Calculation of yield stresses and plastic strain ratios
Abstract Yield stresses and plastic strain ratios of aluminium, copper, brass and steel sheets having various textures, which are characterized by the orientation distribution functions, have been calculated as a function of angle to the rolling direction using the Bunge method based on Taylor'...
Ausführliche Beschreibung
Autor*in: |
Lee, Dong Nyung [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1988 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Chapman and Hall Ltd. 1988 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials science - Kluwer Academic Publishers, 1966, 23(1988), 11 vom: Nov., Seite 4013-4021 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:1988 ; number:11 ; month:11 ; pages:4013-4021 |
Links: |
---|
DOI / URN: |
10.1007/BF01106829 |
---|
Katalog-ID: |
OLC2046157265 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2046157265 | ||
003 | DE-627 | ||
005 | 20230503121343.0 | ||
007 | tu | ||
008 | 200820s1988 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF01106829 |2 doi | |
035 | |a (DE-627)OLC2046157265 | ||
035 | |a (DE-He213)BF01106829-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Lee, Dong Nyung |e verfasserin |4 aut | |
245 | 1 | 0 | |a Calculation of yield stresses and plastic strain ratios |
264 | 1 | |c 1988 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Chapman and Hall Ltd. 1988 | ||
520 | |a Abstract Yield stresses and plastic strain ratios of aluminium, copper, brass and steel sheets having various textures, which are characterized by the orientation distribution functions, have been calculated as a function of angle to the rolling direction using the Bunge method based on Taylor's minimum energy theory and another method suggested by the present authors. The calculated results are compared with the measured ones. For steels, the two methods yield almost identical yield stress results. The Bunge method yields higher average plastic strain ratios than the measured data, while their variation with the angle to the rolling direction agrees very well with the measured values. The plastic strain ratios calculated by the second method are in very good agreement with the measured data in their average values but show smaller variations with the angle to the rolling direction than the measureD. Therefore, combination of the two methods can yield very good agreement between calculated and measured plastic strain ratios. For the f c c metals, the calculated yield stresses and plastic strain ratios are in good agreement with measured data, regardless of the calculation method. | ||
650 | 4 | |a Rolling Direction | |
650 | 4 | |a Steel Sheet | |
650 | 4 | |a Orientation Distribution | |
650 | 4 | |a Orientation Distribution Function | |
650 | 4 | |a Stress Result | |
700 | 1 | |a Kim, Insoo |4 aut | |
700 | 1 | |a Oh, Kyu Hwan |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials science |d Kluwer Academic Publishers, 1966 |g 23(1988), 11 vom: Nov., Seite 4013-4021 |w (DE-627)129546372 |w (DE-600)218324-9 |w (DE-576)014996774 |x 0022-2461 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:1988 |g number:11 |g month:11 |g pages:4013-4021 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF01106829 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2333 | ||
912 | |a GBV_ILN_4082 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4316 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 23 |j 1988 |e 11 |c 11 |h 4013-4021 |
author_variant |
d n l dn dnl i k ik k h o kh kho |
---|---|
matchkey_str |
article:00222461:1988----::acltooyedtessnpatc |
hierarchy_sort_str |
1988 |
publishDate |
1988 |
allfields |
10.1007/BF01106829 doi (DE-627)OLC2046157265 (DE-He213)BF01106829-p DE-627 ger DE-627 rakwb eng 670 VZ Lee, Dong Nyung verfasserin aut Calculation of yield stresses and plastic strain ratios 1988 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Chapman and Hall Ltd. 1988 Abstract Yield stresses and plastic strain ratios of aluminium, copper, brass and steel sheets having various textures, which are characterized by the orientation distribution functions, have been calculated as a function of angle to the rolling direction using the Bunge method based on Taylor's minimum energy theory and another method suggested by the present authors. The calculated results are compared with the measured ones. For steels, the two methods yield almost identical yield stress results. The Bunge method yields higher average plastic strain ratios than the measured data, while their variation with the angle to the rolling direction agrees very well with the measured values. The plastic strain ratios calculated by the second method are in very good agreement with the measured data in their average values but show smaller variations with the angle to the rolling direction than the measureD. Therefore, combination of the two methods can yield very good agreement between calculated and measured plastic strain ratios. For the f c c metals, the calculated yield stresses and plastic strain ratios are in good agreement with measured data, regardless of the calculation method. Rolling Direction Steel Sheet Orientation Distribution Orientation Distribution Function Stress Result Kim, Insoo aut Oh, Kyu Hwan aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 23(1988), 11 vom: Nov., Seite 4013-4021 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:23 year:1988 number:11 month:11 pages:4013-4021 https://doi.org/10.1007/BF01106829 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2057 GBV_ILN_2333 GBV_ILN_4082 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 23 1988 11 11 4013-4021 |
