Load-adaptive crystalline–amorphous nanocomposites
Abstract Advances in laser-assisted deposition have enabled the production of hard composites consisting of nanocrystalline and amorphous materials. Deposition conditions were selected to produce super-tough coatings, where controlled formation of dislocations, nanocracks and microcracks was permitt...
Ausführliche Beschreibung
Autor*in: |
Voevodin, A. A [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1998 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Chapman and Hall 1998 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials science - Kluwer Academic Publishers, 1966, 33(1998), 2 vom: Jan., Seite 319-327 |
---|---|
Übergeordnetes Werk: |
volume:33 ; year:1998 ; number:2 ; month:01 ; pages:319-327 |
Links: |
---|
DOI / URN: |
10.1023/A:1004307426887 |
---|
Katalog-ID: |
OLC2046241924 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2046241924 | ||
003 | DE-627 | ||
005 | 20230503122833.0 | ||
007 | tu | ||
008 | 200820s1998 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1023/A:1004307426887 |2 doi | |
035 | |a (DE-627)OLC2046241924 | ||
035 | |a (DE-He213)A:1004307426887-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Voevodin, A. A |e verfasserin |4 aut | |
245 | 1 | 0 | |a Load-adaptive crystalline–amorphous nanocomposites |
264 | 1 | |c 1998 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Chapman and Hall 1998 | ||
520 | |a Abstract Advances in laser-assisted deposition have enabled the production of hard composites consisting of nanocrystalline and amorphous materials. Deposition conditions were selected to produce super-tough coatings, where controlled formation of dislocations, nanocracks and microcracks was permitted as stresses exceeded the elastic limit. This produced a self-adjustment in the composite deformation from hard elastic to quasiplastic, depending on the applied stress, which provided coating compliance and eliminated catastrophic failure typical of hard and brittle materials. The load-adaptive concept was used to design super-tough coatings consisting of nanocrystalline (10–50 nm) TiC grains embedded in an amorphous carbon matrix (about 30 vol%). They were deposited at near room temperature on steel surfaces and studied using X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, Raman spectroscopy, nanoindentation and scratch tests. Design concepts were verified using composition–structure–property investigations in the TiC–amorphous carbon (a-C) system. A fourfold increase in the toughness of hard (32 GPa) TiC–a-C composites was achieved in comparison with nanocrystalline single-phase TiC. | ||
650 | 4 | |a Raman Spectroscopy | |
650 | 4 | |a Steel Surface | |
650 | 4 | |a Amorphous Carbon | |
650 | 4 | |a Brittle Material | |
650 | 4 | |a Amorphous Material | |
700 | 1 | |a Zabinski, J. S |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials science |d Kluwer Academic Publishers, 1966 |g 33(1998), 2 vom: Jan., Seite 319-327 |w (DE-627)129546372 |w (DE-600)218324-9 |w (DE-576)014996774 |x 0022-2461 |7 nnns |
773 | 1 | 8 | |g volume:33 |g year:1998 |g number:2 |g month:01 |g pages:319-327 |
856 | 4 | 1 | |u https://doi.org/10.1023/A:1004307426887 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4316 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 33 |j 1998 |e 2 |c 01 |h 319-327 |
author_variant |
a a v aa aav j s z js jsz |
---|---|
matchkey_str |
article:00222461:1998----::oddpiersalnaopos |
hierarchy_sort_str |
1998 |
publishDate |
1998 |
allfields |
10.1023/A:1004307426887 doi (DE-627)OLC2046241924 (DE-He213)A:1004307426887-p DE-627 ger DE-627 rakwb eng 670 VZ Voevodin, A. A verfasserin aut Load-adaptive crystalline–amorphous nanocomposites 1998 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Chapman and Hall 1998 Abstract Advances in laser-assisted deposition have enabled the production of hard composites consisting of nanocrystalline and amorphous materials. Deposition conditions were selected to produce super-tough coatings, where controlled formation of dislocations, nanocracks and microcracks was permitted as stresses exceeded the elastic limit. This produced a self-adjustment in the composite deformation from hard elastic to quasiplastic, depending on the applied stress, which provided coating compliance and eliminated catastrophic failure typical of hard and brittle materials. The load-adaptive concept was used to design super-tough coatings consisting of nanocrystalline (10–50 nm) TiC grains embedded in an amorphous carbon matrix (about 30 vol%). They were deposited at near room temperature on steel surfaces and studied using X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, Raman spectroscopy, nanoindentation and scratch tests. Design concepts were verified using composition–structure–property investigations in the TiC–amorphous carbon (a-C) system. A fourfold increase in the toughness of hard (32 GPa) TiC–a-C composites was achieved in comparison with nanocrystalline single-phase TiC. Raman Spectroscopy Steel Surface Amorphous Carbon Brittle Material Amorphous Material Zabinski, J. S aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 33(1998), 2 vom: Jan., Seite 319-327 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:33 year:1998 number:2 month:01 pages:319-327 https://doi.org/10.1023/A:1004307426887 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 33 1998 2 01 319-327 |
