Preparation of a silica gel–carbon black composite by the sol–gel process in the presence of polymer-grafted carbon black
Abstract This paper is concerned with the preparation of a silica gel–carbon black composite by the sol–gel process, which consists of tetraethoxysilane and polymer-grafted carbon black. Polymer-grafted carbon black was synthesized by three methods: (1) cationic polymerization of N-vinyl-2-pyrrolido...
Ausführliche Beschreibung
Autor*in: |
Fujiki, Kazuhiro [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1998 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Chapman and Hall 1998 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials science - Kluwer Academic Publishers, 1966, 33(1998), 7 vom: Apr., Seite 1871-1879 |
---|---|
Übergeordnetes Werk: |
volume:33 ; year:1998 ; number:7 ; month:04 ; pages:1871-1879 |
Links: |
---|
DOI / URN: |
10.1023/A:1004309522653 |
---|
Katalog-ID: |
OLC2046243439 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2046243439 | ||
003 | DE-627 | ||
005 | 20230503122847.0 | ||
007 | tu | ||
008 | 200820s1998 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1023/A:1004309522653 |2 doi | |
035 | |a (DE-627)OLC2046243439 | ||
035 | |a (DE-He213)A:1004309522653-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Fujiki, Kazuhiro |e verfasserin |4 aut | |
245 | 1 | 0 | |a Preparation of a silica gel–carbon black composite by the sol–gel process in the presence of polymer-grafted carbon black |
264 | 1 | |c 1998 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Chapman and Hall 1998 | ||
520 | |a Abstract This paper is concerned with the preparation of a silica gel–carbon black composite by the sol–gel process, which consists of tetraethoxysilane and polymer-grafted carbon black. Polymer-grafted carbon black was synthesized by three methods: (1) cationic polymerization of N-vinyl-2-pyrrolidone, (2) cationic ring-opening polymerization of 2-methyl-2-oxazoline, and (3) radical polymerization of glycidyl methacrylate followed by reaction of glycidyl groups in the grafted polymer chains with 3-aminopropyltriethoxysilane. The polycondensation of tetraethoxysilane proceeded under acidic conditions in the presence of polymer-grafted carbon black to give a deep black silica gel–carbon black composite. The more the content of untreated carbon black was increased, the more the gelation time was shortened. On the contrary, gelation was retarded by grafted polymer chains on the carbon black surface in the case of polymer-grafted carbon black. The scratch hardness of the resulting silica gel–carbon black composite was almost equal regardless of the carbon black content in the presence of untreated carbon black, whereas it was liable to decrease as the content of polymer-grafted carbon black increased. The solvent adsorption properties of the silica gel–polymer-grafted carbon black composite varied with the solubility of grafted polymer chains on the carbon black surface towards the immersion solvent. © 1998 Chapman & Hall | ||
650 | 4 | |a Carbon Black | |
650 | 4 | |a Glycidyl | |
650 | 4 | |a Tetraethoxysilane | |
650 | 4 | |a Glycidyl Methacrylate | |
650 | 4 | |a Cationic Polymerization | |
700 | 1 | |a Ogasawara, Tomoaki |4 aut | |
700 | 1 | |a Tsubokawa, Norio |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials science |d Kluwer Academic Publishers, 1966 |g 33(1998), 7 vom: Apr., Seite 1871-1879 |w (DE-627)129546372 |w (DE-600)218324-9 |w (DE-576)014996774 |x 0022-2461 |7 nnns |
773 | 1 | 8 | |g volume:33 |g year:1998 |g number:7 |g month:04 |g pages:1871-1879 |
856 | 4 | 1 | |u https://doi.org/10.1023/A:1004309522653 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4316 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 33 |j 1998 |e 7 |c 04 |h 1871-1879 |
author_variant |
k f kf t o to n t nt |
---|---|
matchkey_str |
article:00222461:1998----::rprtooaiiaecrobakopstbteoglrcsitersne |
hierarchy_sort_str |
1998 |
publishDate |
1998 |
allfields |
10.1023/A:1004309522653 doi (DE-627)OLC2046243439 (DE-He213)A:1004309522653-p DE-627 ger DE-627 rakwb eng 670 VZ Fujiki, Kazuhiro verfasserin aut Preparation of a silica gel–carbon black composite by the sol–gel process in the presence of polymer-grafted carbon black 1998 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Chapman and Hall 1998 Abstract This paper is concerned with the preparation of a silica gel–carbon black composite by the sol–gel process, which consists of tetraethoxysilane and polymer-grafted carbon black. Polymer-grafted carbon black was synthesized by three methods: (1) cationic polymerization of N-vinyl-2-pyrrolidone, (2) cationic ring-opening polymerization of 2-methyl-2-oxazoline, and (3) radical polymerization of glycidyl methacrylate followed by reaction of glycidyl groups in the grafted polymer chains with 3-aminopropyltriethoxysilane. The polycondensation of tetraethoxysilane proceeded under acidic conditions in the presence of polymer-grafted carbon black to give a