Low-cycle fatigue strength under step loading of a Si3N4 + SiC nanocomposite at 1350°C
Abstract The low-cycle fatigue behaviour of a hot pressed silicon nitride/silicon carbide nanocomposite and a reference monolithic $ Si_{3} $$ N_{4} $ have been investigated in 4-point bending at 1350°C in air using stepwise loading. The nanocomposite was prepared using 20% of SiCN amorphous powder...
Ausführliche Beschreibung
Autor*in: |
Dusza, J. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2001 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Kluwer Academic Publishers 2001 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials science - Kluwer Academic Publishers, 1966, 36(2001), 18 vom: Sept., Seite 4469-4477 |
---|---|
Übergeordnetes Werk: |
volume:36 ; year:2001 ; number:18 ; month:09 ; pages:4469-4477 |
Links: |
---|
DOI / URN: |
10.1023/A:1017982719694 |
---|
Katalog-ID: |
OLC2046269659 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2046269659 | ||
003 | DE-627 | ||
005 | 20230503123024.0 | ||
007 | tu | ||
008 | 200820s2001 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1023/A:1017982719694 |2 doi | |
035 | |a (DE-627)OLC2046269659 | ||
035 | |a (DE-He213)A:1017982719694-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Dusza, J. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Low-cycle fatigue strength under step loading of a Si3N4 + SiC nanocomposite at 1350°C |
264 | 1 | |c 2001 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Kluwer Academic Publishers 2001 | ||
520 | |a Abstract The low-cycle fatigue behaviour of a hot pressed silicon nitride/silicon carbide nanocomposite and a reference monolithic $ Si_{3} $$ N_{4} $ have been investigated in 4-point bending at 1350°C in air using stepwise loading. The nanocomposite was prepared using 20% of SiCN amorphous powder as an additive, together with 5% yttria, to crystalline α-silicon nitride powder. Two types of specimen have been tested, with and without a sharp notch (notch tip radius ∼10 μm) at applied loads from 50 N with steps of 25 N and from 50 N with steps of 50 N, respectively. Five cycles have been performed at all applied load levels with an amplitude of 50 N for both types of specimen. The deflection of the specimens has been recorded up to specimen failure. The failure load of the unnotched nanocomposite was significantly higher than that of the monolithic material whereas for the notched specimens only a small difference has been found between the failure loads of the monolithic and the composite. Notched specimens of both materials exhibited a similar size of the slow crack growth area at catastrophic fracture, whereas for unnotched specimens the size of the slow crack growth area was significantly larger for the monolithic ceramic. The nanocomposite exhibits higher fatigue strength due to its higher resistance against stress corrosion damage and stress corrosion crack growth. | ||
650 | 4 | |a Fatigue Strength | |
650 | 4 | |a Stress Corrosion | |
650 | 4 | |a Stress Corrosion Crack | |
650 | 4 | |a Failure Load | |
650 | 4 | |a Sharp Notch | |
700 | 1 | |a Šajgalík, P. |4 aut | |
700 | 1 | |a Steen, M. |4 aut | |
700 | 1 | |a Semerad, E. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials science |d Kluwer Academic Publishers, 1966 |g 36(2001), 18 vom: Sept., Seite 4469-4477 |w (DE-627)129546372 |w (DE-600)218324-9 |w (DE-576)014996774 |x 0022-2461 |7 nnns |
773 | 1 | 8 | |g volume:36 |g year:2001 |g number:18 |g month:09 |g pages:4469-4477 |
856 | 4 | 1 | |u https://doi.org/10.1023/A:1017982719694 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4316 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 36 |j 2001 |e 18 |c 09 |h 4469-4477 |
author_variant |
j d jd p š pš m s ms e s es |
---|---|
matchkey_str |
article:00222461:2001----::occeaiusrntudrtpodnoainsc |
hierarchy_sort_str |
2001 |
publishDate |
2001 |
allfields |
10.1023/A:1017982719694 doi (DE-627)OLC2046269659 (DE-He213)A:1017982719694-p DE-627 ger DE-627 rakwb eng 670 VZ Dusza, J. verfasserin aut Low-cycle fatigue strength under step loading of a Si3N4 + SiC nanocomposite at 1350°C 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2001 Abstract The low-cycle fatigue behaviour of a hot pressed silicon nitride/silicon carbide nanocomposite and a reference monolithic $ Si_{3} $$ N_{4} $ have been investigated in 4-point bending at 1350°C in air using stepwise loading. The nanocomposite was prepared using 20% of SiCN amorphous powder as an additive, together with 5% yttria, to crystalline α-silicon nitride powder. Two types of specimen have been tested, with and without a sharp notch (notch tip radius ∼10 μm) at applied loads from 50 N with steps of 25 N and from 50 N with steps of 50 N, respectively. Five cycles have been performed at all applied load levels with an amplitude of 50 N for both types of specimen. The deflection of the specimens has been recorded up to specimen failure. The