Reactive processing of titanium carbide with titanium
Abstract The reactive hot pressing of titanium-titanium carbide mixtures to form substoichiometric titanium carbide was studied as a function of time, temperature, pressure and composition using a Box-Behnken experimental design. Thirty samples were hot pressed at 1200 to 1600° C and 7 to 35 MPa (10...
Ausführliche Beschreibung
Autor*in: |
Quinn, Candace Jo [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1984 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Chapman and Hall Ltd 1984 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials science - Kluwer Academic Publishers, 1966, 19(1984), 4 vom: Apr., Seite 1242-1250 |
---|---|
Übergeordnetes Werk: |
volume:19 ; year:1984 ; number:4 ; month:04 ; pages:1242-1250 |
Links: |
---|
DOI / URN: |
10.1007/BF01120034 |
---|
Katalog-ID: |
OLC2046128303 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2046128303 | ||
003 | DE-627 | ||
005 | 20230503121216.0 | ||
007 | tu | ||
008 | 200820s1984 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF01120034 |2 doi | |
035 | |a (DE-627)OLC2046128303 | ||
035 | |a (DE-He213)BF01120034-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Quinn, Candace Jo |e verfasserin |4 aut | |
245 | 1 | 0 | |a Reactive processing of titanium carbide with titanium |
264 | 1 | |c 1984 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Chapman and Hall Ltd 1984 | ||
520 | |a Abstract The reactive hot pressing of titanium-titanium carbide mixtures to form substoichiometric titanium carbide was studied as a function of time, temperature, pressure and composition using a Box-Behnken experimental design. Thirty samples were hot pressed at 1200 to 1600° C and 7 to 35 MPa (1000 to 5000 psi) for 0.5 to 1.5 h from mixtures containing 10 to 30vol % titanium metal. Twenty three of these samples had final densities in excess of 95% of the theoretical value. A model for the grain growth during hot pressing was developed by consideration of Kuczynski's semi-empirical sintering model and classical grain-growth models. The modification involves development of a factor which describes the behaviour of the system as a function of composition. Microstructural data, selected area diffraction patterns, and the activation energy for grain growth all indicate that the grain growth is controlled by diffusion through $ Ti_{2} $C-TiC and/or TiC-TiC boundaries. Densification during hot pressing was interpreted in terms of the creep of titanium metal using a power-law creep model. The activation energy for densification agrees well with the activation energy for the self-diffusion of titanium. The high densities obtained also indicate that the densification depends largely on the ductile nature of the titanium metal. | ||
650 | 4 | |a Titanium | |
650 | 4 | |a Carbide | |
650 | 4 | |a Activation Energy | |
650 | 4 | |a Diffraction Pattern | |
650 | 4 | |a Reactive Processing | |
700 | 1 | |a Kohlstedt, David L. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials science |d Kluwer Academic Publishers, 1966 |g 19(1984), 4 vom: Apr., Seite 1242-1250 |w (DE-627)129546372 |w (DE-600)218324-9 |w (DE-576)014996774 |x 0022-2461 |7 nnns |
773 | 1 | 8 | |g volume:19 |g year:1984 |g number:4 |g month:04 |g pages:1242-1250 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF01120034 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2333 | ||
912 | |a GBV_ILN_4082 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 19 |j 1984 |e 4 |c 04 |h 1242-1250 |
author_variant |
c j q cj cjq d l k dl dlk |
---|---|
matchkey_str |
article:00222461:1984----::eciercsigfiaimab |
hierarchy_sort_str |
1984 |
publishDate |
1984 |
allfields |
10.1007/BF01120034 doi (DE-627)OLC2046128303 (DE-He213)BF01120034-p DE-627 ger DE-627 rakwb eng 670 VZ Quinn, Candace Jo verfasserin aut Reactive processing of titanium carbide with titanium 1984 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Chapman and Hall Ltd 1984 Abstract The reactive hot pressing of titanium-titanium carbide mixtures to form substoichiometric titanium carbide was studied as a function of time, temperature, pressure and composition using a Box-Behnken experimental design. Thirty samples were hot pressed at 1200 to 1600° C and 7 to 35 MPa (1000 to 5000 psi) for 0.5 to 1.5 h from mixtures containing 10 to 30vol % titanium metal. Twenty three of these samples had final densities in excess of 95% of the theoretical value. A model for the grain growth during hot pressing was developed by consideration of Kuczynski's semi-empirical sintering model and classical grain-growth models. The modification involves development of a factor which describes the behaviour of the system as a function of composition. Microstructural data, selected area diffraction patterns, and the activation energy for grain growth all indicate that the grain growth is controlled by diffusion through $ Ti_{2} $C-TiC and/or TiC-TiC boundaries. Densification during hot pressing was interpreted in terms of the creep of titanium metal using a power-law creep model. The activation energy for densification agrees well with the activation energy for the self-diffusion of titanium. The high densities obtained also indicate that the densification depends largely on the ductile nature of the titanium metal. Titanium Carbide Activation Energy Diffraction Pattern Reactive Processing Kohlstedt, David L. aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 19(1984), 4 vom: Apr., Seite 1242-1250 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:19 year:1984 number:4 month:04 pages:1242-1250 https://doi.org/10.1007/BF01120034 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2057 GBV_ILN_2333 GBV_ILN_4082 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 19 1984 4 04 1242-1250 |