spelling |
10.1007/BF01106829 doi (DE-627)OLC2046157265 (DE-He213)BF01106829-p DE-627 ger DE-627 rakwb eng 670 VZ Lee, Dong Nyung verfasserin aut Calculation of yield stresses and plastic strain ratios 1988 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Chapman and Hall Ltd. 1988 Abstract Yield stresses and plastic strain ratios of aluminium, copper, brass and steel sheets having various textures, which are characterized by the orientation distribution functions, have been calculated as a function of angle to the rolling direction using the Bunge method based on Taylor's minimum energy theory and another method suggested by the present authors. The calculated results are compared with the measured ones. For steels, the two methods yield almost identical yield stress results. The Bunge method yields higher average plastic strain ratios than the measured data, while their variation with the angle to the rolling direction agrees very well with the measured values. The plastic strain ratios calculated by the second method are in very good agreement with the measured data in their average values but show smaller variations with the angle to the rolling direction than the measureD. Therefore, combination of the two methods can yield very good agreement between calculated and measured plastic strain ratios. For the f c c metals, the calculated yield stresses and plastic strain ratios are in good agreement with measured data, regardless of the calculation method. Rolling Direction Steel Sheet Orientation Distribution Orientation Distribution Function Stress Result Kim, Insoo aut Oh, Kyu Hwan aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 23(1988), 11 vom: Nov., Seite 4013-4021 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:23 year:1988 number:11 month:11 pages:4013-4021 https://doi.org/10.1007/BF01106829 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2057 GBV_ILN_2333 GBV_ILN_4082 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 23 1988 11 11 4013-4021 |
allfields_unstemmed |
10.1007/BF01106829 doi (DE-627)OLC2046157265 (DE-He213)BF01106829-p DE-627 ger DE-627 rakwb eng 670 VZ Lee, Dong Nyung verfasserin aut Calculation of yield stresses and plastic strain ratios 1988 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Chapman and Hall Ltd. 1988 Abstract Yield stresses and plastic strain ratios of aluminium, copper, brass and steel sheets having various textures, which are characterized by the orientation distribution functions, have been calculated as a function of angle to the rolling direction using the Bunge method based on Taylor's minimum energy theory and another method suggested by the present authors. The calculated results are compared with the measured ones. For steels, the two methods yield almost identical yield stress results. The Bunge method yields higher average plastic strain ratios than the measured data, while their variation with the angle to the rolling direction agrees very well with the measured values. The plastic strain ratios calculated by the second method are in very good agreement with the measured data in their average values but show smaller variations with the angle to the rolling direction than the measureD. Therefore, combination of the two methods can yield very good agreement between calculated and measured plastic strain ratios. For the f c c metals, the calculated yield stresses and plastic strain ratios are in good agreement with measured data, regardless of the calculation method. Rolling Direction Steel Sheet Orientation Distribution Orientation Distribution Function Stress Result Kim, Insoo aut Oh, Kyu Hwan aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 23(1988), 11 vom: Nov., Seite 4013-4021 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:23 year:1988 number:11 month:11 pages:4013-4021 https://doi.org/10.1007/BF01106829 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2057 GBV_ILN_2333 GBV_ILN_4082 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 23 1988 11 11 4013-4021 |
allfieldsGer |
10.1007/BF01106829 doi (DE-627)OLC2046157265 (DE-He213)BF01106829-p DE-627 ger DE-627 rakwb eng 670 VZ Lee, Dong Nyung verfasserin aut Calculation of yield stresses and plastic strain ratios 1988 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Chapman and Hall Ltd. 1988 Abstract Yield stresses and plastic strain ratios of aluminium, copper, brass and steel sheets having various textures, which are characterized by the orientation distribution functions, have been calculated as a function of angle to the rolling direction using the Bunge method based on Taylor's minimum energy theory and another method suggested by the present authors. The calculated results are compared with the measured ones. For steels, the two methods yield almost identical yield stress results. The Bunge method yields higher average plastic strain ratios than the measured data, while their variation with the angle to the rolling direction agrees very well with the measured values. The plastic strain