spelling |
10.1023/A:1004307426887 doi (DE-627)OLC2046241924 (DE-He213)A:1004307426887-p DE-627 ger DE-627 rakwb eng 670 VZ Voevodin, A. A verfasserin aut Load-adaptive crystalline–amorphous nanocomposites 1998 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Chapman and Hall 1998 Abstract Advances in laser-assisted deposition have enabled the production of hard composites consisting of nanocrystalline and amorphous materials. Deposition conditions were selected to produce super-tough coatings, where controlled formation of dislocations, nanocracks and microcracks was permitted as stresses exceeded the elastic limit. This produced a self-adjustment in the composite deformation from hard elastic to quasiplastic, depending on the applied stress, which provided coating compliance and eliminated catastrophic failure typical of hard and brittle materials. The load-adaptive concept was used to design super-tough coatings consisting of nanocrystalline (10–50 nm) TiC grains embedded in an amorphous carbon matrix (about 30 vol%). They were deposited at near room temperature on steel surfaces and studied using X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, Raman spectroscopy, nanoindentation and scratch tests. Design concepts were verified using composition–structure–property investigations in the TiC–amorphous carbon (a-C) system. A fourfold increase in the toughness of hard (32 GPa) TiC–a-C composites was achieved in comparison with nanocrystalline single-phase TiC. Raman Spectroscopy Steel Surface Amorphous Carbon Brittle Material Amorphous Material Zabinski, J. S aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 33(1998), 2 vom: Jan., Seite 319-327 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:33 year:1998 number:2 month:01 pages:319-327 https://doi.org/10.1023/A:1004307426887 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 33 1998 2 01 319-327 |
allfields_unstemmed |
10.1023/A:1004307426887 doi (DE-627)OLC2046241924 (DE-He213)A:1004307426887-p DE-627 ger DE-627 rakwb eng 670 VZ Voevodin, A. A verfasserin aut Load-adaptive crystalline–amorphous nanocomposites 1998 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Chapman and Hall 1998 Abstract Advances in laser-assisted deposition have enabled the production of hard composites consisting of nanocrystalline and amorphous materials. Deposition conditions were selected to produce super-tough coatings, where controlled formation of dislocations, nanocracks and microcracks was permitted as stresses exceeded the elastic limit. This produced a self-adjustment in the composite deformation from hard elastic to quasiplastic, depending on the applied stress, which provided coating compliance and eliminated catastrophic failure typical of hard and brittle materials. The load-adaptive concept was used to design super-tough coatings consisting of nanocrystalline (10–50 nm) TiC grains embedded in an amorphous carbon matrix (about 30 vol%). They were deposited at near room temperature on steel surfaces and studied using X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, Raman spectroscopy, nanoindentation and scratch tests. Design concepts were verified using composition–structure–property investigations in the TiC–amorphous carbon (a-C) system. A fourfold increase in the toughness of hard (32 GPa) TiC–a-C composites was achieved in comparison with nanocrystalline single-phase TiC. Raman Spectroscopy Steel Surface Amorphous Carbon Brittle Material Amorphous Material Zabinski, J. S aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 33(1998), 2 vom: Jan., Seite 319-327 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:33 year:1998 number:2 month:01 pages:319-327 https://doi.org/10.1023/A:1004307426887 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 33 1998 2 01 319-327 |
allfieldsGer |
10.1023/A:1004307426887 doi (DE-627)OLC2046241924 (DE-He213)A:1004307426887-p DE-627 ger DE-627 rakwb eng 670 VZ Voevodin, A. A verfasserin aut Load-adaptive crystalline–amorphous nanocomposites 1998 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Chapman and Hall 1998 Abstract Advances in laser-assisted deposition have enabled the production of hard composites consisting of nanocrystalline and amorphous materials. Deposition conditions were selected to produce super-tough coatings, where controlled formation of dislocations, nanocracks and microcracks was permitted as stresses exceeded the elastic limit. This produced a self-adjustment in the composite deformation from hard elastic to quasiplastic, depending on the applied stress, which provided coating compliance and eliminated catastrophic failure typical of hard and brittle materials. The load-adaptive concept was used to design super-tough coatings consisting of nanocrystalline (10–50 nm) TiC grains embedded in an amorphous carbon matrix (about 30 vol%). They were