retract. © Springer Science+Business Media, LLC 2012 |
abstract_unstemmed |
Abstract In this article we show that for a continuous DCPO D, the set of fixed points of every self-map is a continuous DCPO if and only if x<y implies x is way below y. We also prove that some classes of continuous functions have the property that if a self-map on a DCPO is in the class then the set of fixed points is a continuous DCPO. We also investigate when the set of fixed points is a retract. © Springer Science+Business Media, LLC 2012 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_4036 GBV_ILN_4325 |
container_issue |
3 |
title_short |
Fixed points of continuous DCPOs |
url |
https://doi.org/10.1007/s00233-012-9376-4 |
remote_bool |
false |
author2 |
Pajoohesh, Homeira |
author2Str |
Pajoohesh, Homeira |
ppnlink |
129541842 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00233-012-9376-4 |
up_date |
2024-07-04T00:39:53.194Z |
_version_ |
1803606916538040320 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2044758652</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230324014147.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00233-012-9376-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2044758652</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00233-012-9376-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jordan, Francis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fixed points of continuous DCPOs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this article we show that for a continuous DCPO D, the set of fixed points of every self-map is a continuous DCPO if and only if x<y implies x is way below y. We also prove that some classes of continuous functions have the property that if a self-map on a DCPO is in the class then the set of fixed points is a continuous DCPO. We also investigate when the set of fixed points is a retract.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fixed point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scott topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scott continuous</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pajoohesh, Homeira</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Semigroup forum</subfield><subfield code="d">Springer-Verlag, 1970</subfield><subfield code="g">84(2012), 3 vom: 01. März, Seite 505-514</subfield><subfield code="w">(DE-627)129541842</subfield><subfield code="w">(DE-600)217500-9</subfield><subfield code="w">(DE-576)014990733</subfield><subfield code="x">0037-1912</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:84</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:3</subfield><subfield code="g">day:01</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:505-514</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00233-012-9376-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">84</subfield><subfield code="j">2012</subfield><subfield code="e">3</subfield><subfield code="b">01</subfield><subfield code="c">03</subfield><subfield code="h">505-514</subfield></datafield></record></collection>
|
score |
7.40042 |