Plane-stress essential work of ductile fracture for polycarbonate
Abstract The effect of specimen geometry, specimen size and the specimen orientation on the essential work of fracture for polycarbonate is investigated. Two different test geometries, namely the single-edge notched tension and double-edge notched tension specimens, are used to evaluate the essentia...
Ausführliche Beschreibung
Autor*in: |
Paton, C. A. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1992 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Chapman & Hall 1992 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials science - Kluwer Academic Publishers, 1966, 27(1992), 9 vom: Mai, Seite 2279-2290 |
---|---|
Übergeordnetes Werk: |
volume:27 ; year:1992 ; number:9 ; month:05 ; pages:2279-2290 |
Links: |
---|
DOI / URN: |
10.1007/BF01105033 |
---|
Katalog-ID: |
OLC2046188942 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2046188942 | ||
003 | DE-627 | ||
005 | 20230503122311.0 | ||
007 | tu | ||
008 | 200820s1992 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF01105033 |2 doi | |
035 | |a (DE-627)OLC2046188942 | ||
035 | |a (DE-He213)BF01105033-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Paton, C. A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Plane-stress essential work of ductile fracture for polycarbonate |
264 | 1 | |c 1992 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Chapman & Hall 1992 | ||
520 | |a Abstract The effect of specimen geometry, specimen size and the specimen orientation on the essential work of fracture for polycarbonate is investigated. Two different test geometries, namely the single-edge notched tension and double-edge notched tension specimens, are used to evaluate the essential work of fracture for crack propagation. It is shown that the specific essential work of fracture for crack propagation,we′ is independent of the test piece geometries and the size of the test piece. It seems that for a given sheet thickness,we is a fundamental material property being independent of the specimen geometry and size. The value ofwe does change with the orientation of the initial notch with respect to the melt flow direction. The straight-line relationships between the total specific work of fracture,wf, and ligament length,L, breaks down when the ligament length to specimen thickness ratio is less than about three, because the fracture data fall in the plane stress-plane strain transition region. A plane strain specific essential work of fracture,wle|′, was obtained by extrapolating the best regression line of the data to a zero ligament. For the initial notch in the melt flow direction, values forwe andwle′, were approximately 28 and 3 kJ $ m^{−2} $, respectively. The specific essential work of initiation,wle′ was about 4.3 kJ $ m^{−2} $ ·JR curves (J-Δa curves) were also obtained and it is shown that the intercept and the slope of theJr curve, i.e.JC and dJ/da, are related towe and the slope of thewf versus ligament plot. | ||
650 | 4 | |a Ductile Fracture | |
650 | 4 | |a Test Piece | |
650 | 4 | |a Specimen Geometry | |
650 | 4 | |a Tension Specimen | |
650 | 4 | |a Strain Transition | |
700 | 1 | |a Hashemi, S. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials science |d Kluwer Academic Publishers, 1966 |g 27(1992), 9 vom: Mai, Seite 2279-2290 |w (DE-627)129546372 |w (DE-600)218324-9 |w (DE-576)014996774 |x 0022-2461 |7 nnns |
773 | 1 | 8 | |g volume:27 |g year:1992 |g number:9 |g month:05 |g pages:2279-2290 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF01105033 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_4082 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4316 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 27 |j 1992 |e 9 |c 05 |h 2279-2290 |
author_variant |
c a p ca cap s h sh |
---|---|
matchkey_str |
article:00222461:1992----::lnsrsesnilokfutlfatrf |
hierarchy_sort_str |
1992 |
publishDate |
1992 |
allfields |
10.1007/BF01105033 doi (DE-627)OLC2046188942 (DE-He213)BF01105033-p DE-627 ger DE-627 rakwb eng 670 VZ Paton, C. A. verfasserin aut Plane-stress essential work of ductile fracture for polycarbonate 1992 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Chapman & Hall 1992 Abstract The effect of specimen geometry, specimen size and the specimen orientation on the essential work of fracture for polycarbonate is investigated. Two different test geometries, namely the single-edge notched tension and double-edge notched tension specimens, are used to evaluate the essential work of fracture for crack propagation. It is shown that the specific essential work of fracture for crack propagation,we′ is independent of the test piece geometries and the size of the test piece. It seems that for a given sheet thickness,we is a fundamental material property being independent of the specimen geometry and size. The value ofwe does change with the orientation of the initial notch with respect to the melt flow direction. The straight-line relationships between the total