spelling |
10.1007/BF01120034 doi (DE-627)OLC2046128303 (DE-He213)BF01120034-p DE-627 ger DE-627 rakwb eng 670 VZ Quinn, Candace Jo verfasserin aut Reactive processing of titanium carbide with titanium 1984 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Chapman and Hall Ltd 1984 Abstract The reactive hot pressing of titanium-titanium carbide mixtures to form substoichiometric titanium carbide was studied as a function of time, temperature, pressure and composition using a Box-Behnken experimental design. Thirty samples were hot pressed at 1200 to 1600° C and 7 to 35 MPa (1000 to 5000 psi) for 0.5 to 1.5 h from mixtures containing 10 to 30vol % titanium metal. Twenty three of these samples had final densities in excess of 95% of the theoretical value. A model for the grain growth during hot pressing was developed by consideration of Kuczynski's semi-empirical sintering model and classical grain-growth models. The modification involves development of a factor which describes the behaviour of the system as a function of composition. Microstructural data, selected area diffraction patterns, and the activation energy for grain growth all indicate that the grain growth is controlled by diffusion through $ Ti_{2} $C-TiC and/or TiC-TiC boundaries. Densification during hot pressing was interpreted in terms of the creep of titanium metal using a power-law creep model. The activation energy for densification agrees well with the activation energy for the self-diffusion of titanium. The high densities obtained also indicate that the densification depends largely on the ductile nature of the titanium metal. Titanium Carbide Activation Energy Diffraction Pattern Reactive Processing Kohlstedt, David L. aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 19(1984), 4 vom: Apr., Seite 1242-1250 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:19 year:1984 number:4 month:04 pages:1242-1250 https://doi.org/10.1007/BF01120034 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2057 GBV_ILN_2333 GBV_ILN_4082 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 19 1984 4 04 1242-1250 |
allfields_unstemmed |
10.1007/BF01120034 doi (DE-627)OLC2046128303 (DE-He213)BF01120034-p DE-627 ger DE-627 rakwb eng 670 VZ Quinn, Candace Jo verfasserin aut Reactive processing of titanium carbide with titanium 1984 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Chapman and Hall Ltd 1984 Abstract The reactive hot pressing of titanium-titanium carbide mixtures to form substoichiometric titanium carbide was studied as a function of time, temperature, pressure and composition using a Box-Behnken experimental design. Thirty samples were hot pressed at 1200 to 1600° C and 7 to 35 MPa (1000 to 5000 psi) for 0.5 to 1.5 h from mixtures containing 10 to 30vol % titanium metal. Twenty three of these samples had final densities in excess of 95% of the theoretical value. A model for the grain growth during hot pressing was developed by consideration of Kuczynski's semi-empirical sintering model and classical grain-growth models. The modification involves development of a factor which describes the behaviour of the system as a function of composition. Microstructural data, selected area diffraction patterns, and the activation energy for grain growth all indicate that the grain growth is controlled by diffusion through $ Ti_{2} $C-TiC and/or TiC-TiC boundaries. Densification during hot pressing was interpreted in terms of the creep of titanium metal using a power-law creep model. The activation energy for densification agrees well with the activation energy for the self-diffusion of titanium. The high densities obtained also indicate that the densification depends largely on the ductile nature of the titanium metal. Titanium Carbide Activation Energy Diffraction Pattern Reactive Processing Kohlstedt, David L. aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 19(1984), 4 vom: Apr., Seite 1242-1250 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:19 year:1984 number:4 month:04 pages:1242-1250 https://doi.org/10.1007/BF01120034 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2057 GBV_ILN_2333 GBV_ILN_4082 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 19 1984 4 04 1242-1250 |
allfieldsGer |
10.1007/BF01120034 doi (DE-627)OLC2046128303 (DE-He213)BF01120034-p DE-627 ger DE-627 rakwb eng 670 VZ Quinn, Candace Jo verfasserin aut Reactive processing of titanium carbide with titanium 1984 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Chapman and Hall Ltd 1984 Abstract The reactive hot pressing of titanium-titanium carbide mixtures to form substoichiometric titanium carbide was studied as a function of time, temperature, pressure and composition using a Box-Behnken experimental design. Thirty samples were hot pressed at 1200 to 1600° C and 7 to 35 MPa (1000 to 5000 psi) for 0.5 to 1.5 h from mixtures containing 10 to 30vol % titanium metal. Twenty three of these samples had final densities in excess of 95% of the theoretical value. A model for the grain growth during hot pressing was developed by consideration of Kuczynski's semi-empirical sintering model and classical grain-growth models. The modification involves development of a factor which