Transient Creep Associated with Grain Boundary Sliding in Fine-Grained Single-Phase Al2O3
Abstract Transient creep data for high-purity polycrystalline alumina are examined at the testing temperature of 1150–1250 °C. The data are analysed in terms of the effect of stress and temperature on the extent of transient time and strain. In order to explain the observed transient creep, a time f...
Ausführliche Beschreibung
Autor*in: |
Yoshida, H. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1998 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Kluwer Academic Publishers 1998 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials science - Kluwer Academic Publishers, 1966, 33(1998), 20 vom: Okt., Seite 4879-4885 |
---|---|
Übergeordnetes Werk: |
volume:33 ; year:1998 ; number:20 ; month:10 ; pages:4879-4885 |
Links: |
---|
DOI / URN: |
10.1023/A:1004493110802 |
---|
Katalog-ID: |
OLC2046247345 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2046247345 | ||
003 | DE-627 | ||
005 | 20230503122835.0 | ||
007 | tu | ||
008 | 200820s1998 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1023/A:1004493110802 |2 doi | |
035 | |a (DE-627)OLC2046247345 | ||
035 | |a (DE-He213)A:1004493110802-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Yoshida, H. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Transient Creep Associated with Grain Boundary Sliding in Fine-Grained Single-Phase Al2O3 |
264 | 1 | |c 1998 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Kluwer Academic Publishers 1998 | ||
520 | |a Abstract Transient creep data for high-purity polycrystalline alumina are examined at the testing temperature of 1150–1250 °C. The data are analysed in terms of the effect of stress and temperature on the extent of transient time and strain. In order to explain the observed transient creep, a time function of creep strain is proposed from a two-dimensional model based on grain boundary sliding. The grain boundary sliding is assumed to take place by the glide of grain boundary dislocations accommodated by dislocation climb in the neighboring grain boundaries. The time function for a creep strain ∈ obtained from the model is given in a form $$ \in = a_1 t + a_2 (1 - exp( - a_3 t))$$ which is similar to the previous empirical formula describing the experimental creep curves in metallic alloys. The model predicts that the transient creep strain ∈T is approximately proportional to and the extent of transient creep time tT is inversely proportional to flow stress. The prediction is consistent with the experimental data in high-purity, fine-grained alumina at temperatures between 1150 and 1250°C. | ||
650 | 4 | |a Al2O3 | |
650 | 4 | |a Flow Stress | |
650 | 4 | |a Time Function | |
650 | 4 | |a Creep Strain | |
650 | 4 | |a Creep Curve | |
700 | 1 | |a Sakuma, T. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials science |d Kluwer Academic Publishers, 1966 |g 33(1998), 20 vom: Okt., Seite 4879-4885 |w (DE-627)129546372 |w (DE-600)218324-9 |w (DE-576)014996774 |x 0022-2461 |7 nnns |
773 | 1 | 8 | |g volume:33 |g year:1998 |g number:20 |g month:10 |g pages:4879-4885 |
856 | 4 | 1 | |u https://doi.org/10.1023/A:1004493110802 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4316 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 33 |j 1998 |e 20 |c 10 |h 4879-4885 |
author_variant |
h y hy t s ts |
---|---|
matchkey_str |
article:00222461:1998----::rnincepsoitdihribudrsiignier |
hierarchy_sort_str |
1998 |
publishDate |
1998 |
allfields |
10.1023/A:1004493110802 doi (DE-627)OLC2046247345 (DE-He213)A:1004493110802-p DE-627 ger DE-627 rakwb eng 670 VZ Yoshida, H. verfasserin aut Transient Creep Associated with Grain Boundary Sliding in Fine-Grained Single-Phase Al2O3 1998 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 1998 Abstract Transient creep data for high-purity polycrystalline alumina are examined at the testing temperature of 1150–1250 °C. The data are analysed in terms of the effect of stress and temperature on the extent of transient time and strain. In order to explain the observed transient creep, a time function of creep strain is proposed from a two-dimensional model based on grain boundary sliding. The grain boundary sliding is assumed to take place by the glide of grain boundary dislocations accommodated by dislocation climb in the neighboring grain boundaries. The time function for a creep strain ∈ obtained from the model is given in a form $$ \in = a_1 t + a_2 (1 - exp( - a_3 t))$$ which is similar to the previous empirical formula describing the experimental creep curves in metallic alloys. The model predicts that the transient creep strain ∈T is approximately proportional to and the extent of transient creep time tT is inversely proportional to flow stress. The prediction is consistent with the experimental data in high-purity, fine-grained alumina at temperatures between 1150 and 1250°C. Al2O3 Flow Stress Time Function Creep Strain Creep Curve Sakuma, T. aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 33(1998), 20 vom: Okt., Seite 4879-4885 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:33 year:1998 number:20 month:10 pages:4879-4885 https://doi.org/10.1023/A:1004493110802 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 33 1998 20 10 4879-4885 |
