Electrostrictive effect in perovskites and its transducer applications
Abstract Properties of new electrostrictive materials for displacive transducers are reviewed including theoretical, material and design studies. Intensive investigation of the electrostrictive effects in ferroelectric and antiferroelectric perovskites have led to some empirical rules: the product o...
Ausführliche Beschreibung
Autor*in: |
Uchino, Kenji [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1981 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Chapman and Hall Ltd 1981 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials science - Kluwer Academic Publishers, 1966, 16(1981), 3 vom: März, Seite 569-578 |
---|---|
Übergeordnetes Werk: |
volume:16 ; year:1981 ; number:3 ; month:03 ; pages:569-578 |
Links: |
---|
DOI / URN: |
10.1007/BF00552193 |
---|
Katalog-ID: |
OLC2046112784 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2046112784 | ||
003 | DE-627 | ||
005 | 20230503121113.0 | ||
007 | tu | ||
008 | 200820s1981 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF00552193 |2 doi | |
035 | |a (DE-627)OLC2046112784 | ||
035 | |a (DE-He213)BF00552193-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Uchino, Kenji |e verfasserin |4 aut | |
245 | 1 | 0 | |a Electrostrictive effect in perovskites and its transducer applications |
264 | 1 | |c 1981 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Chapman and Hall Ltd 1981 | ||
520 | |a Abstract Properties of new electrostrictive materials for displacive transducers are reviewed including theoretical, material and design studies. Intensive investigation of the electrostrictive effects in ferroelectric and antiferroelectric perovskites have led to some empirical rules: the product of the electrostriction coefficient Q and the Curie-Weiss constant C is constant for all perovskite crystals and the Q value is proportional to the square of the thermal expansion coefficient, α. Consistent with the empirical rules, the relaxor ferroelectric ceramic 0.9 Pb($ Mg_{1/3} $$ Nb_{2/3} $)$ O_{3} $ −0.1 $ PbTiO_{3} $ possesses much larger strain with lower hysteresis, aging effects and thermal expansion than that obtained with piezoelectric lead zirconate titanate (PZT). Using a multilayer configuration similar to commercial capacitors, a new mirror control device capable of large strains with high reproducibility, up to ΔL/L ∼ $ 10^{−3} $, with only 200 V applied has been developed. | ||
650 | 4 | |a Thermal Expansion | |
650 | 4 | |a Perovskite | |
650 | 4 | |a Thermal Expansion Coefficient | |
650 | 4 | |a Large Strain | |
650 | 4 | |a Control Device | |
700 | 1 | |a Nomura, Shoichiro |4 aut | |
700 | 1 | |a Cross, Leslie E. |4 aut | |
700 | 1 | |a Newnham, Robert E. |4 aut | |
700 | 1 | |a Jang, Sei J. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials science |d Kluwer Academic Publishers, 1966 |g 16(1981), 3 vom: März, Seite 569-578 |w (DE-627)129546372 |w (DE-600)218324-9 |w (DE-576)014996774 |x 0022-2461 |7 nnns |
773 | 1 | 8 | |g volume:16 |g year:1981 |g number:3 |g month:03 |g pages:569-578 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF00552193 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2333 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 16 |j 1981 |e 3 |c 03 |h 569-578 |
author_variant |
k u ku s n sn l e c le lec r e n re ren s j j sj sjj |
---|---|
matchkey_str |
article:00222461:1981----::lcrsrciefetneosieadtta |
hierarchy_sort_str |
1981 |
publishDate |
1981 |
allfields |
10.1007/BF00552193 doi (DE-627)OLC2046112784 (DE-He213)BF00552193-p DE-627 ger DE-627 rakwb eng 670 VZ Uchino, Kenji verfasserin aut Electrostrictive effect in perovskites and its transducer applications 1981 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Chapman and Hall Ltd 1981 Abstract Properties of new electrostrictive materials for displacive transducers are reviewed including theoretical, material and design studies. Intensive investigation of the electrostrictive effects in ferroelectric and antiferroelectric perovskites have led to some empirical rules: the product of the electrostriction coefficient Q and the Curie-Weiss constant C is constant for all perovskite crystals and the Q value is proportional to the square of the thermal expansion coefficient, α. Consistent with the empirical rules, the relaxor ferroelectric ceramic 0.9 Pb($ Mg_{1/3} $$ Nb_{2/3} $)$ O_{3} $ −0.1 $ PbTiO_{3} $ possesses much larger strain with lower hysteresis, aging effects and thermal expansion than that obtained with piezoelectric lead zirconate titanate (PZT). Using a multilayer configuration similar to commercial capacitors, a new mirror control device capable of large strains with high reproducibility, up to ΔL/L ∼ $ 10^{−3} $, with only 200 V applied has been developed. Thermal Expansion Perovskite Thermal Expansion Coefficient Large Strain Control Device Nomura, Shoichiro aut Cross, Leslie E. aut Newnham, Robert E. aut Jang, Sei J. aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 16(1981), 3 vom: März, Seite 569-578 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:16 year:1981 number:3 month:03 pages:569-578 https://doi.org/10.1007/BF00552193 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2057 GBV_ILN_2333 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4336 GBV_ILN_4700 AR 16 1981 3 03 569-578 |
