Finite element modelling of creep deformation in fibre-reinforced ceramic composites
Abstract The tensile creep and creep-recovery behaviour of a unidirectional SiC fibre-$ Si_{3} $$ N_{4} $ matrix composite was analysed using finite element techniques. The analysis, based on the elastic and creep properties of each constituent, considered the influence of fibre-matrix bonding and p...
Ausführliche Beschreibung
Autor*in: |
Park, Y. H. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1992 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Chapman & Hall 1992 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials science - Kluwer Academic Publishers-Plenum Publishers, 1966, 27(1992), 23 vom: 01. Jan., Seite 6341-6351 |
---|---|
Übergeordnetes Werk: |
volume:27 ; year:1992 ; number:23 ; day:01 ; month:01 ; pages:6341-6351 |
Links: |
---|
DOI / URN: |
10.1007/BF00576283 |
---|
Katalog-ID: |
OLC2046194926 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2046194926 | ||
003 | DE-627 | ||
005 | 20230503122250.0 | ||
007 | tu | ||
008 | 200820s1992 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF00576283 |2 doi | |
035 | |a (DE-627)OLC2046194926 | ||
035 | |a (DE-He213)BF00576283-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Park, Y. H. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Finite element modelling of creep deformation in fibre-reinforced ceramic composites |
264 | 1 | |c 1992 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Chapman & Hall 1992 | ||
520 | |a Abstract The tensile creep and creep-recovery behaviour of a unidirectional SiC fibre-$ Si_{3} $$ N_{4} $ matrix composite was analysed using finite element techniques. The analysis, based on the elastic and creep properties of each constituent, considered the influence of fibre-matrix bonding and processing-related residual stresses on creep and creep-recovery behaviour. Both two- and three-dimensional finite element models were used. Although both analyses predicted similar overall creep rates, three-dimensional stress analysis was required to obtain detailed information about the stress state in the vicinity of the fibre-matrix interface. The results of the analysis indicate that the tensile radial stress, which develops in the vicinity of the fibre-matrix interface after processing, rapidly decreases during the initial stages of creep. Both the predicted and experimental results for the composite show that 50% of the total creep strain which accumulated after 200 h at a stress of 200 MPa and temperature of 1200°C is recovered within 25 h of unloading. | ||
650 | 4 | |a Residual Stress | |
650 | 4 | |a Creep Rate | |
650 | 4 | |a Creep Strain | |
650 | 4 | |a Creep Deformation | |
650 | 4 | |a Creep Property | |
700 | 1 | |a Holmes, J. W. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials science |d Kluwer Academic Publishers-Plenum Publishers, 1966 |g 27(1992), 23 vom: 01. Jan., Seite 6341-6351 |w (DE-627)129546372 |w (DE-600)218324-9 |w (DE-576)014996774 |x 0022-2461 |7 nnns |
773 | 1 | 8 | |g volume:27 |g year:1992 |g number:23 |g day:01 |g month:01 |g pages:6341-6351 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF00576283 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_4082 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4316 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 27 |j 1992 |e 23 |b 01 |c 01 |h 6341-6351 |
author_variant |
y h p yh yhp j w h jw jwh |
---|---|
matchkey_str |
article:00222461:1992----::iielmnmdligfredfrainnirrifr |
hierarchy_sort_str |
1992 |
publishDate |
1992 |
allfields |
10.1007/BF00576283 doi (DE-627)OLC2046194926 (DE-He213)BF00576283-p DE-627 ger DE-627 rakwb eng 670 VZ Park, Y. H. verfasserin aut Finite element modelling of creep deformation in fibre-reinforced ceramic composites 1992 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Chapman & Hall 1992 Abstract The tensile creep and creep-recovery behaviour of a unidirectional SiC fibre-$ Si_{3} $$ N_{4} $ matrix composite was analysed using finite element techniques. The analysis, based on the elastic and creep properties of each constituent, considered the influence of fibre-matrix bonding and processing-related residual stresses on creep and creep-recovery behaviour. Both two- and three-dimensional finite element models were used. Although both analyses predicted similar overall creep rates, three-dimensional stress analysis was required to obtain detailed information about the stress state in the vicinity of the fibre-matrix interface. The results of the analysis indicate that the tensile radial stress, which develops in the vicinity of the fibre-matrix interface after processing, rapidly decreases during the initial stages of creep. Both the predicted and experimental results for the composite show that 50% of the total creep strain which accumulated after 200 h at a stress of 200 MPa and temperature of 1200°C is recovered within 25 h of unloading. Residual Stress Creep Rate Creep Strain Creep Deformation Creep Property Holmes, J. W. aut Enthalten in Journal of materials science Kluwer Academic Publishers-Plenum Publishers, 1966 27(1992), 23 vom: 01. Jan., Seite 6341-6351 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:27 year:1992 number:23 day:01 month:01 pages:6341-6351 https://doi.org/10.1007/BF00576283 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4082 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 27 1992 23 01 01 6341-6351 |