deposited at near room temperature on steel surfaces and studied using X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, Raman spectroscopy, nanoindentation and scratch tests. Design concepts were verified using composition–structure–property investigations in the TiC–amorphous carbon (a-C) system. A fourfold increase in the toughness of hard (32 GPa) TiC–a-C composites was achieved in comparison with nanocrystalline single-phase TiC. Raman Spectroscopy Steel Surface Amorphous Carbon Brittle Material Amorphous Material Zabinski, J. S aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 33(1998), 2 vom: Jan., Seite 319-327 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:33 year:1998 number:2 month:01 pages:319-327 https://doi.org/10.1023/A:1004307426887 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 33 1998 2 01 319-327 |
allfieldsSound |
10.1023/A:1004307426887 doi (DE-627)OLC2046241924 (DE-He213)A:1004307426887-p DE-627 ger DE-627 rakwb eng 670 VZ Voevodin, A. A verfasserin aut Load-adaptive crystalline–amorphous nanocomposites 1998 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Chapman and Hall 1998 Abstract Advances in laser-assisted deposition have enabled the production of hard composites consisting of nanocrystalline and amorphous materials. Deposition conditions were selected to produce super-tough coatings, where controlled formation of dislocations, nanocracks and microcracks was permitted as stresses exceeded the elastic limit. This produced a self-adjustment in the composite deformation from hard elastic to quasiplastic, depending on the applied stress, which provided coating compliance and eliminated catastrophic failure typical of hard and brittle materials. The load-adaptive concept was used to design super-tough coatings consisting of nanocrystalline (10–50 nm) TiC grains embedded in an amorphous carbon matrix (about 30 vol%). They were deposited at near room temperature on steel surfaces and studied using X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, Raman spectroscopy, nanoindentation and scratch tests. Design concepts were verified using composition–structure–property investigations in the TiC–amorphous carbon (a-C) system. A fourfold increase in the toughness of hard (32 GPa) TiC–a-C composites was achieved in comparison with nanocrystalline single-phase TiC. Raman Spectroscopy Steel Surface Amorphous Carbon Brittle Material Amorphous Material Zabinski, J. S aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 33(1998), 2 vom: Jan., Seite 319-327 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:33 year:1998 number:2 month:01 pages:319-327 https://doi.org/10.1023/A:1004307426887 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 33 1998 2 01 319-327 |
language |
English |
source |
Enthalten in Journal of materials science 33(1998), 2 vom: Jan., Seite 319-327 volume:33 year:1998 number:2 month:01 pages:319-327 |
sourceStr |
Enthalten in Journal of materials science 33(1998), 2 vom: Jan., Seite 319-327 volume:33 year:1998 number:2 month:01 pages:319-327 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Raman Spectroscopy Steel Surface Amorphous Carbon Brittle Material Amorphous Material |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of materials science |
authorswithroles_txt_mv |
Voevodin, A. A @@aut@@ Zabinski, J. S @@aut@@ |
publishDateDaySort_date |
1998-01-01T00:00:00Z |
hierarchy_top_id |
129546372 |
dewey-sort |
3670 |
id |
OLC2046241924 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046241924</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503122833.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1998 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/A:1004307426887</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046241924</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)A:1004307426887-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Voevodin, A. A</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Load-adaptive crystalline–amorphous nanocomposites</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1998</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Chapman and Hall 1998</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Advances in laser-assisted deposition have enabled the production of hard composites consisting of nanocrystalline and amorphous materials. Deposition conditions were selected to produce super-tough coatings, where controlled formation of dislocations, nanocracks and microcracks was permitted as stresses exceeded the elastic limit. This produced a self-adjustment in the composite deformation from hard elastic to quasiplastic, depending on the applied stress, which provided coating compliance and eliminated catastrophic failure typical of hard and brittle materials. The load-adaptive concept was used to design super-tough coatings consisting of nanocrystalline (10–50 nm) TiC grains embedded in an amorphous carbon matrix (about 30 vol%). They were deposited at near room temperature on steel surfaces and studied using X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, Raman spectroscopy, nanoindentation and scratch tests. Design concepts were verified using composition–structure–property investigations in the TiC–amorphous carbon (a-C) system. A fourfold increase in the toughness of hard (32 GPa) TiC–a-C composites was achieved in comparison with nanocrystalline single-phase TiC.