spelling |
10.1007/BF00552193 doi (DE-627)OLC2046112784 (DE-He213)BF00552193-p DE-627 ger DE-627 rakwb eng 670 VZ Uchino, Kenji verfasserin aut Electrostrictive effect in perovskites and its transducer applications 1981 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Chapman and Hall Ltd 1981 Abstract Properties of new electrostrictive materials for displacive transducers are reviewed including theoretical, material and design studies. Intensive investigation of the electrostrictive effects in ferroelectric and antiferroelectric perovskites have led to some empirical rules: the product of the electrostriction coefficient Q and the Curie-Weiss constant C is constant for all perovskite crystals and the Q value is proportional to the square of the thermal expansion coefficient, α. Consistent with the empirical rules, the relaxor ferroelectric ceramic 0.9 Pb($ Mg_{1/3} $$ Nb_{2/3} $)$ O_{3} $ −0.1 $ PbTiO_{3} $ possesses much larger strain with lower hysteresis, aging effects and thermal expansion than that obtained with piezoelectric lead zirconate titanate (PZT). Using a multilayer configuration similar to commercial capacitors, a new mirror control device capable of large strains with high reproducibility, up to ΔL/L ∼ $ 10^{−3} $, with only 200 V applied has been developed. Thermal Expansion Perovskite Thermal Expansion Coefficient Large Strain Control Device Nomura, Shoichiro aut Cross, Leslie E. aut Newnham, Robert E. aut Jang, Sei J. aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 16(1981), 3 vom: März, Seite 569-578 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:16 year:1981 number:3 month:03 pages:569-578 https://doi.org/10.1007/BF00552193 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2057 GBV_ILN_2333 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4336 GBV_ILN_4700 AR 16 1981 3 03 569-578 |
allfields_unstemmed |
10.1007/BF00552193 doi (DE-627)OLC2046112784 (DE-He213)BF00552193-p DE-627 ger DE-627 rakwb eng 670 VZ Uchino, Kenji verfasserin aut Electrostrictive effect in perovskites and its transducer applications 1981 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Chapman and Hall Ltd 1981 Abstract Properties of new electrostrictive materials for displacive transducers are reviewed including theoretical, material and design studies. Intensive investigation of the electrostrictive effects in ferroelectric and antiferroelectric perovskites have led to some empirical rules: the product of the electrostriction coefficient Q and the Curie-Weiss constant C is constant for all perovskite crystals and the Q value is proportional to the square of the thermal expansion coefficient, α. Consistent with the empirical rules, the relaxor ferroelectric ceramic 0.9 Pb($ Mg_{1/3} $$ Nb_{2/3} $)$ O_{3} $ −0.1 $ PbTiO_{3} $ possesses much larger strain with lower hysteresis, aging effects and thermal expansion than that obtained with piezoelectric lead zirconate titanate (PZT). Using a multilayer configuration similar to commercial capacitors, a new mirror control device capable of large strains with high reproducibility, up to ΔL/L ∼ $ 10^{−3} $, with only 200 V applied has been developed. Thermal Expansion Perovskite Thermal Expansion Coefficient Large Strain Control Device Nomura, Shoichiro aut Cross, Leslie E. aut Newnham, Robert E. aut Jang, Sei J. aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 16(1981), 3 vom: März, Seite 569-578 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:16 year:1981 number:3 month:03 pages:569-578 https://doi.org/10.1007/BF00552193 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2057 GBV_ILN_2333 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4336 GBV_ILN_4700 AR 16 1981 3 03 569-578 |
allfieldsGer |
10.1007/BF00552193 doi (DE-627)OLC2046112784 (DE-He213)BF00552193-p DE-627 ger DE-627 rakwb eng 670 VZ Uchino, Kenji verfasserin aut Electrostrictive effect in perovskites and its transducer applications 1981 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Chapman and Hall Ltd 1981 Abstract Properties of new electrostrictive materials for displacive transducers are reviewed including theoretical, material and design studies. Intensive investigation of the electrostrictive effects in ferroelectric and antiferroelectric perovskites have led to some empirical rules: the product of the electrostriction coefficient Q and the Curie-Weiss constant C is constant for all perovskite crystals and the Q value is proportional to the square of the thermal expansion coefficient, α. Consistent with the empirical rules, the relaxor ferroelectric ceramic 0.9 Pb($ Mg_{1/3} $$ Nb_{2/3} $)$ O_{3} $ −0.1 $ PbTiO_{3} $ possesses much larger strain with lower hysteresis, aging effects and thermal expansion than that obtained with piezoelectric