A note on additively completely regular seminearrings
Abstract In the endeavour of obtaining semigroup theoretic analogues i.e., the analogues of structure theorems of completely regular semigroups in the setting of additively regular seminearrings we could obtain some results in Mukherjee et al. (Commun Algebra 45(12):5111–5122, 2017). But we could no...
Ausführliche Beschreibung
Autor*in: |
Mukherjee, Rajlaxmi [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
Left (right) completely regular seminearring |
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Semigroup forum - Springer US, 1970, 100(2018), 1 vom: 19. Nov., Seite 339-347 |
---|---|
Übergeordnetes Werk: |
volume:100 ; year:2018 ; number:1 ; day:19 ; month:11 ; pages:339-347 |
Links: |
---|
DOI / URN: |
10.1007/s00233-018-9983-9 |
---|
Katalog-ID: |
OLC2044765241 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2044765241 | ||
003 | DE-627 | ||
005 | 20230324014716.0 | ||
007 | tu | ||
008 | 200819s2018 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00233-018-9983-9 |2 doi | |
035 | |a (DE-627)OLC2044765241 | ||
035 | |a (DE-He213)s00233-018-9983-9-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Mukherjee, Rajlaxmi |e verfasserin |4 aut | |
245 | 1 | 0 | |a A note on additively completely regular seminearrings |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2018 | ||
520 | |a Abstract In the endeavour of obtaining semigroup theoretic analogues i.e., the analogues of structure theorems of completely regular semigroups in the setting of additively regular seminearrings we could obtain some results in Mukherjee et al. (Commun Algebra 45(12):5111–5122, 2017). But we could not obtain the analogue of (i) ‘A semigroup is Clifford if and only if it is strong semilattice of groups’ and (ii) ‘ A semigroup is completely regular if and only if it is a union of groups’. In Mukherjee et al. (Commun Algebra, 10.1080/00927872.2018.1524011) we could obtain the analogue of (i) for some restricted type of left (right) Clifford seminearrings. The main purpose of this paper is to complete the remaining task i.e., to obtain the analogue of (ii) for a class of additively completely regular seminearrings. In order to accomplish this we have characterized those seminearrings which are union of near-rings (zero-symmetric near-rings) in the class of additively completely regular seminearrings. | ||
650 | 4 | |a Left (right) completely regular seminearring | |
650 | 4 | |a Generalized left (right) completely regular seminearring | |
650 | 4 | |a Union of near-rings (zero-symmetric near-rings) | |
700 | 1 | |a Manna, Tuhin |4 aut | |
700 | 1 | |a Pal, Pavel |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Semigroup forum |d Springer US, 1970 |g 100(2018), 1 vom: 19. Nov., Seite 339-347 |w (DE-627)129541842 |w (DE-600)217500-9 |w (DE-576)014990733 |x 0037-1912 |7 nnns |
773 | 1 | 8 | |g volume:100 |g year:2018 |g number:1 |g day:19 |g month:11 |g pages:339-347 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00233-018-9983-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2018 | ||
951 | |a AR | ||
952 | |d 100 |j 2018 |e 1 |b 19 |c 11 |h 339-347 |
author_variant |
r m rm t m tm p p pp |
---|---|
matchkey_str |
article:00371912:2018----::ntoadtvlcmltlrgl |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1007/s00233-018-9983-9 doi (DE-627)OLC2044765241 (DE-He213)s00233-018-9983-9-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Mukherjee, Rajlaxmi verfasserin aut A note on additively completely regular seminearrings 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract In the endeavour of obtaining semigroup theoretic analogues i.e., the analogues of structure theorems of completely regular semigroups in the setting of additively regular seminearrings we could obtain some results in Mukherjee et al. (Commun Algebra 45(12):5111–5122, 2017). But we could not obtain the analogue of (i) ‘A semigroup is Clifford if and only if it is strong semilattice of groups’ and (ii) ‘ A semigroup is completely regular if and only if it is a union of groups’. In Mukherjee et al. (Commun Algebra, 10.1080/00927872.2018.1524011) we could obtain the analogue of (i) for some restricted type of left (right) Clifford seminearrings. The main purpose of this paper is to complete the remaining task i.e., to obtain the analogue of (ii) for a class of additively completely regular seminearrings. In order to accomplish this we have characterized those seminearrings which are union of near-rings (zero-symmetric near-rings) in the class of additively completely regular seminearrings. Left (right) completely regular seminearring Generalized left (right) completely regular seminearring Union of near-rings (zero-symmetric near-rings) Manna, Tuhin aut Pal, Pavel aut Enthalten in Semigroup forum Springer US, 1970 100(2018), 1 vom: 19. Nov., Seite 339-347 (DE-627)129541842 (DE-600)217500-9 (DE-576)014990733 0037-1912 nnns volume:100 year:2018 number:1 day:19 month:11 pages:339-347 https://doi.org/10.1007/s00233-018-9983-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 AR 100 2018 1 19 11 339-347 |