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Raman Spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Steel Surface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amorphous Carbon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brittle Material</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amorphous Material</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zabinski, J. S</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Kluwer Academic Publishers, 1966</subfield><subfield code="g">33(1998), 2 vom: Jan., Seite 319-327</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:1998</subfield><subfield code="g">number:2</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:319-327</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/A:1004307426887</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">1998</subfield><subfield code="e">2</subfield><subfield code="c">01</subfield><subfield code="h">319-327</subfield></datafield></record></collection>
|
author |
Voevodin, A. A |
spellingShingle |
Voevodin, A. A ddc 670 misc Raman Spectroscopy misc Steel Surface misc Amorphous Carbon misc Brittle Material misc Amorphous Material Load-adaptive crystalline–amorphous nanocomposites |
authorStr |
Voevodin, A. A |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129546372 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-2461 |
topic_title |
670 VZ Load-adaptive crystalline–amorphous nanocomposites Raman Spectroscopy Steel Surface Amorphous Carbon Brittle Material Amorphous Material |
topic |
ddc 670 misc Raman Spectroscopy misc Steel Surface misc Amorphous Carbon misc Brittle Material misc Amorphous Material |
topic_unstemmed |
ddc 670 misc Raman Spectroscopy misc Steel Surface misc Amorphous Carbon misc Brittle Material misc Amorphous Material |
topic_browse |
ddc 670 misc Raman Spectroscopy misc Steel Surface misc Amorphous Carbon misc Brittle Material misc Amorphous Material |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials science |
hierarchy_parent_id |
129546372 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of materials science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 |
title |
Load-adaptive crystalline–amorphous nanocomposites |
ctrlnum |
(DE-627)OLC2046241924 (DE-He213)A:1004307426887-p |
title_full |
Load-adaptive crystalline–amorphous nanocomposites |
author_sort |
Voevodin, A. A |
journal |
Journal of materials science |
journalStr |
Journal of materials science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
1998 |
contenttype_str_mv |
txt |
container_start_page |
319 |
author_browse |
Voevodin, A. A Zabinski, J. S |
container_volume |
33 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Voevodin, A. A |
doi_str_mv |
10.1023/A:1004307426887 |
dewey-full |
670 |
title_sort |
load-adaptive crystalline–amorphous nanocomposites |
title_auth |
Load-adaptive crystalline–amorphous nanocomposites |
abstract |
Abstract Advances in laser-assisted deposition have enabled the production of hard composites consisting of nanocrystalline and amorphous materials. Deposition conditions were selected to produce super-tough coatings, where controlled formation of dislocations, nanocracks and microcracks was permitted as stresses exceeded the elastic limit. This produced a self-adjustment in the composite deformation from hard elastic to quasiplastic, depending on the applied stress, which provided coating compliance and eliminated catastrophic failure typical of hard and brittle materials. The load-adaptive concept was used to design super-tough coatings consisting of nanocrystalline (10–50 nm) TiC grains embedded in an amorphous carbon matrix (about 30 vol%). They were deposited at near room temperature on steel surfaces and studied using X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, Raman spectroscopy, nanoindentation and scratch tests. Design concepts were verified using composition–structure–property investigations in the TiC–amorphous carbon (a-C) system. A fourfold increase in the toughness of hard (32 GPa) TiC–a-C composites was achieved in comparison with nanocrystalline single-phase TiC. © Chapman and Hall 1998 |
abstractGer |
Abstract Advances in laser-assisted deposition have enabled the production of hard composites consisting of nanocrystalline and amorphous materials. Deposition conditions were selected to produce super-tough coatings, where controlled formation of dislocations, nanocracks and microcracks was permitted as stresses exceeded the elastic limit. This produced a self-adjustment in the composite deformation from hard elastic to quasiplastic, depending on the applied stress, which provided coating compliance and eliminated catastrophic failure typical of hard and brittle materials. The load-adaptive concept was used to design super-tough coatings consisting of nanocrystalline (10–50 nm) TiC grains embedded in an amorphous carbon matrix (about 30 vol%). They were deposited at near room temperature on steel surfaces and studied using X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, Raman spectroscopy, nanoindentation and scratch tests. Design concepts were verified using composition–structure–property investigations in the TiC–amorphous carbon (a-C) system. A fourfold increase in the toughness of hard (32 GPa) TiC–a-C composites was achieved in comparison with nanocrystalline single-phase TiC. © Chapman and Hall 1998 |