deep black silica gel–carbon black composite. The more the content of untreated carbon black was increased, the more the gelation time was shortened. On the contrary, gelation was retarded by grafted polymer chains on the carbon black surface in the case of polymer-grafted carbon black. The scratch hardness of the resulting silica gel–carbon black composite was almost equal regardless of the carbon black content in the presence of untreated carbon black, whereas it was liable to decrease as the content of polymer-grafted carbon black increased. The solvent adsorption properties of the silica gel–polymer-grafted carbon black composite varied with the solubility of grafted polymer chains on the carbon black surface towards the immersion solvent. © 1998 Chapman & Hall Carbon Black Glycidyl Tetraethoxysilane Glycidyl Methacrylate Cationic Polymerization Ogasawara, Tomoaki aut Tsubokawa, Norio aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 33(1998), 7 vom: Apr., Seite 1871-1879 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:33 year:1998 number:7 month:04 pages:1871-1879 https://doi.org/10.1023/A:1004309522653 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 33 1998 7 04 1871-1879 |
spelling |
10.1023/A:1004309522653 doi (DE-627)OLC2046243439 (DE-He213)A:1004309522653-p DE-627 ger DE-627 rakwb eng 670 VZ Fujiki, Kazuhiro verfasserin aut Preparation of a silica gel–carbon black composite by the sol–gel process in the presence of polymer-grafted carbon black 1998 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Chapman and Hall 1998 Abstract This paper is concerned with the preparation of a silica gel–carbon black composite by the sol–gel process, which consists of tetraethoxysilane and polymer-grafted carbon black. Polymer-grafted carbon black was synthesized by three methods: (1) cationic polymerization of N-vinyl-2-pyrrolidone, (2) cationic ring-opening polymerization of 2-methyl-2-oxazoline, and (3) radical polymerization of glycidyl methacrylate followed by reaction of glycidyl groups in the grafted polymer chains with 3-aminopropyltriethoxysilane. The polycondensation of tetraethoxysilane proceeded under acidic conditions in the presence of polymer-grafted carbon black to give a deep black silica gel–carbon black composite. The more the content of untreated carbon black was increased, the more the gelation time was shortened. On the contrary, gelation was retarded by grafted polymer chains on the carbon black surface in the case of polymer-grafted carbon black. The scratch hardness of the resulting silica gel–carbon black composite was almost equal regardless of the carbon black content in the presence of untreated carbon black, whereas it was liable to decrease as the content of polymer-grafted carbon black increased. The solvent adsorption properties of the silica gel–polymer-grafted carbon black composite varied with the solubility of grafted polymer chains on the carbon black surface towards the immersion solvent. © 1998 Chapman & Hall Carbon Black Glycidyl Tetraethoxysilane Glycidyl Methacrylate Cationic Polymerization Ogasawara, Tomoaki aut Tsubokawa, Norio aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 33(1998), 7 vom: Apr., Seite 1871-1879 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:33 year:1998 number:7 month:04 pages:1871-1879 https://doi.org/10.1023/A:1004309522653 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 33 1998 7 04 1871-1879 |
allfields_unstemmed |
10.1023/A:1004309522653 doi (DE-627)OLC2046243439 (DE-He213)A:1004309522653-p DE-627 ger DE-627 rakwb eng 670 VZ Fujiki, Kazuhiro verfasserin aut Preparation of a silica gel–carbon black composite by the sol–gel process in the presence of polymer-grafted carbon black 1998 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Chapman and Hall 1998 Abstract This paper is concerned with the preparation of a silica gel–carbon black composite by the sol–gel process, which consists of tetraethoxysilane and polymer-grafted carbon black. Polymer-grafted carbon black was synthesized by three methods: (1) cationic polymerization of N-vinyl-2-pyrrolidone, (2) cationic ring-opening polymerization of 2-methyl-2-oxazoline, and (3) radical polymerization of glycidyl methacrylate followed by reaction of glycidyl groups in the grafted polymer chains with 3-aminopropyltriethoxysilane. The polycondensation of tetraethoxysilane proceeded under acidic conditions in the presence of polymer-grafted carbon black to give a deep black silica gel–carbon black composite. The more the content of untreated carbon black was increased, the more the gelation time was shortened. On the contrary, gelation was retarded by grafted polymer chains on the carbon black surface in the case of polymer-grafted carbon black. The scratch hardness of the resulting silica gel–carbon black composite was almost equal regardless of the carbon black content in the presence of untreated carbon black, whereas it was liable to decrease as the content of polymer-grafted carbon black increased. The solvent adsorption properties of the silica gel–polymer-grafted carbon black composite varied with the solubility of grafted polymer chains on the carbon black surface towards the immersion solvent. © 1998 Chapman & Hall Carbon Black Glycidyl Tetraethoxysilane Glycidyl Methacrylate Cationic Polymerization Ogasawara, Tomoaki aut Tsubokawa, Norio aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 33(1998), 7 vom: Apr., Seite 1871-1879 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:33 year:1998 number:7 month:04 pages:1871-1879 https://doi.org/10.1023/A:1004309522653 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 33 1998 7 04 1871-1879 |