spelling |
10.1007/s00233-018-9983-9 doi (DE-627)OLC2044765241 (DE-He213)s00233-018-9983-9-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Mukherjee, Rajlaxmi verfasserin aut A note on additively completely regular seminearrings 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract In the endeavour of obtaining semigroup theoretic analogues i.e., the analogues of structure theorems of completely regular semigroups in the setting of additively regular seminearrings we could obtain some results in Mukherjee et al. (Commun Algebra 45(12):5111–5122, 2017). But we could not obtain the analogue of (i) ‘A semigroup is Clifford if and only if it is strong semilattice of groups’ and (ii) ‘ A semigroup is completely regular if and only if it is a union of groups’. In Mukherjee et al. (Commun Algebra, 10.1080/00927872.2018.1524011) we could obtain the analogue of (i) for some restricted type of left (right) Clifford seminearrings. The main purpose of this paper is to complete the remaining task i.e., to obtain the analogue of (ii) for a class of additively completely regular seminearrings. In order to accomplish this we have characterized those seminearrings which are union of near-rings (zero-symmetric near-rings) in the class of additively completely regular seminearrings. Left (right) completely regular seminearring Generalized left (right) completely regular seminearring Union of near-rings (zero-symmetric near-rings) Manna, Tuhin aut Pal, Pavel aut Enthalten in Semigroup forum Springer US, 1970 100(2018), 1 vom: 19. Nov., Seite 339-347 (DE-627)129541842 (DE-600)217500-9 (DE-576)014990733 0037-1912 nnns volume:100 year:2018 number:1 day:19 month:11 pages:339-347 https://doi.org/10.1007/s00233-018-9983-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 AR 100 2018 1 19 11 339-347 |
allfields_unstemmed |
10.1007/s00233-018-9983-9 doi (DE-627)OLC2044765241 (DE-He213)s00233-018-9983-9-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Mukherjee, Rajlaxmi verfasserin aut A note on additively completely regular seminearrings 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract In the endeavour of obtaining semigroup theoretic analogues i.e., the analogues of structure theorems of completely regular semigroups in the setting of additively regular seminearrings we could obtain some results in Mukherjee et al. (Commun Algebra 45(12):5111–5122, 2017). But we could not obtain the analogue of (i) ‘A semigroup is Clifford if and only if it is strong semilattice of groups’ and (ii) ‘ A semigroup is completely regular if and only if it is a union of groups’. In Mukherjee et al. (Commun Algebra, 10.1080/00927872.2018.1524011) we could obtain the analogue of (i) for some restricted type of left (right) Clifford seminearrings. The main purpose of this paper is to complete the remaining task i.e., to obtain the analogue of (ii) for a class of additively completely regular seminearrings. In order to accomplish this we have characterized those seminearrings which are union of near-rings (zero-symmetric near-rings) in the class of additively completely regular seminearrings. Left (right) completely regular seminearring Generalized left (right) completely regular seminearring Union of near-rings (zero-symmetric near-rings) Manna, Tuhin aut Pal, Pavel aut Enthalten in Semigroup forum Springer US, 1970 100(2018), 1 vom: 19. Nov., Seite 339-347 (DE-627)129541842 (DE-600)217500-9 (DE-576)014990733 0037-1912 nnns volume:100 year:2018 number:1 day:19 month:11 pages:339-347 https://doi.org/10.1007/s00233-018-9983-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 AR 100 2018 1 19 11 339-347 |
allfieldsGer |
10.1007/s00233-018-9983-9 doi (DE-627)OLC2044765241 (DE-He213)s00233-018-9983-9-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Mukherjee, Rajlaxmi verfasserin aut A note on additively completely regular seminearrings 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract In the endeavour of obtaining semigroup theoretic analogues i.e., the analogues of structure theorems of completely regular semigroups in the setting of additively regular seminearrings we could obtain some results in Mukherjee et al. (Commun Algebra 45(12):5111–5122, 2017). But we could not obtain the analogue of (i) ‘A semigroup is Clifford if and only if it is strong semilattice of groups’ and (ii) ‘ A semigroup is completely regular if and only if it is a union of groups’. In Mukherjee et al. (Commun Algebra, 10.1080/00927872.2018.1524011) we could obtain the analogue of (i) for some restricted type of left (right) Clifford seminearrings. The main purpose of this paper is to complete the remaining task i.e., to obtain the analogue of (ii) for a class of additively completely regular seminearrings. In order to accomplish this we have characterized those seminearrings which are union of near-rings (zero-symmetric near-rings) in the class of additively completely regular seminearrings. Left (right) completely regular seminearring Generalized left (right) completely regular seminearring Union of near-rings (zero-symmetric near-rings) Manna, Tuhin aut Pal, Pavel aut Enthalten in Semigroup forum Springer US, 1970 100(2018), 1 vom: 19. Nov., Seite 339-347 (DE-627)129541842 (DE-600)217500-9 (DE-576)014990733 0037-1912 nnns volume:100 year:2018 number:1 day:19 month:11 pages:339-347 https://doi.org/10.1007/s00233-018-9983-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 AR 100 2018 1 19 11 339-347 |