lead zirconate titanate (PZT). Using a multilayer configuration similar to commercial capacitors, a new mirror control device capable of large strains with high reproducibility, up to ΔL/L ∼ $ 10^{−3} $, with only 200 V applied has been developed. Thermal Expansion Perovskite Thermal Expansion Coefficient Large Strain Control Device Nomura, Shoichiro aut Cross, Leslie E. aut Newnham, Robert E. aut Jang, Sei J. aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 16(1981), 3 vom: März, Seite 569-578 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:16 year:1981 number:3 month:03 pages:569-578 https://doi.org/10.1007/BF00552193 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2057 GBV_ILN_2333 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4336 GBV_ILN_4700 AR 16 1981 3 03 569-578 |
allfieldsSound |
10.1007/BF00552193 doi (DE-627)OLC2046112784 (DE-He213)BF00552193-p DE-627 ger DE-627 rakwb eng 670 VZ Uchino, Kenji verfasserin aut Electrostrictive effect in perovskites and its transducer applications 1981 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Chapman and Hall Ltd 1981 Abstract Properties of new electrostrictive materials for displacive transducers are reviewed including theoretical, material and design studies. Intensive investigation of the electrostrictive effects in ferroelectric and antiferroelectric perovskites have led to some empirical rules: the product of the electrostriction coefficient Q and the Curie-Weiss constant C is constant for all perovskite crystals and the Q value is proportional to the square of the thermal expansion coefficient, α. Consistent with the empirical rules, the relaxor ferroelectric ceramic 0.9 Pb($ Mg_{1/3} $$ Nb_{2/3} $)$ O_{3} $ −0.1 $ PbTiO_{3} $ possesses much larger strain with lower hysteresis, aging effects and thermal expansion than that obtained with piezoelectric lead zirconate titanate (PZT). Using a multilayer configuration similar to commercial capacitors, a new mirror control device capable of large strains with high reproducibility, up to ΔL/L ∼ $ 10^{−3} $, with only 200 V applied has been developed. Thermal Expansion Perovskite Thermal Expansion Coefficient Large Strain Control Device Nomura, Shoichiro aut Cross, Leslie E. aut Newnham, Robert E. aut Jang, Sei J. aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 16(1981), 3 vom: März, Seite 569-578 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:16 year:1981 number:3 month:03 pages:569-578 https://doi.org/10.1007/BF00552193 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2057 GBV_ILN_2333 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4336 GBV_ILN_4700 AR 16 1981 3 03 569-578 |
language |
English |
source |
Enthalten in Journal of materials science 16(1981), 3 vom: März, Seite 569-578 volume:16 year:1981 number:3 month:03 pages:569-578 |
sourceStr |
Enthalten in Journal of materials science 16(1981), 3 vom: März, Seite 569-578 volume:16 year:1981 number:3 month:03 pages:569-578 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Thermal Expansion Perovskite Thermal Expansion Coefficient Large Strain Control Device |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of materials science |
authorswithroles_txt_mv |
Uchino, Kenji @@aut@@ Nomura, Shoichiro @@aut@@ Cross, Leslie E. @@aut@@ Newnham, Robert E. @@aut@@ Jang, Sei J. @@aut@@ |
publishDateDaySort_date |
1981-03-01T00:00:00Z |
hierarchy_top_id |
129546372 |
dewey-sort |
3670 |
id |
OLC2046112784 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046112784</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503121113.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1981 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF00552193</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046112784</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF00552193-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Uchino, Kenji</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Electrostrictive effect in perovskites and its transducer applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1981</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Chapman and Hall Ltd 1981</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Properties of new electrostrictive materials for displacive transducers are reviewed including theoretical, material and design studies. Intensive investigation of the electrostrictive effects in ferroelectric and antiferroelectric perovskites have led to some empirical rules: the product of the electrostriction coefficient Q and the Curie-Weiss constant C is constant for all perovskite crystals and the Q value is proportional to the square of the thermal expansion coefficient, α. Consistent with the empirical rules, the relaxor ferroelectric ceramic 0.9 Pb($ Mg_{1/3} $$ Nb_{2/3} $)$ O_{3} $ −0.1 $ PbTiO_{3} $ possesses much larger strain with lower hysteresis, aging effects and thermal expansion than that obtained with piezoelectric lead zirconate titanate (PZT). Using a multilayer configuration similar to commercial capacitors, a new mirror