allfieldsGer |
10.1023/A:1004309522653 doi (DE-627)OLC2046243439 (DE-He213)A:1004309522653-p DE-627 ger DE-627 rakwb eng 670 VZ Fujiki, Kazuhiro verfasserin aut Preparation of a silica gel–carbon black composite by the sol–gel process in the presence of polymer-grafted carbon black 1998 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Chapman and Hall 1998 Abstract This paper is concerned with the preparation of a silica gel–carbon black composite by the sol–gel process, which consists of tetraethoxysilane and polymer-grafted carbon black. Polymer-grafted carbon black was synthesized by three methods: (1) cationic polymerization of N-vinyl-2-pyrrolidone, (2) cationic ring-opening polymerization of 2-methyl-2-oxazoline, and (3) radical polymerization of glycidyl methacrylate followed by reaction of glycidyl groups in the grafted polymer chains with 3-aminopropyltriethoxysilane. The polycondensation of tetraethoxysilane proceeded under acidic conditions in the presence of polymer-grafted carbon black to give a deep black silica gel–carbon black composite. The more the content of untreated carbon black was increased, the more the gelation time was shortened. On the contrary, gelation was retarded by grafted polymer chains on the carbon black surface in the case of polymer-grafted carbon black. The scratch hardness of the resulting silica gel–carbon black composite was almost equal regardless of the carbon black content in the presence of untreated carbon black, whereas it was liable to decrease as the content of polymer-grafted carbon black increased. The solvent adsorption properties of the silica gel–polymer-grafted carbon black composite varied with the solubility of grafted polymer chains on the carbon black surface towards the immersion solvent. © 1998 Chapman & Hall Carbon Black Glycidyl Tetraethoxysilane Glycidyl Methacrylate Cationic Polymerization Ogasawara, Tomoaki aut Tsubokawa, Norio aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 33(1998), 7 vom: Apr., Seite 1871-1879 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:33 year:1998 number:7 month:04 pages:1871-1879 https://doi.org/10.1023/A:1004309522653 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 33 1998 7 04 1871-1879 |
allfieldsSound |
10.1023/A:1004309522653 doi (DE-627)OLC2046243439 (DE-He213)A:1004309522653-p DE-627 ger DE-627 rakwb eng 670 VZ Fujiki, Kazuhiro verfasserin aut Preparation of a silica gel–carbon black composite by the sol–gel process in the presence of polymer-grafted carbon black 1998 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Chapman and Hall 1998 Abstract This paper is concerned with the preparation of a silica gel–carbon black composite by the sol–gel process, which consists of tetraethoxysilane and polymer-grafted carbon black. Polymer-grafted carbon black was synthesized by three methods: (1) cationic polymerization of N-vinyl-2-pyrrolidone, (2) cationic ring-opening polymerization of 2-methyl-2-oxazoline, and (3) radical polymerization of glycidyl methacrylate followed by reaction of glycidyl groups in the grafted polymer chains with 3-aminopropyltriethoxysilane. The polycondensation of tetraethoxysilane proceeded under acidic conditions in the presence of polymer-grafted carbon black to give a deep black silica gel–carbon black composite. The more the content of untreated carbon black was increased, the more the gelation time was shortened. On the contrary, gelation was retarded by grafted polymer chains on the carbon black surface in the case of polymer-grafted carbon black. The scratch hardness of the resulting silica gel–carbon black composite was almost equal regardless of the carbon black content in the presence of untreated carbon black, whereas it was liable to decrease as the content of polymer-grafted carbon black increased. The solvent adsorption properties of the silica gel–polymer-grafted carbon black composite varied with the solubility of grafted polymer chains on the carbon black surface towards the immersion solvent. © 1998 Chapman & Hall Carbon Black Glycidyl Tetraethoxysilane Glycidyl Methacrylate Cationic Polymerization Ogasawara, Tomoaki aut Tsubokawa, Norio aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 33(1998), 7 vom: Apr., Seite 1871-1879 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:33 year:1998 number:7 month:04 pages:1871-1879 https://doi.org/10.1023/A:1004309522653 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 33 1998 7 04 1871-1879 |