allfieldsSound |
10.1007/s00233-018-9983-9 doi (DE-627)OLC2044765241 (DE-He213)s00233-018-9983-9-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Mukherjee, Rajlaxmi verfasserin aut A note on additively completely regular seminearrings 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract In the endeavour of obtaining semigroup theoretic analogues i.e., the analogues of structure theorems of completely regular semigroups in the setting of additively regular seminearrings we could obtain some results in Mukherjee et al. (Commun Algebra 45(12):5111–5122, 2017). But we could not obtain the analogue of (i) ‘A semigroup is Clifford if and only if it is strong semilattice of groups’ and (ii) ‘ A semigroup is completely regular if and only if it is a union of groups’. In Mukherjee et al. (Commun Algebra, 10.1080/00927872.2018.1524011) we could obtain the analogue of (i) for some restricted type of left (right) Clifford seminearrings. The main purpose of this paper is to complete the remaining task i.e., to obtain the analogue of (ii) for a class of additively completely regular seminearrings. In order to accomplish this we have characterized those seminearrings which are union of near-rings (zero-symmetric near-rings) in the class of additively completely regular seminearrings. Left (right) completely regular seminearring Generalized left (right) completely regular seminearring Union of near-rings (zero-symmetric near-rings) Manna, Tuhin aut Pal, Pavel aut Enthalten in Semigroup forum Springer US, 1970 100(2018), 1 vom: 19. Nov., Seite 339-347 (DE-627)129541842 (DE-600)217500-9 (DE-576)014990733 0037-1912 nnns volume:100 year:2018 number:1 day:19 month:11 pages:339-347 https://doi.org/10.1007/s00233-018-9983-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 AR 100 2018 1 19 11 339-347 |
language |
English |
source |
Enthalten in Semigroup forum 100(2018), 1 vom: 19. Nov., Seite 339-347 volume:100 year:2018 number:1 day:19 month:11 pages:339-347 |
sourceStr |
Enthalten in Semigroup forum 100(2018), 1 vom: 19. Nov., Seite 339-347 volume:100 year:2018 number:1 day:19 month:11 pages:339-347 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Left (right) completely regular seminearring Generalized left (right) completely regular seminearring Union of near-rings (zero-symmetric near-rings) |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Semigroup forum |
authorswithroles_txt_mv |
Mukherjee, Rajlaxmi @@aut@@ Manna, Tuhin @@aut@@ Pal, Pavel @@aut@@ |
publishDateDaySort_date |
2018-11-19T00:00:00Z |
hierarchy_top_id |
129541842 |
dewey-sort |
3510 |
id |
OLC2044765241 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2044765241</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230324014716.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00233-018-9983-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2044765241</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00233-018-9983-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mukherjee, Rajlaxmi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A note on additively completely regular seminearrings</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In the endeavour of obtaining semigroup theoretic analogues i.e., the analogues of structure theorems of completely regular semigroups in the setting of additively regular seminearrings we could obtain some results in Mukherjee et al. (Commun Algebra 45(12):5111–5122, 2017). But we could not obtain the analogue of (i) ‘A semigroup is Clifford if and only if it is strong semilattice of groups’ and (ii) ‘ A semigroup is completely regular if and only if it is a union of groups’. In Mukherjee et al. (Commun Algebra, 10.1080/00927872.2018.1524011) we could obtain the analogue of (i) for some restricted type of left (right) Clifford seminearrings. The main purpose of this paper is to complete the remaining task i.e., to obtain the analogue of (ii) for a class of additively completely regular seminearrings. In order to accomplish this we have characterized those seminearrings which are union of near-rings (zero-symmetric near-rings) in the class of additively completely regular seminearrings.