specific work of fracture,wf, and ligament length,L, breaks down when the ligament length to specimen thickness ratio is less than about three, because the fracture data fall in the plane stress-plane strain transition region. A plane strain specific essential work of fracture,wle|′, was obtained by extrapolating the best regression line of the data to a zero ligament. For the initial notch in the melt flow direction, values forwe andwle′, were approximately 28 and 3 kJ $ m^{−2} $, respectively. The specific essential work of initiation,wle′ was about 4.3 kJ $ m^{−2} $ ·JR curves (J-Δa curves) were also obtained and it is shown that the intercept and the slope of theJr curve, i.e.JC and dJ/da, are related towe and the slope of thewf versus ligament plot. Ductile Fracture Test Piece Specimen Geometry Tension Specimen Strain Transition Hashemi, S. aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 27(1992), 9 vom: Mai, Seite 2279-2290 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:27 year:1992 number:9 month:05 pages:2279-2290 https://doi.org/10.1007/BF01105033 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4082 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 27 1992 9 05 2279-2290 |
spelling |
10.1007/BF01105033 doi (DE-627)OLC2046188942 (DE-He213)BF01105033-p DE-627 ger DE-627 rakwb eng 670 VZ Paton, C. A. verfasserin aut Plane-stress essential work of ductile fracture for polycarbonate 1992 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Chapman & Hall 1992 Abstract The effect of specimen geometry, specimen size and the specimen orientation on the essential work of fracture for polycarbonate is investigated. Two different test geometries, namely the single-edge notched tension and double-edge notched tension specimens, are used to evaluate the essential work of fracture for crack propagation. It is shown that the specific essential work of fracture for crack propagation,we′ is independent of the test piece geometries and the size of the test piece. It seems that for a given sheet thickness,we is a fundamental material property being independent of the specimen geometry and size. The value ofwe does change with the orientation of the initial notch with respect to the melt flow direction. The straight-line relationships between the total specific work of fracture,wf, and ligament length,L, breaks down when the ligament length to specimen thickness ratio is less than about three, because the fracture data fall in the plane stress-plane strain transition region. A plane strain specific essential work of fracture,wle|′, was obtained by extrapolating the best regression line of the data to a zero ligament. For the initial notch in the melt flow direction, values forwe andwle′, were approximately 28 and 3 kJ $ m^{−2} $, respectively. The specific essential work of initiation,wle′ was about 4.3 kJ $ m^{−2} $ ·JR curves (J-Δa curves) were also obtained and it is shown that the intercept and the slope of theJr curve, i.e.JC and dJ/da, are related towe and the slope of thewf versus ligament plot. Ductile Fracture Test Piece Specimen Geometry Tension Specimen Strain Transition Hashemi, S. aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 27(1992), 9 vom: Mai, Seite 2279-2290 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:27 year:1992 number:9 month:05 pages:2279-2290 https://doi.org/10.1007/BF01105033 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4082 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 27 1992 9 05 2279-2290 |
allfields_unstemmed |
10.1007/BF01105033 doi (DE-627)OLC2046188942 (DE-He213)BF01105033-p DE-627 ger DE-627 rakwb eng 670 VZ Paton, C. A. verfasserin aut Plane-stress essential work of ductile fracture for polycarbonate 1992 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Chapman & Hall 1992 Abstract The effect of specimen geometry, specimen size and the specimen orientation on the essential work of fracture for polycarbonate is investigated. Two different test geometries, namely the single-edge notched tension and double-edge notched tension specimens, are used to evaluate the essential work of fracture for crack propagation. It is shown that the specific essential work of fracture for crack propagation,we′ is independent of the test piece geometries and the size of the test piece. It seems that for a given sheet thickness,we is a fundamental material property being independent of the specimen geometry and size. The value ofwe does change with the orientation of the initial notch with respect to the melt flow direction. The straight-line relationships between the total specific work of fracture,wf, and ligament length,L, breaks down when the ligament length to specimen thickness ratio is less than about three, because the fracture data fall in the plane stress-plane strain transition region. A plane strain specific essential work of fracture,wle|′, was obtained by extrapolating the best regression line of the data to a zero ligament. For the initial notch in the