describes the behaviour of the system as a function of composition. Microstructural data, selected area diffraction patterns, and the activation energy for grain growth all indicate that the grain growth is controlled by diffusion through $ Ti_{2} $C-TiC and/or TiC-TiC boundaries. Densification during hot pressing was interpreted in terms of the creep of titanium metal using a power-law creep model. The activation energy for densification agrees well with the activation energy for the self-diffusion of titanium. The high densities obtained also indicate that the densification depends largely on the ductile nature of the titanium metal. Titanium Carbide Activation Energy Diffraction Pattern Reactive Processing Kohlstedt, David L. aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 19(1984), 4 vom: Apr., Seite 1242-1250 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:19 year:1984 number:4 month:04 pages:1242-1250 https://doi.org/10.1007/BF01120034 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2057 GBV_ILN_2333 GBV_ILN_4082 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 19 1984 4 04 1242-1250 |
allfieldsSound |
10.1007/BF01120034 doi (DE-627)OLC2046128303 (DE-He213)BF01120034-p DE-627 ger DE-627 rakwb eng 670 VZ Quinn, Candace Jo verfasserin aut Reactive processing of titanium carbide with titanium 1984 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Chapman and Hall Ltd 1984 Abstract The reactive hot pressing of titanium-titanium carbide mixtures to form substoichiometric titanium carbide was studied as a function of time, temperature, pressure and composition using a Box-Behnken experimental design. Thirty samples were hot pressed at 1200 to 1600° C and 7 to 35 MPa (1000 to 5000 psi) for 0.5 to 1.5 h from mixtures containing 10 to 30vol % titanium metal. Twenty three of these samples had final densities in excess of 95% of the theoretical value. A model for the grain growth during hot pressing was developed by consideration of Kuczynski's semi-empirical sintering model and classical grain-growth models. The modification involves development of a factor which describes the behaviour of the system as a function of composition. Microstructural data, selected area diffraction patterns, and the activation energy for grain growth all indicate that the grain growth is controlled by diffusion through $ Ti_{2} $C-TiC and/or TiC-TiC boundaries. Densification during hot pressing was interpreted in terms of the creep of titanium metal using a power-law creep model. The activation energy for densification agrees well with the activation energy for the self-diffusion of titanium. The high densities obtained also indicate that the densification depends largely on the ductile nature of the titanium metal. Titanium Carbide Activation Energy Diffraction Pattern Reactive Processing Kohlstedt, David L. aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 19(1984), 4 vom: Apr., Seite 1242-1250 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:19 year:1984 number:4 month:04 pages:1242-1250 https://doi.org/10.1007/BF01120034 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2057 GBV_ILN_2333 GBV_ILN_4082 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 19 1984 4 04 1242-1250 |
language |
English |
source |
Enthalten in Journal of materials science 19(1984), 4 vom: Apr., Seite 1242-1250 volume:19 year:1984 number:4 month:04 pages:1242-1250 |
sourceStr |
Enthalten in Journal of materials science 19(1984), 4 vom: Apr., Seite 1242-1250 volume:19 year:1984 number:4 month:04 pages:1242-1250 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Titanium Carbide Activation Energy Diffraction Pattern Reactive Processing |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of materials science |
authorswithroles_txt_mv |
Quinn, Candace Jo @@aut@@ Kohlstedt, David L. @@aut@@ |
publishDateDaySort_date |
1984-04-01T00:00:00Z |
hierarchy_top_id |
129546372 |
dewey-sort |
3670 |
id |
OLC2046128303 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046128303</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503121216.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1984 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01120034</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046128303</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01120034-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Quinn, Candace Jo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reactive processing of titanium carbide with titanium</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1984</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Chapman and Hall Ltd 1984</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The reactive hot pressing of titanium-titanium carbide mixtures to form substoichiometric titanium carbide was studied as a function of time, temperature, pressure and composition using a Box-Behnken experimental design. Thirty samples were hot pressed at 1200 to 1600° C and 7 to 35 MPa (1000 to 5000 psi) for 0.5 to 1.5 h from mixtures containing 10 to 30vol % titanium metal. Twenty three of these samples had final densities in excess of 95% of the theoretical value. A model for the grain growth during hot pressing was developed by consideration of Kuczynski's semi-empirical sintering model and classical grain-growth models. The modification involves development of a factor which describes the behaviour of the system as a function of composition. Microstructural data, selected area diffraction patterns, and the activation energy for grain growth all indicate that the grain growth is controlled by diffusion through $ Ti_{2} $C-TiC and/or TiC-TiC boundaries. Densification during hot pressing was interpreted in terms of the creep of titanium metal using a power-law creep model. The activation energy for densification agrees well with the activation energy for the self-diffusion of titanium. The high densities obtained also indicate that the densification depends largely on the ductile nature of the titanium metal.