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Left (right) completely regular seminearring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generalized left (right) completely regular seminearring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Union of near-rings (zero-symmetric near-rings)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Manna, Tuhin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pal, Pavel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Semigroup forum</subfield><subfield code="d">Springer US, 1970</subfield><subfield code="g">100(2018), 1 vom: 19. Nov., Seite 339-347</subfield><subfield code="w">(DE-627)129541842</subfield><subfield code="w">(DE-600)217500-9</subfield><subfield code="w">(DE-576)014990733</subfield><subfield code="x">0037-1912</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:100</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">day:19</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:339-347</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00233-018-9983-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">100</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="b">19</subfield><subfield code="c">11</subfield><subfield code="h">339-347</subfield></datafield></record></collection>
|
author |
Mukherjee, Rajlaxmi |
spellingShingle |
Mukherjee, Rajlaxmi ddc 510 ssgn 17,1 misc Left (right) completely regular seminearring misc Generalized left (right) completely regular seminearring misc Union of near-rings (zero-symmetric near-rings) A note on additively completely regular seminearrings |
authorStr |
Mukherjee, Rajlaxmi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129541842 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0037-1912 |
topic_title |
510 VZ 17,1 ssgn A note on additively completely regular seminearrings Left (right) completely regular seminearring Generalized left (right) completely regular seminearring Union of near-rings (zero-symmetric near-rings) |
topic |
ddc 510 ssgn 17,1 misc Left (right) completely regular seminearring misc Generalized left (right) completely regular seminearring misc Union of near-rings (zero-symmetric near-rings) |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Left (right) completely regular seminearring misc Generalized left (right) completely regular seminearring misc Union of near-rings (zero-symmetric near-rings) |
topic_browse |
ddc 510 ssgn 17,1 misc Left (right) completely regular seminearring misc Generalized left (right) completely regular seminearring misc Union of near-rings (zero-symmetric near-rings) |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Semigroup forum |
hierarchy_parent_id |
129541842 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Semigroup forum |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129541842 (DE-600)217500-9 (DE-576)014990733 |
title |
A note on additively completely regular seminearrings |
ctrlnum |
(DE-627)OLC2044765241 (DE-He213)s00233-018-9983-9-p |
title_full |
A note on additively completely regular seminearrings |
author_sort |
Mukherjee, Rajlaxmi |
journal |
Semigroup forum |
journalStr |
Semigroup forum |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
339 |
author_browse |
Mukherjee, Rajlaxmi Manna, Tuhin Pal, Pavel |
container_volume |
100 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Mukherjee, Rajlaxmi |
doi_str_mv |
10.1007/s00233-018-9983-9 |
dewey-full |
510 |
title_sort |
a note on additively completely regular seminearrings |
title_auth |
A note on additively completely regular seminearrings |
abstract |
Abstract In the endeavour of obtaining semigroup theoretic analogues i.e., the analogues of structure theorems of completely regular semigroups in the setting of additively regular seminearrings we could obtain some results in Mukherjee et al. (Commun Algebra 45(12):5111–5122, 2017). But we could not obtain the analogue of (i) ‘A semigroup is Clifford if and only if it is strong semilattice of groups’ and (ii) ‘ A semigroup is completely regular if and only if it is a union of groups’. In Mukherjee et al. (Commun Algebra, 10.1080/00927872.2018.1524011) we could obtain the analogue of (i) for some restricted type of left (right) Clifford seminearrings. The main purpose of this paper is to complete the remaining task i.e., to obtain the analogue of (ii) for a class of additively completely regular seminearrings. In order to accomplish this we have characterized those seminearrings which are union of near-rings (zero-symmetric near-rings) in the class of additively completely regular seminearrings. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
abstractGer |