spelling |
10.1023/A:1004493110802 doi (DE-627)OLC2046247345 (DE-He213)A:1004493110802-p DE-627 ger DE-627 rakwb eng 670 VZ Yoshida, H. verfasserin aut Transient Creep Associated with Grain Boundary Sliding in Fine-Grained Single-Phase Al2O3 1998 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 1998 Abstract Transient creep data for high-purity polycrystalline alumina are examined at the testing temperature of 1150–1250 °C. The data are analysed in terms of the effect of stress and temperature on the extent of transient time and strain. In order to explain the observed transient creep, a time function of creep strain is proposed from a two-dimensional model based on grain boundary sliding. The grain boundary sliding is assumed to take place by the glide of grain boundary dislocations accommodated by dislocation climb in the neighboring grain boundaries. The time function for a creep strain ∈ obtained from the model is given in a form $$ \in = a_1 t + a_2 (1 - exp( - a_3 t))$$ which is similar to the previous empirical formula describing the experimental creep curves in metallic alloys. The model predicts that the transient creep strain ∈T is approximately proportional to and the extent of transient creep time tT is inversely proportional to flow stress. The prediction is consistent with the experimental data in high-purity, fine-grained alumina at temperatures between 1150 and 1250°C. Al2O3 Flow Stress Time Function Creep Strain Creep Curve Sakuma, T. aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 33(1998), 20 vom: Okt., Seite 4879-4885 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:33 year:1998 number:20 month:10 pages:4879-4885 https://doi.org/10.1023/A:1004493110802 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 33 1998 20 10 4879-4885 |
allfields_unstemmed |
10.1023/A:1004493110802 doi (DE-627)OLC2046247345 (DE-He213)A:1004493110802-p DE-627 ger DE-627 rakwb eng 670 VZ Yoshida, H. verfasserin aut Transient Creep Associated with Grain Boundary Sliding in Fine-Grained Single-Phase Al2O3 1998 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 1998 Abstract Transient creep data for high-purity polycrystalline alumina are examined at the testing temperature of 1150–1250 °C. The data are analysed in terms of the effect of stress and temperature on the extent of transient time and strain. In order to explain the observed transient creep, a time function of creep strain is proposed from a two-dimensional model based on grain boundary sliding. The grain boundary sliding is assumed to take place by the glide of grain boundary dislocations accommodated by dislocation climb in the neighboring grain boundaries. The time function for a creep strain ∈ obtained from the model is given in a form $$ \in = a_1 t + a_2 (1 - exp( - a_3 t))$$ which is similar to the previous empirical formula describing the experimental creep curves in metallic alloys. The model predicts that the transient creep strain ∈T is approximately proportional to and the extent of transient creep time tT is inversely proportional to flow stress. The prediction is consistent with the experimental data in high-purity, fine-grained alumina at temperatures between 1150 and 1250°C. Al2O3 Flow Stress Time Function Creep Strain Creep Curve Sakuma, T. aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 33(1998), 20 vom: Okt., Seite 4879-4885 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:33 year:1998 number:20 month:10 pages:4879-4885 https://doi.org/10.1023/A:1004493110802 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 33 1998 20 10 4879-4885 |
allfieldsGer |
10.1023/A:1004493110802 doi (DE-627)OLC2046247345 (DE-He213)A:1004493110802-p DE-627 ger DE-627 rakwb eng 670 VZ Yoshida, H. verfasserin aut Transient Creep Associated with Grain Boundary Sliding in Fine-Grained Single-Phase Al2O3 1998 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 1998 Abstract Transient creep data for high-purity polycrystalline alumina are examined at the testing temperature of 1150–1250 °C. The data are analysed in terms of the effect of stress and temperature on the extent of transient time and strain. In order to explain the observed transient creep, a time function of creep strain is proposed from a two-dimensional model based on grain boundary sliding. The grain boundary sliding is assumed to take place by the glide of grain boundary dislocations accommodated by dislocation climb in the neighboring grain boundaries. The time function for a creep strain ∈ obtained from the model is given in a form $$ \in = a_1 t + a_2 (1 - exp( - a_3 t))$$ which is similar to the previous empirical formula describing the experimental creep curves in metallic alloys. The model predicts that the transient creep strain ∈T is approximately proportional to and the extent of transient creep time tT is inversely proportional to flow stress. The prediction is consistent with the experimental data in high-purity, fine-grained alumina at temperatures between 1150 and 1250°C. Al2O3 Flow Stress Time Function Creep Strain Creep Curve Sakuma, T. aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 33(1998), 20 vom: Okt., Seite 4879-4885 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:33 year:1998 number:20 month:10 pages:4879-4885 https://doi.org/10.1023/A:1004493110802 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 33 1998 20 10 4879-4885 |
allfieldsSound |
10.1023/A:1004493110802 doi (DE-627)OLC2046247345 (DE-He213)A:1004493110802-p DE-627 ger DE-627 rakwb eng 670 VZ Yoshida, H. verfasserin aut Transient Creep Associated with Grain Boundary Sliding in Fine-Grained Single-Phase Al2O3 1998 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 1998 Abstract Transient creep data for high-purity polycrystalline alumina are examined at the testing temperature of 1150–1250 °C. The data are analysed in terms of the effect of stress and temperature on the extent of transient time and strain. In order to explain the observed transient creep, a time function of creep strain is proposed from a two-dimensional model based on grain boundary sliding. The grain boundary sliding is assumed to take place by the glide of grain boundary dislocations accommodated by dislocation climb in the neighboring grain boundaries. The time function for a creep strain ∈ obtained from the model is given in a form $$ \in = a_1 t + a_2 (1 - exp( - a_3 t))$$ which is similar to the previous empirical formula describing the experimental creep curves in metallic alloys. The model predicts that the transient creep strain ∈T is approximately proportional to and the extent of transient creep time tT is inversely proportional to flow stress. The prediction is consistent with the experimental data in high-purity, fine-grained alumina at temperatures between 1150 and 1250°C. Al2O3 Flow Stress Time Function Creep Strain Creep Curve Sakuma, T. aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 33(1998), 20 vom: Okt., Seite 4879-4885 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:33 year:1998 number:20 month:10 pages:4879-4885 https://doi.org/10.1023/A:1004493110802 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 33 1998 20 10 4879-4885 |
language |
English |
source |
Enthalten in Journal of materials science 33(1998), 20 vom: Okt., Seite 4879-4885 volume:33 year:1998 number:20 month:10 pages:4879-4885 |
sourceStr |
Enthalten in Journal of materials science 33(1998), 20 vom: Okt., Seite 4879-4885 volume:33 year:1998 number:20 month:10 pages:4879-4885 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Al2O3 Flow Stress Time Function Creep Strain Creep Curve |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of materials science |
authorswithroles_txt_mv |
Yoshida, H. @@aut@@ Sakuma, T. @@aut@@ |
publishDateDaySort_date |
1998-10-01T00:00:00Z |
hierarchy_top_id |
129546372 |
dewey-sort |
3670 |
id |
OLC2046247345 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046247345</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503122835.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1998 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/A:1004493110802</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046247345</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)A:1004493110802-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yoshida, H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transient Creep Associated with Grain Boundary Sliding in Fine-Grained Single-Phase Al2O3</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1998</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kluwer Academic Publishers 1998</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Transient creep data for high-purity polycrystalline alumina are examined at the testing temperature of 1150–1250 °C. The data are analysed in terms of the effect of stress and temperature on the extent of transient time and strain. In order to explain the observed transient creep, a time function of creep strain is proposed from a two-dimensional model based on grain boundary sliding. The grain boundary sliding is assumed to take place by the glide of grain boundary dislocations accommodated by dislocation climb in the neighboring grain boundaries. The time function for a creep strain ∈ obtained from the model is given in a form $$ \in = a_1 t + a_2 (1 - exp( - a_3 t))$$ which is similar to the previous empirical formula describing the experimental creep curves in metallic alloys. The model predicts that the transient creep strain ∈T is approximately proportional to and the extent of transient creep time tT is inversely proportional to flow stress. The prediction is consistent with the experimental data in high-purity, fine-grained alumina at temperatures between 1150 and 1250°C.