melt flow direction, values forwe andwle′, were approximately 28 and 3 kJ $ m^{−2} $, respectively. The specific essential work of initiation,wle′ was about 4.3 kJ $ m^{−2} $ ·JR curves (J-Δa curves) were also obtained and it is shown that the intercept and the slope of theJr curve, i.e.JC and dJ/da, are related towe and the slope of thewf versus ligament plot. Ductile Fracture Test Piece Specimen Geometry Tension Specimen Strain Transition Hashemi, S. aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 27(1992), 9 vom: Mai, Seite 2279-2290 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:27 year:1992 number:9 month:05 pages:2279-2290 https://doi.org/10.1007/BF01105033 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4082 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 27 1992 9 05 2279-2290 |
allfieldsGer |
10.1007/BF01105033 doi (DE-627)OLC2046188942 (DE-He213)BF01105033-p DE-627 ger DE-627 rakwb eng 670 VZ Paton, C. A. verfasserin aut Plane-stress essential work of ductile fracture for polycarbonate 1992 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Chapman & Hall 1992 Abstract The effect of specimen geometry, specimen size and the specimen orientation on the essential work of fracture for polycarbonate is investigated. Two different test geometries, namely the single-edge notched tension and double-edge notched tension specimens, are used to evaluate the essential work of fracture for crack propagation. It is shown that the specific essential work of fracture for crack propagation,we′ is independent of the test piece geometries and the size of the test piece. It seems that for a given sheet thickness,we is a fundamental material property being independent of the specimen geometry and size. The value ofwe does change with the orientation of the initial notch with respect to the melt flow direction. The straight-line relationships between the total specific work of fracture,wf, and ligament length,L, breaks down when the ligament length to specimen thickness ratio is less than about three, because the fracture data fall in the plane stress-plane strain transition region. A plane strain specific essential work of fracture,wle|′, was obtained by extrapolating the best regression line of the data to a zero ligament. For the initial notch in the melt flow direction, values forwe andwle′, were approximately 28 and 3 kJ $ m^{−2} $, respectively. The specific essential work of initiation,wle′ was about 4.3 kJ $ m^{−2} $ ·JR curves (J-Δa curves) were also obtained and it is shown that the intercept and the slope of theJr curve, i.e.JC and dJ/da, are related towe and the slope of thewf versus ligament plot. Ductile Fracture Test Piece Specimen Geometry Tension Specimen Strain Transition Hashemi, S. aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 27(1992), 9 vom: Mai, Seite 2279-2290 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:27 year:1992 number:9 month:05 pages:2279-2290 https://doi.org/10.1007/BF01105033 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4082 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 27 1992 9 05 2279-2290 |
allfieldsSound |
10.1007/BF01105033 doi (DE-627)OLC2046188942 (DE-He213)BF01105033-p DE-627 ger DE-627 rakwb eng 670 VZ Paton, C. A. verfasserin aut Plane-stress essential work of ductile fracture for polycarbonate 1992 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Chapman & Hall 1992 Abstract The effect of specimen geometry, specimen size and the specimen orientation on the essential work of fracture for polycarbonate is investigated. Two different test geometries, namely the single-edge notched tension and double-edge notched tension specimens, are used to evaluate the essential work of fracture for crack propagation. It is shown that the specific essential work of fracture for crack propagation,we′ is independent of the test piece geometries and the size of the test piece. It seems that for a given sheet thickness,we is a fundamental material property being independent of the specimen geometry and size. The value ofwe does change with the orientation of the initial notch with respect to the melt flow direction. The straight-line relationships between the total specific work of fracture,wf, and ligament length,L, breaks down when the ligament length to specimen thickness ratio is less than about three, because the fracture data fall in the plane stress-plane strain transition region. A plane strain specific essential work of fracture,wle|′, was obtained by extrapolating the best regression line of the data to a zero ligament. For the initial notch in the melt flow direction, values forwe andwle′, were approximately 28 and 3 kJ $ m^{−2} $, respectively. The specific essential work of initiation,wle′ was about 4.3 kJ $ m^{−2} $ ·JR curves (J-Δa curves) were also obtained and it is shown that the intercept and the slope of theJr curve, i.e.JC and dJ/da, are related towe and the slope of thewf versus ligament plot. Ductile Fracture Test Piece Specimen Geometry Tension Specimen Strain Transition Hashemi, S. aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 27(1992), 9 vom: Mai, Seite 2279-2290 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:27 year:1992 number:9 month:05 pages:2279-2290 https://doi.org/10.1007/BF01105033 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4082 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 27 1992 9 05 2279-2290 |