abstract_unstemmed |
Abstract Advances in laser-assisted deposition have enabled the production of hard composites consisting of nanocrystalline and amorphous materials. Deposition conditions were selected to produce super-tough coatings, where controlled formation of dislocations, nanocracks and microcracks was permitted as stresses exceeded the elastic limit. This produced a self-adjustment in the composite deformation from hard elastic to quasiplastic, depending on the applied stress, which provided coating compliance and eliminated catastrophic failure typical of hard and brittle materials. The load-adaptive concept was used to design super-tough coatings consisting of nanocrystalline (10–50 nm) TiC grains embedded in an amorphous carbon matrix (about 30 vol%). They were deposited at near room temperature on steel surfaces and studied using X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, Raman spectroscopy, nanoindentation and scratch tests. Design concepts were verified using composition–structure–property investigations in the TiC–amorphous carbon (a-C) system. A fourfold increase in the toughness of hard (32 GPa) TiC–a-C composites was achieved in comparison with nanocrystalline single-phase TiC. © Chapman and Hall 1998 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Load-adaptive crystalline–amorphous nanocomposites |
url |
https://doi.org/10.1023/A:1004307426887 |
remote_bool |
false |
author2 |
Zabinski, J. S |
author2Str |
Zabinski, J. S |
ppnlink |
129546372 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1023/A:1004307426887 |
up_date |
2024-07-04T04:35:36.437Z |
_version_ |
1803621746796920832 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046241924</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503122833.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1998 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/A:1004307426887</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046241924</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)A:1004307426887-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Voevodin, A. A</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Load-adaptive crystalline–amorphous nanocomposites</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1998</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Chapman and Hall 1998</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Advances in laser-assisted deposition have enabled the production of hard composites consisting of nanocrystalline and amorphous materials. Deposition conditions were selected to produce super-tough coatings, where controlled formation of dislocations, nanocracks and microcracks was permitted as stresses exceeded the elastic limit. This produced a self-adjustment in the composite deformation from hard elastic to quasiplastic, depending on the applied stress, which provided coating compliance and eliminated catastrophic failure typical of hard and brittle materials. The load-adaptive concept was used to design super-tough coatings consisting of nanocrystalline (10–50 nm) TiC grains embedded in an amorphous carbon matrix (about 30 vol%). They were deposited at near room temperature on steel surfaces and studied using X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, Raman spectroscopy, nanoindentation and scratch tests. Design concepts were verified using composition–structure–property investigations in the TiC–amorphous carbon (a-C) system. A fourfold increase in the toughness of hard (32 GPa) TiC–a-C composites was achieved in comparison with nanocrystalline single-phase TiC.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Raman Spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Steel Surface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amorphous Carbon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brittle Material</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amorphous Material</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zabinski, J. S</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Kluwer Academic Publishers, 1966</subfield><subfield code="g">33(1998), 2 vom: Jan., Seite 319-327</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:1998</subfield><subfield code="g">number:2</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:319-327</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/A:1004307426887</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">1998</subfield><subfield code="e">2</subfield><subfield code="c">01</subfield><subfield code="h">319-327</subfield></datafield></record></collection>
|
score |
7.4011936 |