language |
English |
source |
Enthalten in Journal of materials science 33(1998), 7 vom: Apr., Seite 1871-1879 volume:33 year:1998 number:7 month:04 pages:1871-1879 |
sourceStr |
Enthalten in Journal of materials science 33(1998), 7 vom: Apr., Seite 1871-1879 volume:33 year:1998 number:7 month:04 pages:1871-1879 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Carbon Black Glycidyl Tetraethoxysilane Glycidyl Methacrylate Cationic Polymerization |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of materials science |
authorswithroles_txt_mv |
Fujiki, Kazuhiro @@aut@@ Ogasawara, Tomoaki @@aut@@ Tsubokawa, Norio @@aut@@ |
publishDateDaySort_date |
1998-04-01T00:00:00Z |
hierarchy_top_id |
129546372 |
dewey-sort |
3670 |
id |
OLC2046243439 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046243439</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503122847.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1998 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/A:1004309522653</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046243439</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)A:1004309522653-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fujiki, Kazuhiro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Preparation of a silica gel–carbon black composite by the sol–gel process in the presence of polymer-grafted carbon black</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1998</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Chapman and Hall 1998</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper is concerned with the preparation of a silica gel–carbon black composite by the sol–gel process, which consists of tetraethoxysilane and polymer-grafted carbon black. Polymer-grafted carbon black was synthesized by three methods: (1) cationic polymerization of N-vinyl-2-pyrrolidone, (2) cationic ring-opening polymerization of 2-methyl-2-oxazoline, and (3) radical polymerization of glycidyl methacrylate followed by reaction of glycidyl groups in the grafted polymer chains with 3-aminopropyltriethoxysilane. The polycondensation of tetraethoxysilane proceeded under acidic conditions in the presence of polymer-grafted carbon black to give a deep black silica gel–carbon black composite. The more the content of untreated carbon black was increased, the more the gelation time was shortened. On the contrary, gelation was retarded by grafted polymer chains on the carbon black surface in the case of polymer-grafted carbon black. The scratch hardness of the resulting silica gel–carbon black composite was almost equal regardless of the carbon black content in the presence of untreated carbon black, whereas it was liable to decrease as the content of polymer-grafted carbon black increased. The solvent adsorption properties of the silica gel–polymer-grafted carbon black composite varied with the solubility of grafted polymer chains on the carbon black surface towards the immersion solvent. © 1998 Chapman & Hall</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon Black</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glycidyl</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tetraethoxysilane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glycidyl Methacrylate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cationic Polymerization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ogasawara, Tomoaki</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tsubokawa, Norio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Kluwer Academic Publishers, 1966</subfield><subfield code="g">33(1998), 7 vom: Apr., Seite 1871-1879</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:1998</subfield><subfield code="g">number:7</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:1871-1879</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/A:1004309522653</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">1998</subfield><subfield code="e">7</subfield><subfield code="c">04</subfield><subfield code="h">1871-1879</subfield></datafield></record></collection>
|
author |
Fujiki, Kazuhiro |
spellingShingle |
Fujiki, Kazuhiro ddc 670 misc Carbon Black misc Glycidyl misc Tetraethoxysilane misc Glycidyl Methacrylate misc Cationic Polymerization Preparation of a silica gel–carbon black composite by the sol–gel process in the presence of polymer-grafted carbon black |
authorStr |
Fujiki, Kazuhiro |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129546372 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-2461 |
topic_title |
670 VZ Preparation of a silica gel–carbon black composite by the sol–gel process in the presence of polymer-grafted carbon black Carbon Black Glycidyl Tetraethoxysilane Glycidyl Methacrylate Cationic Polymerization |
topic |