ratios calculated by the second method are in very good agreement with the measured data in their average values but show smaller variations with the angle to the rolling direction than the measureD. Therefore, combination of the two methods can yield very good agreement between calculated and measured plastic strain ratios. For the f c c metals, the calculated yield stresses and plastic strain ratios are in good agreement with measured data, regardless of the calculation method. Rolling Direction Steel Sheet Orientation Distribution Orientation Distribution Function Stress Result Kim, Insoo aut Oh, Kyu Hwan aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 23(1988), 11 vom: Nov., Seite 4013-4021 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:23 year:1988 number:11 month:11 pages:4013-4021 https://doi.org/10.1007/BF01106829 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2057 GBV_ILN_2333 GBV_ILN_4082 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 23 1988 11 11 4013-4021 |
allfieldsSound |
10.1007/BF01106829 doi (DE-627)OLC2046157265 (DE-He213)BF01106829-p DE-627 ger DE-627 rakwb eng 670 VZ Lee, Dong Nyung verfasserin aut Calculation of yield stresses and plastic strain ratios 1988 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Chapman and Hall Ltd. 1988 Abstract Yield stresses and plastic strain ratios of aluminium, copper, brass and steel sheets having various textures, which are characterized by the orientation distribution functions, have been calculated as a function of angle to the rolling direction using the Bunge method based on Taylor's minimum energy theory and another method suggested by the present authors. The calculated results are compared with the measured ones. For steels, the two methods yield almost identical yield stress results. The Bunge method yields higher average plastic strain ratios than the measured data, while their variation with the angle to the rolling direction agrees very well with the measured values. The plastic strain ratios calculated by the second method are in very good agreement with the measured data in their average values but show smaller variations with the angle to the rolling direction than the measureD. Therefore, combination of the two methods can yield very good agreement between calculated and measured plastic strain ratios. For the f c c metals, the calculated yield stresses and plastic strain ratios are in good agreement with measured data, regardless of the calculation method. Rolling Direction Steel Sheet Orientation Distribution Orientation Distribution Function Stress Result Kim, Insoo aut Oh, Kyu Hwan aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 23(1988), 11 vom: Nov., Seite 4013-4021 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:23 year:1988 number:11 month:11 pages:4013-4021 https://doi.org/10.1007/BF01106829 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2057 GBV_ILN_2333 GBV_ILN_4082 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 23 1988 11 11 4013-4021 |
language |
English |
source |
Enthalten in Journal of materials science 23(1988), 11 vom: Nov., Seite 4013-4021 volume:23 year:1988 number:11 month:11 pages:4013-4021 |
sourceStr |
Enthalten in Journal of materials science 23(1988), 11 vom: Nov., Seite 4013-4021 volume:23 year:1988 number:11 month:11 pages:4013-4021 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Rolling Direction Steel Sheet Orientation Distribution Orientation Distribution Function Stress Result |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of materials science |
authorswithroles_txt_mv |
Lee, Dong Nyung @@aut@@ Kim, Insoo @@aut@@ Oh, Kyu Hwan @@aut@@ |
publishDateDaySort_date |
1988-11-01T00:00:00Z |
hierarchy_top_id |
129546372 |
dewey-sort |
3670 |
id |
OLC2046157265 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046157265</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503121343.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1988 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01106829</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046157265</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01106829-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lee, Dong Nyung</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Calculation of yield stresses and plastic strain ratios</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1988</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Chapman and Hall Ltd. 1988</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Yield stresses and plastic strain ratios of aluminium, copper, brass and steel sheets having various textures, which are characterized by the orientation distribution functions, have been calculated as a function of angle to the rolling direction using the Bunge method based on Taylor's minimum energy theory and another method suggested by the present authors. The calculated results are compared with the measured ones. For steels, the two methods yield almost identical yield stress results. The Bunge method yields higher average plastic strain ratios than the measured data, while their variation with the angle to the rolling direction agrees very well with the measured values. The plastic strain ratios calculated by the second method are in very good agreement with the measured data in their average values but show