control device capable of large strains with high reproducibility, up to ΔL/L ∼ $ 10^{−3} $, with only 200 V applied has been developed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal Expansion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perovskite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal Expansion Coefficient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Large Strain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control Device</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nomura, Shoichiro</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cross, Leslie E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Newnham, Robert E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jang, Sei J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Kluwer Academic Publishers, 1966</subfield><subfield code="g">16(1981), 3 vom: März, Seite 569-578</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:1981</subfield><subfield code="g">number:3</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:569-578</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF00552193</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">1981</subfield><subfield code="e">3</subfield><subfield code="c">03</subfield><subfield code="h">569-578</subfield></datafield></record></collection>
|
author |
Uchino, Kenji |
spellingShingle |
Uchino, Kenji ddc 670 misc Thermal Expansion misc Perovskite misc Thermal Expansion Coefficient misc Large Strain misc Control Device Electrostrictive effect in perovskites and its transducer applications |
authorStr |
Uchino, Kenji |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129546372 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-2461 |
topic_title |
670 VZ Electrostrictive effect in perovskites and its transducer applications Thermal Expansion Perovskite Thermal Expansion Coefficient Large Strain Control Device |
topic |
ddc 670 misc Thermal Expansion misc Perovskite misc Thermal Expansion Coefficient misc Large Strain misc Control Device |
topic_unstemmed |
ddc 670 misc Thermal Expansion misc Perovskite misc Thermal Expansion Coefficient misc Large Strain misc Control Device |
topic_browse |
ddc 670 misc Thermal Expansion misc Perovskite misc Thermal Expansion Coefficient misc Large Strain misc Control Device |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials science |
hierarchy_parent_id |
129546372 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of materials science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 |
title |
Electrostrictive effect in perovskites and its transducer applications |
ctrlnum |
(DE-627)OLC2046112784 (DE-He213)BF00552193-p |
title_full |
Electrostrictive effect in perovskites and its transducer applications |
author_sort |
Uchino, Kenji |
journal |
Journal of materials science |
journalStr |
Journal of materials science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
1981 |
contenttype_str_mv |
txt |
container_start_page |
569 |
author_browse |
Uchino, Kenji Nomura, Shoichiro Cross, Leslie E. Newnham, Robert E. Jang, Sei J. |
container_volume |
16 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Uchino, Kenji |
doi_str_mv |
10.1007/BF00552193 |
dewey-full |
670 |
title_sort |
electrostrictive effect in perovskites and its transducer applications |
title_auth |
Electrostrictive effect in perovskites and its transducer applications |
abstract |
Abstract Properties of new electrostrictive materials for displacive transducers are reviewed including theoretical, material and design studies. Intensive investigation of the electrostrictive effects in ferroelectric and antiferroelectric perovskites have led to some empirical rules: the product of the electrostriction coefficient Q and the Curie-Weiss constant C is constant for all perovskite crystals and the Q value is proportional to the square of the thermal expansion coefficient, α. Consistent with the empirical rules, the relaxor ferroelectric ceramic 0.9 Pb($ Mg_{1/3} $$ Nb_{2/3} $)$ O_{3} $ −0.1 $ PbTiO_{3} $ possesses much larger strain with lower hysteresis, aging effects and thermal expansion than that obtained with piezoelectric lead zirconate titanate (PZT). Using a multilayer configuration similar to commercial capacitors, a new mirror control device capable of large strains with high reproducibility, up to ΔL/L ∼ $ 10^{−3} $, with only 200 V applied has been developed. © Chapman and Hall Ltd 1981 |
abstractGer |
Abstract Properties of new electrostrictive materials for displacive transducers are reviewed including theoretical, material and design studies. Intensive investigation of the electrostrictive effects in ferroelectric and antiferroelectric perovskites have led to some empirical rules: the product of the electrostriction coefficient Q and the Curie-Weiss constant C is constant for all perovskite crystals and the Q value is proportional to the square of the thermal expansion coefficient, α. Consistent with the empirical rules, the relaxor ferroelectric ceramic 0.9 Pb($ Mg_{1/3} $$ Nb_{2/3} $)$ O_{3} $ −0.1 $ PbTiO_{3} $ possesses much larger strain with lower hysteresis, aging effects and thermal expansion than that obtained with piezoelectric lead zirconate titanate (PZT). Using a multilayer configuration similar to commercial capacitors, a new mirror control device capable of large strains with high reproducibility, up to ΔL/L ∼ $ 10^{−3} $, with only 200 V applied has been developed. © Chapman and Hall Ltd 1981 |