spelling |
10.1007/BF00576283 doi (DE-627)OLC2046194926 (DE-He213)BF00576283-p DE-627 ger DE-627 rakwb eng 670 VZ Park, Y. H. verfasserin aut Finite element modelling of creep deformation in fibre-reinforced ceramic composites 1992 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Chapman & Hall 1992 Abstract The tensile creep and creep-recovery behaviour of a unidirectional SiC fibre-$ Si_{3} $$ N_{4} $ matrix composite was analysed using finite element techniques. The analysis, based on the elastic and creep properties of each constituent, considered the influence of fibre-matrix bonding and processing-related residual stresses on creep and creep-recovery behaviour. Both two- and three-dimensional finite element models were used. Although both analyses predicted similar overall creep rates, three-dimensional stress analysis was required to obtain detailed information about the stress state in the vicinity of the fibre-matrix interface. The results of the analysis indicate that the tensile radial stress, which develops in the vicinity of the fibre-matrix interface after processing, rapidly decreases during the initial stages of creep. Both the predicted and experimental results for the composite show that 50% of the total creep strain which accumulated after 200 h at a stress of 200 MPa and temperature of 1200°C is recovered within 25 h of unloading. Residual Stress Creep Rate Creep Strain Creep Deformation Creep Property Holmes, J. W. aut Enthalten in Journal of materials science Kluwer Academic Publishers-Plenum Publishers, 1966 27(1992), 23 vom: 01. Jan., Seite 6341-6351 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:27 year:1992 number:23 day:01 month:01 pages:6341-6351 https://doi.org/10.1007/BF00576283 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4082 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 27 1992 23 01 01 6341-6351 |
allfields_unstemmed |
10.1007/BF00576283 doi (DE-627)OLC2046194926 (DE-He213)BF00576283-p DE-627 ger DE-627 rakwb eng 670 VZ Park, Y. H. verfasserin aut Finite element modelling of creep deformation in fibre-reinforced ceramic composites 1992 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Chapman & Hall 1992 Abstract The tensile creep and creep-recovery behaviour of a unidirectional SiC fibre-$ Si_{3} $$ N_{4} $ matrix composite was analysed using finite element techniques. The analysis, based on the elastic and creep properties of each constituent, considered the influence of fibre-matrix bonding and processing-related residual stresses on creep and creep-recovery behaviour. Both two- and three-dimensional finite element models were used. Although both analyses predicted similar overall creep rates, three-dimensional stress analysis was required to obtain detailed information about the stress state in the vicinity of the fibre-matrix interface. The results of the analysis indicate that the tensile radial stress, which develops in the vicinity of the fibre-matrix interface after processing, rapidly decreases during the initial stages of creep. Both the predicted and experimental results for the composite show that 50% of the total creep strain which accumulated after 200 h at a stress of 200 MPa and temperature of 1200°C is recovered within 25 h of unloading. Residual Stress Creep Rate Creep Strain Creep Deformation Creep Property Holmes, J. W. aut Enthalten in Journal of materials science Kluwer Academic Publishers-Plenum Publishers, 1966 27(1992), 23 vom: 01. Jan., Seite 6341-6351 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:27 year:1992 number:23 day:01 month:01 pages:6341-6351 https://doi.org/10.1007/BF00576283 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4082 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 27 1992 23 01 01 6341-6351 |
allfieldsGer |
10.1007/BF00576283 doi (DE-627)OLC2046194926 (DE-He213)BF00576283-p DE-627 ger DE-627 rakwb eng 670 VZ Park, Y. H. verfasserin aut Finite element modelling of creep deformation in fibre-reinforced ceramic composites 1992 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Chapman & Hall 1992 Abstract The tensile creep and creep-recovery behaviour of a unidirectional SiC fibre-$ Si_{3} $$ N_{4} $ matrix composite was analysed using finite element techniques. The analysis, based on the elastic and creep properties of each constituent, considered the influence of fibre-matrix bonding and processing-related residual stresses on creep and creep-recovery behaviour. Both two- and three-dimensional finite element models were used. Although both analyses predicted similar overall creep rates, three-dimensional stress analysis was required to obtain detailed information about the stress state in the vicinity of the fibre-matrix interface. The results of the analysis indicate