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Titanium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Activation Energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diffraction Pattern</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reactive Processing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kohlstedt, David L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Kluwer Academic Publishers, 1966</subfield><subfield code="g">19(1984), 4 vom: Apr., Seite 1242-1250</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:1984</subfield><subfield code="g">number:4</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:1242-1250</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01120034</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">1984</subfield><subfield code="e">4</subfield><subfield code="c">04</subfield><subfield code="h">1242-1250</subfield></datafield></record></collection>
|
author |
Quinn, Candace Jo |
spellingShingle |
Quinn, Candace Jo ddc 670 misc Titanium misc Carbide misc Activation Energy misc Diffraction Pattern misc Reactive Processing Reactive processing of titanium carbide with titanium |
authorStr |
Quinn, Candace Jo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129546372 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-2461 |
topic_title |
670 VZ Reactive processing of titanium carbide with titanium Titanium Carbide Activation Energy Diffraction Pattern Reactive Processing |
topic |
ddc 670 misc Titanium misc Carbide misc Activation Energy misc Diffraction Pattern misc Reactive Processing |
topic_unstemmed |
ddc 670 misc Titanium misc Carbide misc Activation Energy misc Diffraction Pattern misc Reactive Processing |
topic_browse |
ddc 670 misc Titanium misc Carbide misc Activation Energy misc Diffraction Pattern misc Reactive Processing |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials science |
hierarchy_parent_id |
129546372 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of materials science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 |
title |
Reactive processing of titanium carbide with titanium |
ctrlnum |
(DE-627)OLC2046128303 (DE-He213)BF01120034-p |
title_full |
Reactive processing of titanium carbide with titanium |
author_sort |
Quinn, Candace Jo |
journal |
Journal of materials science |
journalStr |
Journal of materials science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
1984 |
contenttype_str_mv |
txt |
container_start_page |
1242 |
author_browse |
Quinn, Candace Jo Kohlstedt, David L. |
container_volume |
19 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Quinn, Candace Jo |
doi_str_mv |
10.1007/BF01120034 |
dewey-full |
670 |
title_sort |
reactive processing of titanium carbide with titanium |
title_auth |
Reactive processing of titanium carbide with titanium |
abstract |
Abstract The reactive hot pressing of titanium-titanium carbide mixtures to form substoichiometric titanium carbide was studied as a function of time, temperature, pressure and composition using a Box-Behnken experimental design. Thirty samples were hot pressed at 1200 to 1600° C and 7 to 35 MPa (1000 to 5000 psi) for 0.5 to 1.5 h from mixtures containing 10 to 30vol % titanium metal. Twenty three of these samples had final densities in excess of 95% of the theoretical value. A model for the grain growth during hot pressing was developed by consideration of Kuczynski's semi-empirical sintering model and classical grain-growth models. The modification involves development of a factor which describes the behaviour of the system as a function of composition. Microstructural data, selected area diffraction patterns, and the activation energy for grain growth all indicate that the grain growth is controlled by diffusion through $ Ti_{2} $C-TiC and/or TiC-TiC boundaries. Densification during hot pressing was interpreted in terms of the creep of titanium metal using a power-law creep model. The activation energy for densification agrees well with the activation energy for the self-diffusion of titanium. The high densities obtained also indicate that the densification depends largely on the ductile nature of the titanium metal. © Chapman and Hall Ltd 1984 |
abstractGer |
Abstract The reactive hot pressing of titanium-titanium carbide mixtures to form substoichiometric titanium carbide was studied as a function of time, temperature, pressure and composition using a Box-Behnken experimental design. Thirty samples were hot pressed at 1200 to 1600° C and 7 to 35 MPa (1000 to 5000 psi) for 0.5 to 1.5 h from mixtures containing 10 to 30vol % titanium metal. Twenty three of these samples had final densities in excess of 95% of the theoretical value. A model for the grain growth during hot pressing was developed by consideration of Kuczynski's semi-empirical sintering model and classical grain-growth models. The modification involves development of a factor which describes the behaviour of the system as a function of composition. Microstructural data, selected area diffraction patterns, and the activation energy for grain growth all indicate that the grain growth is controlled by diffusion through $ Ti_{2} $C-TiC and/or TiC-TiC boundaries. Densification during hot pressing was interpreted in terms of the creep of titanium metal using a power-law creep model. The activation energy for densification agrees well with the activation energy for the self-diffusion of titanium. The high densities obtained also indicate that the densification depends largely on the ductile nature of the titanium metal. © Chapman and Hall Ltd 1984 |