language |
English |
source |
Enthalten in Journal of materials science 27(1992), 9 vom: Mai, Seite 2279-2290 volume:27 year:1992 number:9 month:05 pages:2279-2290 |
sourceStr |
Enthalten in Journal of materials science 27(1992), 9 vom: Mai, Seite 2279-2290 volume:27 year:1992 number:9 month:05 pages:2279-2290 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Ductile Fracture Test Piece Specimen Geometry Tension Specimen Strain Transition |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of materials science |
authorswithroles_txt_mv |
Paton, C. A. @@aut@@ Hashemi, S. @@aut@@ |
publishDateDaySort_date |
1992-05-01T00:00:00Z |
hierarchy_top_id |
129546372 |
dewey-sort |
3670 |
id |
OLC2046188942 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046188942</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503122311.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1992 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01105033</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046188942</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01105033-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Paton, C. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Plane-stress essential work of ductile fracture for polycarbonate</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1992</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Chapman & Hall 1992</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The effect of specimen geometry, specimen size and the specimen orientation on the essential work of fracture for polycarbonate is investigated. Two different test geometries, namely the single-edge notched tension and double-edge notched tension specimens, are used to evaluate the essential work of fracture for crack propagation. It is shown that the specific essential work of fracture for crack propagation,we′ is independent of the test piece geometries and the size of the test piece. It seems that for a given sheet thickness,we is a fundamental material property being independent of the specimen geometry and size. The value ofwe does change with the orientation of the initial notch with respect to the melt flow direction. The straight-line relationships between the total specific work of fracture,wf, and ligament length,L, breaks down when the ligament length to specimen thickness ratio is less than about three, because the fracture data fall in the plane stress-plane strain transition region. A plane strain specific essential work of fracture,wle|′, was obtained by extrapolating the best regression line of the data to a zero ligament. For the initial notch in the melt flow direction, values forwe andwle′, were approximately 28 and 3 kJ $ m^{−2} $, respectively. The specific essential work of initiation,wle′ was about 4.3 kJ $ m^{−2} $ ·JR curves (J-Δa curves) were also obtained and it is shown that the intercept and the slope of theJr curve, i.e.JC and dJ/da, are related towe and the slope of thewf versus ligament plot.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ductile Fracture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Test Piece</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Specimen Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tension Specimen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strain Transition</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hashemi, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Kluwer Academic Publishers, 1966</subfield><subfield code="g">27(1992), 9 vom: Mai, Seite 2279-2290</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:27</subfield><subfield code="g">year:1992</subfield><subfield code="g">number:9</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:2279-2290</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01105033</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">27</subfield><subfield code="j">1992</subfield><subfield code="e">9</subfield><subfield code="c">05</subfield><subfield code="h">2279-2290</subfield></datafield></record></collection>
|
author |
Paton, C. A. |
spellingShingle |
Paton, C. A. ddc 670 misc Ductile Fracture misc Test Piece misc Specimen Geometry misc Tension Specimen misc Strain Transition Plane-stress essential work of ductile fracture for polycarbonate |
authorStr |
Paton, C. A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129546372 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-2461 |
topic_title |
670 VZ Plane-stress essential work of ductile fracture for polycarbonate Ductile Fracture Test Piece Specimen Geometry Tension Specimen Strain Transition |