Abstract In the endeavour of obtaining semigroup theoretic analogues i.e., the analogues of structure theorems of completely regular semigroups in the setting of additively regular seminearrings we could obtain some results in Mukherjee et al. (Commun Algebra 45(12):5111–5122, 2017). But we could not obtain the analogue of (i) ‘A semigroup is Clifford if and only if it is strong semilattice of groups’ and (ii) ‘ A semigroup is completely regular if and only if it is a union of groups’. In Mukherjee et al. (Commun Algebra, 10.1080/00927872.2018.1524011) we could obtain the analogue of (i) for some restricted type of left (right) Clifford seminearrings. The main purpose of this paper is to complete the remaining task i.e., to obtain the analogue of (ii) for a class of additively completely regular seminearrings. In order to accomplish this we have characterized those seminearrings which are union of near-rings (zero-symmetric near-rings) in the class of additively completely regular seminearrings. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
abstract_unstemmed |
Abstract In the endeavour of obtaining semigroup theoretic analogues i.e., the analogues of structure theorems of completely regular semigroups in the setting of additively regular seminearrings we could obtain some results in Mukherjee et al. (Commun Algebra 45(12):5111–5122, 2017). But we could not obtain the analogue of (i) ‘A semigroup is Clifford if and only if it is strong semilattice of groups’ and (ii) ‘ A semigroup is completely regular if and only if it is a union of groups’. In Mukherjee et al. (Commun Algebra, 10.1080/00927872.2018.1524011) we could obtain the analogue of (i) for some restricted type of left (right) Clifford seminearrings. The main purpose of this paper is to complete the remaining task i.e., to obtain the analogue of (ii) for a class of additively completely regular seminearrings. In order to accomplish this we have characterized those seminearrings which are union of near-rings (zero-symmetric near-rings) in the class of additively completely regular seminearrings. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 |
container_issue |
1 |
title_short |
A note on additively completely regular seminearrings |
url |
https://doi.org/10.1007/s00233-018-9983-9 |
remote_bool |
false |
author2 |
Manna, Tuhin Pal, Pavel |
author2Str |
Manna, Tuhin Pal, Pavel |
ppnlink |
129541842 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00233-018-9983-9 |
up_date |
2024-07-04T00:41:00.329Z |
_version_ |
1803606986942578688 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2044765241</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230324014716.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00233-018-9983-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2044765241</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00233-018-9983-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mukherjee, Rajlaxmi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A note on additively completely regular seminearrings</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In the endeavour of obtaining semigroup theoretic analogues i.e., the analogues of structure theorems of completely regular semigroups in the setting of additively regular seminearrings we could obtain some results in Mukherjee et al. (Commun Algebra 45(12):5111–5122, 2017). But we could not obtain the analogue of (i) ‘A semigroup is Clifford if and only if it is strong semilattice of groups’ and (ii) ‘ A semigroup is completely regular if and only if it is a union of groups’. In Mukherjee et al. (Commun Algebra, 10.1080/00927872.2018.1524011) we could obtain the analogue of (i) for some restricted type of left (right) Clifford seminearrings. The main purpose of this paper is to complete the remaining task i.e., to obtain the analogue of (ii) for a class of additively completely regular seminearrings. In order to accomplish this we have characterized those seminearrings which are union of near-rings (zero-symmetric near-rings) in the class of additively completely regular seminearrings.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Left (right) completely regular seminearring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generalized left (right) completely regular seminearring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Union of near-rings (zero-symmetric near-rings)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Manna, Tuhin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pal, Pavel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Semigroup forum</subfield><subfield code="d">Springer US, 1970</subfield><subfield code="g">100(2018), 1 vom: 19. Nov., Seite 339-347</subfield><subfield code="w">(DE-627)129541842</subfield><subfield code="w">(DE-600)217500-9</subfield><subfield code="w">(DE-576)014990733</subfield><subfield code="x">0037-1912</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:100</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">day:19</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:339-347</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00233-018-9983-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">100</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="b">19</subfield><subfield code="c">11</subfield><subfield code="h">339-347</subfield></datafield></record></collection>
|
score |
7.401634 |