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Al2O3</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flow Stress</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Creep Strain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Creep Curve</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sakuma, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Kluwer Academic Publishers, 1966</subfield><subfield code="g">33(1998), 20 vom: Okt., Seite 4879-4885</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:1998</subfield><subfield code="g">number:20</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:4879-4885</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/A:1004493110802</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">1998</subfield><subfield code="e">20</subfield><subfield code="c">10</subfield><subfield code="h">4879-4885</subfield></datafield></record></collection>
|
author |
Yoshida, H. |
spellingShingle |
Yoshida, H. ddc 670 misc Al2O3 misc Flow Stress misc Time Function misc Creep Strain misc Creep Curve Transient Creep Associated with Grain Boundary Sliding in Fine-Grained Single-Phase Al2O3 |
authorStr |
Yoshida, H. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129546372 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-2461 |
topic_title |
670 VZ Transient Creep Associated with Grain Boundary Sliding in Fine-Grained Single-Phase Al2O3 Al2O3 Flow Stress Time Function Creep Strain Creep Curve |
topic |
ddc 670 misc Al2O3 misc Flow Stress misc Time Function misc Creep Strain misc Creep Curve |
topic_unstemmed |
ddc 670 misc Al2O3 misc Flow Stress misc Time Function misc Creep Strain misc Creep Curve |
topic_browse |
ddc 670 misc Al2O3 misc Flow Stress misc Time Function misc Creep Strain misc Creep Curve |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials science |
hierarchy_parent_id |
129546372 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of materials science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 |
title |
Transient Creep Associated with Grain Boundary Sliding in Fine-Grained Single-Phase Al2O3 |
ctrlnum |
(DE-627)OLC2046247345 (DE-He213)A:1004493110802-p |
title_full |
Transient Creep Associated with Grain Boundary Sliding in Fine-Grained Single-Phase Al2O3 |
author_sort |
Yoshida, H. |
journal |
Journal of materials science |
journalStr |
Journal of materials science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
1998 |
contenttype_str_mv |
txt |
container_start_page |
4879 |
author_browse |
Yoshida, H. Sakuma, T. |
container_volume |
33 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Yoshida, H. |
doi_str_mv |
10.1023/A:1004493110802 |
dewey-full |
670 |
title_sort |
transient creep associated with grain boundary sliding in fine-grained single-phase al2o3 |
title_auth |
Transient Creep Associated with Grain Boundary Sliding in Fine-Grained Single-Phase Al2O3 |
abstract |
Abstract Transient creep data for high-purity polycrystalline alumina are examined at the testing temperature of 1150–1250 °C. The data are analysed in terms of the effect of stress and temperature on the extent of transient time and strain. In order to explain the observed transient creep, a time function of creep strain is proposed from a two-dimensional model based on grain boundary sliding. The grain boundary sliding is assumed to take place by the glide of grain boundary dislocations accommodated by dislocation climb in the neighboring grain boundaries. The time function for a creep strain ∈ obtained from the model is given in a form $$ \in = a_1 t + a_2 (1 - exp( - a_3 t))$$ which is similar to the previous empirical formula describing the experimental creep curves in metallic alloys. The model predicts that the transient creep strain ∈T is approximately proportional to and the extent of transient creep time tT is inversely proportional to flow stress. The prediction is consistent with the experimental data in high-purity, fine-grained alumina at temperatures between 1150 and 1250°C. © Kluwer Academic Publishers 1998 |
abstractGer |
Abstract Transient creep data for high-purity polycrystalline alumina are examined at the testing temperature of 1150–1250 °C. The data are analysed in terms of the effect of stress and temperature on the extent of transient time and strain. In order to explain the observed transient creep, a time function of creep strain is proposed from a two-dimensional model based on grain boundary sliding. The grain boundary sliding is assumed to take place by the glide of grain boundary dislocations accommodated by dislocation climb in the neighboring grain boundaries. The time function for a creep strain ∈ obtained from the model is given in a form $$ \in = a_1 t + a_2 (1 - exp( - a_3 t))$$ which is similar to the previous empirical formula describing the experimental creep curves in metallic alloys. The model predicts that the transient creep strain ∈T is approximately proportional to and the extent of transient creep time tT is inversely proportional to flow stress. The prediction is consistent with the experimental data in high-purity, fine-grained alumina at temperatures between 1150 and 1250°C. © Kluwer Academic Publishers 1998 |