smaller variations with the angle to the rolling direction than the measureD. Therefore, combination of the two methods can yield very good agreement between calculated and measured plastic strain ratios. For the f c c metals, the calculated yield stresses and plastic strain ratios are in good agreement with measured data, regardless of the calculation method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rolling Direction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Steel Sheet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orientation Distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orientation Distribution Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress Result</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Insoo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oh, Kyu Hwan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Kluwer Academic Publishers, 1966</subfield><subfield code="g">23(1988), 11 vom: Nov., Seite 4013-4021</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:1988</subfield><subfield code="g">number:11</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:4013-4021</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01106829</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">1988</subfield><subfield code="e">11</subfield><subfield code="c">11</subfield><subfield code="h">4013-4021</subfield></datafield></record></collection>
|
author |
Lee, Dong Nyung |
spellingShingle |
Lee, Dong Nyung ddc 670 misc Rolling Direction misc Steel Sheet misc Orientation Distribution misc Orientation Distribution Function misc Stress Result Calculation of yield stresses and plastic strain ratios |
authorStr |
Lee, Dong Nyung |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129546372 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-2461 |
topic_title |
670 VZ Calculation of yield stresses and plastic strain ratios Rolling Direction Steel Sheet Orientation Distribution Orientation Distribution Function Stress Result |
topic |
ddc 670 misc Rolling Direction misc Steel Sheet misc Orientation Distribution misc Orientation Distribution Function misc Stress Result |
topic_unstemmed |
ddc 670 misc Rolling Direction misc Steel Sheet misc Orientation Distribution misc Orientation Distribution Function misc Stress Result |
topic_browse |
ddc 670 misc Rolling Direction misc Steel Sheet misc Orientation Distribution misc Orientation Distribution Function misc Stress Result |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials science |
hierarchy_parent_id |
129546372 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of materials science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 |
title |
Calculation of yield stresses and plastic strain ratios |
ctrlnum |
(DE-627)OLC2046157265 (DE-He213)BF01106829-p |
title_full |
Calculation of yield stresses and plastic strain ratios |
author_sort |
Lee, Dong Nyung |
journal |
Journal of materials science |
journalStr |
Journal of materials science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
1988 |
contenttype_str_mv |
txt |
container_start_page |
4013 |
author_browse |
Lee, Dong Nyung Kim, Insoo Oh, Kyu Hwan |
container_volume |
23 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Lee, Dong Nyung |
doi_str_mv |
10.1007/BF01106829 |
dewey-full |
670 |
title_sort |
calculation of yield stresses and plastic strain ratios |
title_auth |
Calculation of yield stresses and plastic strain ratios |
abstract |
Abstract Yield stresses and plastic strain ratios of aluminium, copper, brass and steel sheets having various textures, which are characterized by the orientation distribution functions, have been calculated as a function of angle to the rolling direction using the Bunge method based on Taylor's minimum energy theory and another method suggested by the present authors. The calculated results are compared with the measured ones. For steels, the two methods yield almost identical yield stress results. The Bunge method yields higher average plastic strain ratios than the measured data, while their variation with the angle to the rolling direction agrees very well with the measured values. The plastic strain ratios calculated by the second method are in very good agreement with the measured data in their average values but show smaller variations with the angle to the rolling direction than the measureD. Therefore, combination of the two methods can yield very good agreement between calculated and measured plastic strain ratios. For the f c c metals, the calculated yield stresses and plastic strain ratios are in good agreement with measured data, regardless of the calculation method. © Chapman and Hall Ltd. 1988 |
abstractGer |
Abstract Yield stresses and plastic strain ratios of aluminium, copper, brass and steel sheets having various textures, which are characterized by the orientation distribution functions, have been calculated as a function of angle to the rolling direction using the Bunge method based on Taylor's minimum energy theory and another method suggested by the present authors. The calculated results are compared with the measured ones. For steels, the two methods yield almost identical yield stress results. The Bunge method yields higher average plastic strain ratios than the measured data, while their variation with the angle to the rolling direction agrees very well with the measured values. The plastic strain ratios calculated by the second method are in very good agreement with the measured data in their average values but show smaller variations with the angle to the rolling direction than the measureD. Therefore, combination of the two methods can yield very good agreement between calculated and measured plastic strain ratios. For the f c c metals, the calculated yield stresses and plastic strain ratios are in good agreement with measured data, regardless of the calculation method. © Chapman and Hall Ltd. 1988 |