ddc 670 misc Carbon Black misc Glycidyl misc Tetraethoxysilane misc Glycidyl Methacrylate misc Cationic Polymerization |
topic_unstemmed |
ddc 670 misc Carbon Black misc Glycidyl misc Tetraethoxysilane misc Glycidyl Methacrylate misc Cationic Polymerization |
topic_browse |
ddc 670 misc Carbon Black misc Glycidyl misc Tetraethoxysilane misc Glycidyl Methacrylate misc Cationic Polymerization |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials science |
hierarchy_parent_id |
129546372 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of materials science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 |
title |
Preparation of a silica gel–carbon black composite by the sol–gel process in the presence of polymer-grafted carbon black |
ctrlnum |
(DE-627)OLC2046243439 (DE-He213)A:1004309522653-p |
title_full |
Preparation of a silica gel–carbon black composite by the sol–gel process in the presence of polymer-grafted carbon black |
author_sort |
Fujiki, Kazuhiro |
journal |
Journal of materials science |
journalStr |
Journal of materials science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
1998 |
contenttype_str_mv |
txt |
container_start_page |
1871 |
author_browse |
Fujiki, Kazuhiro Ogasawara, Tomoaki Tsubokawa, Norio |
container_volume |
33 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Fujiki, Kazuhiro |
doi_str_mv |
10.1023/A:1004309522653 |
dewey-full |
670 |
title_sort |
preparation of a silica gel–carbon black composite by the sol–gel process in the presence of polymer-grafted carbon black |
title_auth |
Preparation of a silica gel–carbon black composite by the sol–gel process in the presence of polymer-grafted carbon black |
abstract |
Abstract This paper is concerned with the preparation of a silica gel–carbon black composite by the sol–gel process, which consists of tetraethoxysilane and polymer-grafted carbon black. Polymer-grafted carbon black was synthesized by three methods: (1) cationic polymerization of N-vinyl-2-pyrrolidone, (2) cationic ring-opening polymerization of 2-methyl-2-oxazoline, and (3) radical polymerization of glycidyl methacrylate followed by reaction of glycidyl groups in the grafted polymer chains with 3-aminopropyltriethoxysilane. The polycondensation of tetraethoxysilane proceeded under acidic conditions in the presence of polymer-grafted carbon black to give a deep black silica gel–carbon black composite. The more the content of untreated carbon black was increased, the more the gelation time was shortened. On the contrary, gelation was retarded by grafted polymer chains on the carbon black surface in the case of polymer-grafted carbon black. The scratch hardness of the resulting silica gel–carbon black composite was almost equal regardless of the carbon black content in the presence of untreated carbon black, whereas it was liable to decrease as the content of polymer-grafted carbon black increased. The solvent adsorption properties of the silica gel–polymer-grafted carbon black composite varied with the solubility of grafted polymer chains on the carbon black surface towards the immersion solvent. © 1998 Chapman & Hall © Chapman and Hall 1998 |
abstractGer |
Abstract This paper is concerned with the preparation of a silica gel–carbon black composite by the sol–gel process, which consists of tetraethoxysilane and polymer-grafted carbon black. Polymer-grafted carbon black was synthesized by three methods: (1) cationic polymerization of N-vinyl-2-pyrrolidone, (2) cationic ring-opening polymerization of 2-methyl-2-oxazoline, and (3) radical polymerization of glycidyl methacrylate followed by reaction of glycidyl groups in the grafted polymer chains with 3-aminopropyltriethoxysilane. The polycondensation of tetraethoxysilane proceeded under acidic conditions in the presence of polymer-grafted carbon black to give a deep black silica gel–carbon black composite. The more the content of untreated carbon black was increased, the more the gelation time was shortened. On the contrary, gelation was retarded by grafted polymer chains on the carbon black surface in the case of polymer-grafted carbon black. The scratch hardness of the resulting silica gel–carbon black composite was almost equal regardless of the carbon black content in the presence of untreated carbon black, whereas it was liable to decrease as the content of polymer-grafted carbon black increased. The solvent adsorption properties of the silica gel–polymer-grafted carbon black composite varied with the solubility of grafted polymer chains on the carbon black surface towards the immersion solvent. © 1998 Chapman & Hall © Chapman and Hall 1998 |
abstract_unstemmed |