abstract_unstemmed |
Abstract The reactive hot pressing of titanium-titanium carbide mixtures to form substoichiometric titanium carbide was studied as a function of time, temperature, pressure and composition using a Box-Behnken experimental design. Thirty samples were hot pressed at 1200 to 1600° C and 7 to 35 MPa (1000 to 5000 psi) for 0.5 to 1.5 h from mixtures containing 10 to 30vol % titanium metal. Twenty three of these samples had final densities in excess of 95% of the theoretical value. A model for the grain growth during hot pressing was developed by consideration of Kuczynski's semi-empirical sintering model and classical grain-growth models. The modification involves development of a factor which describes the behaviour of the system as a function of composition. Microstructural data, selected area diffraction patterns, and the activation energy for grain growth all indicate that the grain growth is controlled by diffusion through $ Ti_{2} $C-TiC and/or TiC-TiC boundaries. Densification during hot pressing was interpreted in terms of the creep of titanium metal using a power-law creep model. The activation energy for densification agrees well with the activation energy for the self-diffusion of titanium. The high densities obtained also indicate that the densification depends largely on the ductile nature of the titanium metal. © Chapman and Hall Ltd 1984 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2057 GBV_ILN_2333 GBV_ILN_4082 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Reactive processing of titanium carbide with titanium |
url |
https://doi.org/10.1007/BF01120034 |
remote_bool |
false |
author2 |
Kohlstedt, David L. |
author2Str |
Kohlstedt, David L. |
ppnlink |
129546372 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF01120034 |
up_date |
2024-07-04T04:19:11.498Z |
_version_ |
1803620714018766848 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046128303</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503121216.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1984 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01120034</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046128303</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01120034-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Quinn, Candace Jo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reactive processing of titanium carbide with titanium</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1984</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Chapman and Hall Ltd 1984</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The reactive hot pressing of titanium-titanium carbide mixtures to form substoichiometric titanium carbide was studied as a function of time, temperature, pressure and composition using a Box-Behnken experimental design. Thirty samples were hot pressed at 1200 to 1600° C and 7 to 35 MPa (1000 to 5000 psi) for 0.5 to 1.5 h from mixtures containing 10 to 30vol % titanium metal. Twenty three of these samples had final densities in excess of 95% of the theoretical value. A model for the grain growth during hot pressing was developed by consideration of Kuczynski's semi-empirical sintering model and classical grain-growth models. The modification involves development of a factor which describes the behaviour of the system as a function of composition. Microstructural data, selected area diffraction patterns, and the activation energy for grain growth all indicate that the grain growth is controlled by diffusion through $ Ti_{2} $C-TiC and/or TiC-TiC boundaries. Densification during hot pressing was interpreted in terms of the creep of titanium metal using a power-law creep model. The activation energy for densification agrees well with the activation energy for the self-diffusion of titanium. The high densities obtained also indicate that the densification depends largely on the ductile nature of the titanium metal.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Titanium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Activation Energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diffraction Pattern</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reactive Processing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kohlstedt, David L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Kluwer Academic Publishers, 1966</subfield><subfield code="g">19(1984), 4 vom: Apr., Seite 1242-1250</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:1984</subfield><subfield code="g">number:4</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:1242-1250</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01120034</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">1984</subfield><subfield code="e">4</subfield><subfield code="c">04</subfield><subfield code="h">1242-1250</subfield></datafield></record></collection>
|
score |
7.4020357 |