abstract_unstemmed |
Abstract Transient creep data for high-purity polycrystalline alumina are examined at the testing temperature of 1150–1250 °C. The data are analysed in terms of the effect of stress and temperature on the extent of transient time and strain. In order to explain the observed transient creep, a time function of creep strain is proposed from a two-dimensional model based on grain boundary sliding. The grain boundary sliding is assumed to take place by the glide of grain boundary dislocations accommodated by dislocation climb in the neighboring grain boundaries. The time function for a creep strain ∈ obtained from the model is given in a form $$ \in = a_1 t + a_2 (1 - exp( - a_3 t))$$ which is similar to the previous empirical formula describing the experimental creep curves in metallic alloys. The model predicts that the transient creep strain ∈T is approximately proportional to and the extent of transient creep time tT is inversely proportional to flow stress. The prediction is consistent with the experimental data in high-purity, fine-grained alumina at temperatures between 1150 and 1250°C. © Kluwer Academic Publishers 1998 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 |
container_issue |
20 |
title_short |
Transient Creep Associated with Grain Boundary Sliding in Fine-Grained Single-Phase Al2O3 |
url |
https://doi.org/10.1023/A:1004493110802 |
remote_bool |
false |
author2 |
Sakuma, T. |
author2Str |
Sakuma, T. |
ppnlink |
129546372 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1023/A:1004493110802 |
up_date |
2024-07-04T04:36:27.738Z |
_version_ |
1803621800588869632 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046247345</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503122835.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1998 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/A:1004493110802</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046247345</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)A:1004493110802-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yoshida, H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transient Creep Associated with Grain Boundary Sliding in Fine-Grained Single-Phase Al2O3</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1998</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kluwer Academic Publishers 1998</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Transient creep data for high-purity polycrystalline alumina are examined at the testing temperature of 1150–1250 °C. The data are analysed in terms of the effect of stress and temperature on the extent of transient time and strain. In order to explain the observed transient creep, a time function of creep strain is proposed from a two-dimensional model based on grain boundary sliding. The grain boundary sliding is assumed to take place by the glide of grain boundary dislocations accommodated by dislocation climb in the neighboring grain boundaries. The time function for a creep strain ∈ obtained from the model is given in a form $$ \in = a_1 t + a_2 (1 - exp( - a_3 t))$$ which is similar to the previous empirical formula describing the experimental creep curves in metallic alloys. The model predicts that the transient creep strain ∈T is approximately proportional to and the extent of transient creep time tT is inversely proportional to flow stress. The prediction is consistent with the experimental data in high-purity, fine-grained alumina at temperatures between 1150 and 1250°C.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Al2O3</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flow Stress</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Creep Strain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Creep Curve</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sakuma, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Kluwer Academic Publishers, 1966</subfield><subfield code="g">33(1998), 20 vom: Okt., Seite 4879-4885</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:1998</subfield><subfield code="g">number:20</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:4879-4885</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/A:1004493110802</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">1998</subfield><subfield code="e">20</subfield><subfield code="c">10</subfield><subfield code="h">4879-4885</subfield></datafield></record></collection>
|
score |
7.4020357 |