abstract_unstemmed |
Abstract Yield stresses and plastic strain ratios of aluminium, copper, brass and steel sheets having various textures, which are characterized by the orientation distribution functions, have been calculated as a function of angle to the rolling direction using the Bunge method based on Taylor's minimum energy theory and another method suggested by the present authors. The calculated results are compared with the measured ones. For steels, the two methods yield almost identical yield stress results. The Bunge method yields higher average plastic strain ratios than the measured data, while their variation with the angle to the rolling direction agrees very well with the measured values. The plastic strain ratios calculated by the second method are in very good agreement with the measured data in their average values but show smaller variations with the angle to the rolling direction than the measureD. Therefore, combination of the two methods can yield very good agreement between calculated and measured plastic strain ratios. For the f c c metals, the calculated yield stresses and plastic strain ratios are in good agreement with measured data, regardless of the calculation method. © Chapman and Hall Ltd. 1988 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2057 GBV_ILN_2333 GBV_ILN_4082 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 |
container_issue |
11 |
title_short |
Calculation of yield stresses and plastic strain ratios |
url |
https://doi.org/10.1007/BF01106829 |
remote_bool |
false |
author2 |
Kim, Insoo Oh, Kyu Hwan |
author2Str |
Kim, Insoo Oh, Kyu Hwan |
ppnlink |
129546372 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF01106829 |
up_date |
2024-07-04T04:23:20.041Z |
_version_ |
1803620974636040192 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046157265</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503121343.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1988 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01106829</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046157265</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01106829-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lee, Dong Nyung</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Calculation of yield stresses and plastic strain ratios</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1988</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Chapman and Hall Ltd. 1988</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Yield stresses and plastic strain ratios of aluminium, copper, brass and steel sheets having various textures, which are characterized by the orientation distribution functions, have been calculated as a function of angle to the rolling direction using the Bunge method based on Taylor's minimum energy theory and another method suggested by the present authors. The calculated results are compared with the measured ones. For steels, the two methods yield almost identical yield stress results. The Bunge method yields higher average plastic strain ratios than the measured data, while their variation with the angle to the rolling direction agrees very well with the measured values. The plastic strain ratios calculated by the second method are in very good agreement with the measured data in their average values but show smaller variations with the angle to the rolling direction than the measureD. Therefore, combination of the two methods can yield very good agreement between calculated and measured plastic strain ratios. For the f c c metals, the calculated yield stresses and plastic strain ratios are in good agreement with measured data, regardless of the calculation method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rolling Direction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Steel Sheet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orientation Distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orientation Distribution Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress Result</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Insoo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oh, Kyu Hwan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Kluwer Academic Publishers, 1966</subfield><subfield code="g">23(1988), 11 vom: Nov., Seite 4013-4021</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:1988</subfield><subfield code="g">number:11</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:4013-4021</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01106829</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">1988</subfield><subfield code="e">11</subfield><subfield code="c">11</subfield><subfield code="h">4013-4021</subfield></datafield></record></collection>
|
score |
7.4027634 |