abstract_unstemmed |
Abstract Properties of new electrostrictive materials for displacive transducers are reviewed including theoretical, material and design studies. Intensive investigation of the electrostrictive effects in ferroelectric and antiferroelectric perovskites have led to some empirical rules: the product of the electrostriction coefficient Q and the Curie-Weiss constant C is constant for all perovskite crystals and the Q value is proportional to the square of the thermal expansion coefficient, α. Consistent with the empirical rules, the relaxor ferroelectric ceramic 0.9 Pb($ Mg_{1/3} $$ Nb_{2/3} $)$ O_{3} $ −0.1 $ PbTiO_{3} $ possesses much larger strain with lower hysteresis, aging effects and thermal expansion than that obtained with piezoelectric lead zirconate titanate (PZT). Using a multilayer configuration similar to commercial capacitors, a new mirror control device capable of large strains with high reproducibility, up to ΔL/L ∼ $ 10^{−3} $, with only 200 V applied has been developed. © Chapman and Hall Ltd 1981 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2057 GBV_ILN_2333 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4336 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Electrostrictive effect in perovskites and its transducer applications |
url |
https://doi.org/10.1007/BF00552193 |
remote_bool |
false |
author2 |
Nomura, Shoichiro Cross, Leslie E. Newnham, Robert E. Jang, Sei J. |
author2Str |
Nomura, Shoichiro Cross, Leslie E. Newnham, Robert E. Jang, Sei J. |
ppnlink |
129546372 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF00552193 |
up_date |
2024-07-04T04:17:06.361Z |
_version_ |
1803620582812549120 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046112784</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503121113.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1981 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF00552193</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046112784</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF00552193-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Uchino, Kenji</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Electrostrictive effect in perovskites and its transducer applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1981</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Chapman and Hall Ltd 1981</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Properties of new electrostrictive materials for displacive transducers are reviewed including theoretical, material and design studies. Intensive investigation of the electrostrictive effects in ferroelectric and antiferroelectric perovskites have led to some empirical rules: the product of the electrostriction coefficient Q and the Curie-Weiss constant C is constant for all perovskite crystals and the Q value is proportional to the square of the thermal expansion coefficient, α. Consistent with the empirical rules, the relaxor ferroelectric ceramic 0.9 Pb($ Mg_{1/3} $$ Nb_{2/3} $)$ O_{3} $ −0.1 $ PbTiO_{3} $ possesses much larger strain with lower hysteresis, aging effects and thermal expansion than that obtained with piezoelectric lead zirconate titanate (PZT). Using a multilayer configuration similar to commercial capacitors, a new mirror control device capable of large strains with high reproducibility, up to ΔL/L ∼ $ 10^{−3} $, with only 200 V applied has been developed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal Expansion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perovskite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal Expansion Coefficient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Large Strain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control Device</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nomura, Shoichiro</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cross, Leslie E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Newnham, Robert E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jang, Sei J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Kluwer Academic Publishers, 1966</subfield><subfield code="g">16(1981), 3 vom: März, Seite 569-578</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:1981</subfield><subfield code="g">number:3</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:569-578</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF00552193</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">1981</subfield><subfield code="e">3</subfield><subfield code="c">03</subfield><subfield code="h">569-578</subfield></datafield></record></collection>
|
score |
7.399083 |