topic |
ddc 670 misc Ductile Fracture misc Test Piece misc Specimen Geometry misc Tension Specimen misc Strain Transition |
topic_unstemmed |
ddc 670 misc Ductile Fracture misc Test Piece misc Specimen Geometry misc Tension Specimen misc Strain Transition |
topic_browse |
ddc 670 misc Ductile Fracture misc Test Piece misc Specimen Geometry misc Tension Specimen misc Strain Transition |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials science |
hierarchy_parent_id |
129546372 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of materials science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 |
title |
Plane-stress essential work of ductile fracture for polycarbonate |
ctrlnum |
(DE-627)OLC2046188942 (DE-He213)BF01105033-p |
title_full |
Plane-stress essential work of ductile fracture for polycarbonate |
author_sort |
Paton, C. A. |
journal |
Journal of materials science |
journalStr |
Journal of materials science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
1992 |
contenttype_str_mv |
txt |
container_start_page |
2279 |
author_browse |
Paton, C. A. Hashemi, S. |
container_volume |
27 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Paton, C. A. |
doi_str_mv |
10.1007/BF01105033 |
dewey-full |
670 |
title_sort |
plane-stress essential work of ductile fracture for polycarbonate |
title_auth |
Plane-stress essential work of ductile fracture for polycarbonate |
abstract |
Abstract The effect of specimen geometry, specimen size and the specimen orientation on the essential work of fracture for polycarbonate is investigated. Two different test geometries, namely the single-edge notched tension and double-edge notched tension specimens, are used to evaluate the essential work of fracture for crack propagation. It is shown that the specific essential work of fracture for crack propagation,we′ is independent of the test piece geometries and the size of the test piece. It seems that for a given sheet thickness,we is a fundamental material property being independent of the specimen geometry and size. The value ofwe does change with the orientation of the initial notch with respect to the melt flow direction. The straight-line relationships between the total specific work of fracture,wf, and ligament length,L, breaks down when the ligament length to specimen thickness ratio is less than about three, because the fracture data fall in the plane stress-plane strain transition region. A plane strain specific essential work of fracture,wle|′, was obtained by extrapolating the best regression line of the data to a zero ligament. For the initial notch in the melt flow direction, values forwe andwle′, were approximately 28 and 3 kJ $ m^{−2} $, respectively. The specific essential work of initiation,wle′ was about 4.3 kJ $ m^{−2} $ ·JR curves (J-Δa curves) were also obtained and it is shown that the intercept and the slope of theJr curve, i.e.JC and dJ/da, are related towe and the slope of thewf versus ligament plot. © Chapman & Hall 1992 |
abstractGer |
Abstract The effect of specimen geometry, specimen size and the specimen orientation on the essential work of fracture for polycarbonate is investigated. Two different test geometries, namely the single-edge notched tension and double-edge notched tension specimens, are used to evaluate the essential work of fracture for crack propagation. It is shown that the specific essential work of fracture for crack propagation,we′ is independent of the test piece geometries and the size of the test piece. It seems that for a given sheet thickness,we is a fundamental material property being independent of the specimen geometry and size. The value ofwe does change with the orientation of the initial notch with respect to the melt flow direction. The straight-line relationships between the total specific work of fracture,wf, and ligament length,L, breaks down when the ligament length to specimen thickness ratio is less than about three, because the fracture data fall in the plane stress-plane strain transition region. A plane strain specific essential work of fracture,wle|′, was obtained by extrapolating the best regression line of the data to a zero ligament. For the initial notch in the melt flow direction, values forwe andwle′, were approximately 28 and 3 kJ $ m^{−2} $, respectively. The specific essential work of initiation,wle′ was about 4.3 kJ $ m^{−2} $ ·JR curves (J-Δa curves) were also obtained and it is shown that the intercept and the slope of theJr curve, i.e.JC and dJ/da, are related towe and the slope of thewf versus ligament plot. © Chapman & Hall 1992 |
abstract_unstemmed |