that the tensile radial stress, which develops in the vicinity of the fibre-matrix interface after processing, rapidly decreases during the initial stages of creep. Both the predicted and experimental results for the composite show that 50% of the total creep strain which accumulated after 200 h at a stress of 200 MPa and temperature of 1200°C is recovered within 25 h of unloading. Residual Stress Creep Rate Creep Strain Creep Deformation Creep Property Holmes, J. W. aut Enthalten in Journal of materials science Kluwer Academic Publishers-Plenum Publishers, 1966 27(1992), 23 vom: 01. Jan., Seite 6341-6351 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:27 year:1992 number:23 day:01 month:01 pages:6341-6351 https://doi.org/10.1007/BF00576283 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4082 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 27 1992 23 01 01 6341-6351 |
allfieldsSound |
10.1007/BF00576283 doi (DE-627)OLC2046194926 (DE-He213)BF00576283-p DE-627 ger DE-627 rakwb eng 670 VZ Park, Y. H. verfasserin aut Finite element modelling of creep deformation in fibre-reinforced ceramic composites 1992 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Chapman & Hall 1992 Abstract The tensile creep and creep-recovery behaviour of a unidirectional SiC fibre-$ Si_{3} $$ N_{4} $ matrix composite was analysed using finite element techniques. The analysis, based on the elastic and creep properties of each constituent, considered the influence of fibre-matrix bonding and processing-related residual stresses on creep and creep-recovery behaviour. Both two- and three-dimensional finite element models were used. Although both analyses predicted similar overall creep rates, three-dimensional stress analysis was required to obtain detailed information about the stress state in the vicinity of the fibre-matrix interface. The results of the analysis indicate that the tensile radial stress, which develops in the vicinity of the fibre-matrix interface after processing, rapidly decreases during the initial stages of creep. Both the predicted and experimental results for the composite show that 50% of the total creep strain which accumulated after 200 h at a stress of 200 MPa and temperature of 1200°C is recovered within 25 h of unloading. Residual Stress Creep Rate Creep Strain Creep Deformation Creep Property Holmes, J. W. aut Enthalten in Journal of materials science Kluwer Academic Publishers-Plenum Publishers, 1966 27(1992), 23 vom: 01. Jan., Seite 6341-6351 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:27 year:1992 number:23 day:01 month:01 pages:6341-6351 https://doi.org/10.1007/BF00576283 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4082 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 27 1992 23 01 01 6341-6351 |
language |
English |
source |
Enthalten in Journal of materials science 27(1992), 23 vom: 01. Jan., Seite 6341-6351 volume:27 year:1992 number:23 day:01 month:01 pages:6341-6351 |
sourceStr |
Enthalten in Journal of materials science 27(1992), 23 vom: 01. Jan., Seite 6341-6351 volume:27 year:1992 number:23 day:01 month:01 pages:6341-6351 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Residual Stress Creep Rate Creep Strain Creep Deformation Creep Property |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of materials science |
authorswithroles_txt_mv |
Park, Y. H. @@aut@@ Holmes, J. W. @@aut@@ |
publishDateDaySort_date |
1992-01-01T00:00:00Z |
hierarchy_top_id |
129546372 |
dewey-sort |
3670 |
id |
OLC2046194926 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046194926</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503122250.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1992 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF00576283</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046194926</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF00576283-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Park, Y. H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Finite element modelling of creep deformation in fibre-reinforced ceramic composites</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1992</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Chapman & Hall 1992</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The tensile creep and creep-recovery behaviour of a unidirectional SiC fibre-$ Si_{3} $$ N_{4} $ matrix composite was analysed using finite element techniques. The analysis, based on the elastic and creep properties of each constituent, considered the influence of fibre-matrix bonding and processing-related residual stresses on creep and creep-recovery behaviour. Both two- and three-dimensional finite element models were used. Although both analyses predicted similar overall creep rates, three-dimensional stress analysis was required to obtain detailed information about the stress state in the vicinity of the fibre-matrix interface. The results of the analysis indicate that the tensile radial stress, which develops in the vicinity of the fibre-matrix interface after processing, rapidly decreases during the initial stages of creep. Both the predicted and experimental results for the composite show that 50% of the total creep strain which accumulated after 200 h at a stress of 200 MPa and temperature of 1200°C is recovered within 25 h of unloading.