Abstract This paper is concerned with the preparation of a silica gel–carbon black composite by the sol–gel process, which consists of tetraethoxysilane and polymer-grafted carbon black. Polymer-grafted carbon black was synthesized by three methods: (1) cationic polymerization of N-vinyl-2-pyrrolidone, (2) cationic ring-opening polymerization of 2-methyl-2-oxazoline, and (3) radical polymerization of glycidyl methacrylate followed by reaction of glycidyl groups in the grafted polymer chains with 3-aminopropyltriethoxysilane. The polycondensation of tetraethoxysilane proceeded under acidic conditions in the presence of polymer-grafted carbon black to give a deep black silica gel–carbon black composite. The more the content of untreated carbon black was increased, the more the gelation time was shortened. On the contrary, gelation was retarded by grafted polymer chains on the carbon black surface in the case of polymer-grafted carbon black. The scratch hardness of the resulting silica gel–carbon black composite was almost equal regardless of the carbon black content in the presence of untreated carbon black, whereas it was liable to decrease as the content of polymer-grafted carbon black increased. The solvent adsorption properties of the silica gel–polymer-grafted carbon black composite varied with the solubility of grafted polymer chains on the carbon black surface towards the immersion solvent. © 1998 Chapman & Hall © Chapman and Hall 1998 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 |
container_issue |
7 |
title_short |
Preparation of a silica gel–carbon black composite by the sol–gel process in the presence of polymer-grafted carbon black |
url |
https://doi.org/10.1023/A:1004309522653 |
remote_bool |
false |
author2 |
Ogasawara, Tomoaki Tsubokawa, Norio |
author2Str |
Ogasawara, Tomoaki Tsubokawa, Norio |
ppnlink |
129546372 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1023/A:1004309522653 |
up_date |
2024-07-04T04:35:49.889Z |
_version_ |
1803621760902365184 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046243439</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503122847.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1998 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/A:1004309522653</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046243439</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)A:1004309522653-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fujiki, Kazuhiro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Preparation of a silica gel–carbon black composite by the sol–gel process in the presence of polymer-grafted carbon black</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1998</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Chapman and Hall 1998</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper is concerned with the preparation of a silica gel–carbon black composite by the sol–gel process, which consists of tetraethoxysilane and polymer-grafted carbon black. Polymer-grafted carbon black was synthesized by three methods: (1) cationic polymerization of N-vinyl-2-pyrrolidone, (2) cationic ring-opening polymerization of 2-methyl-2-oxazoline, and (3) radical polymerization of glycidyl methacrylate followed by reaction of glycidyl groups in the grafted polymer chains with 3-aminopropyltriethoxysilane. The polycondensation of tetraethoxysilane proceeded under acidic conditions in the presence of polymer-grafted carbon black to give a deep black silica gel–carbon black composite. The more the content of untreated carbon black was increased, the more the gelation time was shortened. On the contrary, gelation was retarded by grafted polymer chains on the carbon black surface in the case of polymer-grafted carbon black. The scratch hardness of the resulting silica gel–carbon black composite was almost equal regardless of the carbon black content in the presence of untreated carbon black, whereas it was liable to decrease as the content of polymer-grafted carbon black increased. The solvent adsorption properties of the silica gel–polymer-grafted carbon black composite varied with the solubility of grafted polymer chains on the carbon black surface towards the immersion solvent. © 1998 Chapman & Hall</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon Black</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glycidyl</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tetraethoxysilane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glycidyl Methacrylate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cationic Polymerization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ogasawara, Tomoaki</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tsubokawa, Norio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Kluwer Academic Publishers, 1966</subfield><subfield code="g">33(1998), 7 vom: Apr., Seite 1871-1879</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:1998</subfield><subfield code="g">number:7</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:1871-1879</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/A:1004309522653</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">1998</subfield><subfield code="e">7</subfield><subfield code="c">04</subfield><subfield code="h">1871-1879</subfield></datafield></record></collection>
|
score |
7.3991013 |