Abstract The effect of specimen geometry, specimen size and the specimen orientation on the essential work of fracture for polycarbonate is investigated. Two different test geometries, namely the single-edge notched tension and double-edge notched tension specimens, are used to evaluate the essential work of fracture for crack propagation. It is shown that the specific essential work of fracture for crack propagation,we′ is independent of the test piece geometries and the size of the test piece. It seems that for a given sheet thickness,we is a fundamental material property being independent of the specimen geometry and size. The value ofwe does change with the orientation of the initial notch with respect to the melt flow direction. The straight-line relationships between the total specific work of fracture,wf, and ligament length,L, breaks down when the ligament length to specimen thickness ratio is less than about three, because the fracture data fall in the plane stress-plane strain transition region. A plane strain specific essential work of fracture,wle|′, was obtained by extrapolating the best regression line of the data to a zero ligament. For the initial notch in the melt flow direction, values forwe andwle′, were approximately 28 and 3 kJ $ m^{−2} $, respectively. The specific essential work of initiation,wle′ was about 4.3 kJ $ m^{−2} $ ·JR curves (J-Δa curves) were also obtained and it is shown that the intercept and the slope of theJr curve, i.e.JC and dJ/da, are related towe and the slope of thewf versus ligament plot. © Chapman & Hall 1992 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4082 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 |
container_issue |
9 |
title_short |
Plane-stress essential work of ductile fracture for polycarbonate |
url |
https://doi.org/10.1007/BF01105033 |
remote_bool |
false |
author2 |
Hashemi, S. |
author2Str |
Hashemi, S. |
ppnlink |
129546372 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF01105033 |
up_date |
2024-07-04T04:27:50.692Z |
_version_ |
1803621258439426048 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046188942</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503122311.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1992 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01105033</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046188942</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01105033-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Paton, C. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Plane-stress essential work of ductile fracture for polycarbonate</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1992</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Chapman & Hall 1992</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The effect of specimen geometry, specimen size and the specimen orientation on the essential work of fracture for polycarbonate is investigated. Two different test geometries, namely the single-edge notched tension and double-edge notched tension specimens, are used to evaluate the essential work of fracture for crack propagation. It is shown that the specific essential work of fracture for crack propagation,we′ is independent of the test piece geometries and the size of the test piece. It seems that for a given sheet thickness,we is a fundamental material property being independent of the specimen geometry and size. The value ofwe does change with the orientation of the initial notch with respect to the melt flow direction. The straight-line relationships between the total specific work of fracture,wf, and ligament length,L, breaks down when the ligament length to specimen thickness ratio is less than about three, because the fracture data fall in the plane stress-plane strain transition region. A plane strain specific essential work of fracture,wle|′, was obtained by extrapolating the best regression line of the data to a zero ligament. For the initial notch in the melt flow direction, values forwe andwle′, were approximately 28 and 3 kJ $ m^{−2} $, respectively. The specific essential work of initiation,wle′ was about 4.3 kJ $ m^{−2} $ ·JR curves (J-Δa curves) were also obtained and it is shown that the intercept and the slope of theJr curve, i.e.JC and dJ/da, are related towe and the slope of thewf versus ligament plot.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ductile Fracture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Test Piece</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Specimen Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tension Specimen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strain Transition</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hashemi, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Kluwer Academic Publishers, 1966</subfield><subfield code="g">27(1992), 9 vom: Mai, Seite 2279-2290</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:27</subfield><subfield code="g">year:1992</subfield><subfield code="g">number:9</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:2279-2290</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01105033</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">27</subfield><subfield code="j">1992</subfield><subfield code="e">9</subfield><subfield code="c">05</subfield><subfield code="h">2279-2290</subfield></datafield></record></collection>
|
score |
7.400259 |