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Residual Stress</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Creep Rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Creep Strain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Creep Deformation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Creep Property</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Holmes, J. W.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Kluwer Academic Publishers-Plenum Publishers, 1966</subfield><subfield code="g">27(1992), 23 vom: 01. Jan., Seite 6341-6351</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:27</subfield><subfield code="g">year:1992</subfield><subfield code="g">number:23</subfield><subfield code="g">day:01</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:6341-6351</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF00576283</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">27</subfield><subfield code="j">1992</subfield><subfield code="e">23</subfield><subfield code="b">01</subfield><subfield code="c">01</subfield><subfield code="h">6341-6351</subfield></datafield></record></collection>
|
author |
Park, Y. H. |
spellingShingle |
Park, Y. H. ddc 670 misc Residual Stress misc Creep Rate misc Creep Strain misc Creep Deformation misc Creep Property Finite element modelling of creep deformation in fibre-reinforced ceramic composites |
authorStr |
Park, Y. H. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129546372 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-2461 |
topic_title |
670 VZ Finite element modelling of creep deformation in fibre-reinforced ceramic composites Residual Stress Creep Rate Creep Strain Creep Deformation Creep Property |
topic |
ddc 670 misc Residual Stress misc Creep Rate misc Creep Strain misc Creep Deformation misc Creep Property |
topic_unstemmed |
ddc 670 misc Residual Stress misc Creep Rate misc Creep Strain misc Creep Deformation misc Creep Property |
topic_browse |
ddc 670 misc Residual Stress misc Creep Rate misc Creep Strain misc Creep Deformation misc Creep Property |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials science |
hierarchy_parent_id |
129546372 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of materials science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 |
title |
Finite element modelling of creep deformation in fibre-reinforced ceramic composites |
ctrlnum |
(DE-627)OLC2046194926 (DE-He213)BF00576283-p |
title_full |
Finite element modelling of creep deformation in fibre-reinforced ceramic composites |
author_sort |
Park, Y. H. |
journal |
Journal of materials science |
journalStr |
Journal of materials science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
1992 |
contenttype_str_mv |
txt |
container_start_page |
6341 |
author_browse |
Park, Y. H. Holmes, J. W. |
container_volume |
27 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Park, Y. H. |
doi_str_mv |
10.1007/BF00576283 |
dewey-full |
670 |
title_sort |
finite element modelling of creep deformation in fibre-reinforced ceramic composites |
title_auth |
Finite element modelling of creep deformation in fibre-reinforced ceramic composites |
abstract |
Abstract The tensile creep and creep-recovery behaviour of a unidirectional SiC fibre-$ Si_{3} $$ N_{4} $ matrix composite was analysed using finite element techniques. The analysis, based on the elastic and creep properties of each constituent, considered the influence of fibre-matrix bonding and processing-related residual stresses on creep and creep-recovery behaviour. Both two- and three-dimensional finite element models were used. Although both analyses predicted similar overall creep rates, three-dimensional stress analysis was required to obtain detailed information about the stress state in the vicinity of the fibre-matrix interface. The results of the analysis indicate that the tensile radial stress, which develops in the vicinity of the fibre-matrix interface after processing, rapidly decreases during the initial stages of creep. Both the predicted and experimental results for the composite show that 50% of the total creep strain which accumulated after 200 h at a stress of 200 MPa and temperature of 1200°C is recovered within 25 h of unloading. © Chapman & Hall 1992 |
abstractGer |
Abstract The tensile creep and creep-recovery behaviour of a unidirectional SiC fibre-$ Si_{3} $$ N_{4} $ matrix composite was analysed using finite element techniques. The analysis, based on the elastic and creep properties of each constituent, considered the influence of fibre-matrix bonding and processing-related residual stresses on creep and creep-recovery behaviour. Both two- and three-dimensional finite element models were used. Although both analyses predicted similar overall creep rates, three-dimensional stress analysis was required to obtain detailed information about the stress state in the vicinity of the fibre-matrix interface. The results of the analysis indicate that the tensile radial stress, which develops in the vicinity of the fibre-matrix interface after processing, rapidly decreases during the initial stages of creep. Both the predicted and experimental results for the composite show that 50% of the total creep strain which accumulated after 200 h at a stress of 200 MPa and temperature of 1200°C is recovered within 25 h of unloading. © Chapman & Hall 1992 |
abstract_unstemmed |
Abstract The tensile creep and creep-recovery behaviour of a unidirectional SiC fibre-$ Si_{3} $$ N_{4} $ matrix composite was analysed using finite element techniques. The analysis, based on the elastic and creep properties of each constituent, considered the influence of fibre-matrix bonding and processing-related residual stresses on creep and creep-recovery behaviour. Both two- and three-dimensional finite element models were used. Although both analyses predicted similar overall creep rates, three-dimensional stress analysis was required to obtain detailed information about the stress state in the vicinity of the fibre-matrix interface. The results of the analysis indicate that the tensile radial stress, which develops in the vicinity of the fibre-matrix interface after processing, rapidly decreases during the initial stages of creep. Both the predicted and experimental results for the composite show that 50% of the total creep strain which accumulated after 200 h at a stress of 200 MPa and temperature of 1200°C is recovered within 25 h of unloading. © Chapman & Hall 1992 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4082 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 |
container_issue |
23 |
title_short |
Finite element modelling of creep deformation in fibre-reinforced ceramic composites |
url |
https://doi.org/10.1007/BF00576283 |
remote_bool |
false |
author2 |
Holmes, J. W. |
author2Str |
Holmes, J. W. |
ppnlink |
129546372 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF00576283 |
up_date |
2024-07-04T04:28:42.333Z |
_version_ |
1803621312584744961 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046194926</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503122250.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1992 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF00576283</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046194926</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF00576283-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Park, Y. H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Finite element modelling of creep deformation in fibre-reinforced ceramic composites</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1992</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Chapman & Hall 1992</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The tensile creep and creep-recovery behaviour of a unidirectional SiC fibre-$ Si_{3} $$ N_{4} $ matrix composite was analysed using finite element techniques. The analysis, based on the elastic and creep properties of each constituent, considered the influence of fibre-matrix bonding and processing-related residual stresses on creep and creep-recovery behaviour. Both two- and three-dimensional finite element models were used. Although both analyses predicted similar overall creep rates, three-dimensional stress analysis was required to obtain detailed information about the stress state in the vicinity of the fibre-matrix interface. The results of the analysis indicate that the tensile radial stress, which develops in the vicinity of the fibre-matrix interface after processing, rapidly decreases during the initial stages of creep. Both the predicted and experimental results for the composite show that 50% of the total creep strain which accumulated after 200 h at a stress of 200 MPa and temperature of 1200°C is recovered within 25 h of unloading.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Residual Stress</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Creep Rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Creep Strain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Creep Deformation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Creep Property</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Holmes, J. W.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Kluwer Academic Publishers-Plenum Publishers, 1966</subfield><subfield code="g">27(1992), 23 vom: 01. Jan., Seite 6341-6351</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:27</subfield><subfield code="g">year:1992</subfield><subfield code="g">number:23</subfield><subfield code="g">day:01</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:6341-6351</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF00576283</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">27</subfield><subfield code="j">1992</subfield><subfield code="e">23</subfield><subfield code="b">01</subfield><subfield code="c">01</subfield><subfield code="h">6341-6351</subfield></datafield></record></collection>
|
score |
7.4011316 |