failure load of the unnotched nanocomposite was significantly higher than that of the monolithic material whereas for the notched specimens only a small difference has been found between the failure loads of the monolithic and the composite. Notched specimens of both materials exhibited a similar size of the slow crack growth area at catastrophic fracture, whereas for unnotched specimens the size of the slow crack growth area was significantly larger for the monolithic ceramic. The nanocomposite exhibits higher fatigue strength due to its higher resistance against stress corrosion damage and stress corrosion crack growth. Fatigue Strength Stress Corrosion Stress Corrosion Crack Failure Load Sharp Notch Šajgalík, P. aut Steen, M. aut Semerad, E. aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 36(2001), 18 vom: Sept., Seite 4469-4477 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:36 year:2001 number:18 month:09 pages:4469-4477 https://doi.org/10.1023/A:1017982719694 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 AR 36 2001 18 09 4469-4477 |
spelling |
10.1023/A:1017982719694 doi (DE-627)OLC2046269659 (DE-He213)A:1017982719694-p DE-627 ger DE-627 rakwb eng 670 VZ Dusza, J. verfasserin aut Low-cycle fatigue strength under step loading of a Si3N4 + SiC nanocomposite at 1350°C 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2001 Abstract The low-cycle fatigue behaviour of a hot pressed silicon nitride/silicon carbide nanocomposite and a reference monolithic $ Si_{3} $$ N_{4} $ have been investigated in 4-point bending at 1350°C in air using stepwise loading. The nanocomposite was prepared using 20% of SiCN amorphous powder as an additive, together with 5% yttria, to crystalline α-silicon nitride powder. Two types of specimen have been tested, with and without a sharp notch (notch tip radius ∼10 μm) at applied loads from 50 N with steps of 25 N and from 50 N with steps of 50 N, respectively. Five cycles have been performed at all applied load levels with an amplitude of 50 N for both types of specimen. The deflection of the specimens has been recorded up to specimen failure. The failure load of the unnotched nanocomposite was significantly higher than that of the monolithic material whereas for the notched specimens only a small difference has been found between the failure loads of the monolithic and the composite. Notched specimens of both materials exhibited a similar size of the slow crack growth area at catastrophic fracture, whereas for unnotched specimens the size of the slow crack growth area was significantly larger for the monolithic ceramic. The nanocomposite exhibits higher fatigue strength due to its higher resistance against stress corrosion damage and stress corrosion crack growth. Fatigue Strength Stress Corrosion Stress Corrosion Crack Failure Load Sharp Notch Šajgalík, P. aut Steen, M. aut Semerad, E. aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 36(2001), 18 vom: Sept., Seite 4469-4477 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:36 year:2001 number:18 month:09 pages:4469-4477 https://doi.org/10.1023/A:1017982719694 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 AR 36 2001 18 09 4469-4477 |
allfields_unstemmed |
10.1023/A:1017982719694 doi (DE-627)OLC2046269659 (DE-He213)A:1017982719694-p DE-627 ger DE-627 rakwb eng 670 VZ Dusza, J. verfasserin aut Low-cycle fatigue strength under step loading of a Si3N4 + SiC nanocomposite at 1350°C 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2001 Abstract The low-cycle fatigue behaviour of a hot pressed silicon nitride/silicon carbide nanocomposite and a reference monolithic $ Si_{3} $$ N_{4} $ have been investigated in 4-point bending at 1350°C in air using stepwise loading. The nanocomposite was prepared using 20% of SiCN amorphous powder as an additive, together with 5% yttria, to crystalline α-silicon nitride powder. Two types of specimen have been tested, with and without a sharp notch (notch tip radius ∼10 μm) at applied loads from 50 N with steps of 25 N and from 50 N with steps of 50 N, respectively. Five cycles have been performed at all applied load levels with an amplitude of 50 N for both types of specimen. The deflection of the specimens has been recorded up to specimen failure. The failure load of the unnotched nanocomposite was significantly higher than that of the monolithic material whereas for the notched specimens only a small difference has been found between the failure loads of the monolithic and the composite. Notched specimens of both materials exhibited a similar size of the slow crack growth area at catastrophic fracture, whereas for unnotched specimens the size of the slow crack growth area was significantly larger for the monolithic ceramic. The nanocomposite exhibits higher fatigue strength due to its higher resistance against stress corrosion damage and stress corrosion crack growth. Fatigue Strength Stress Corrosion Stress Corrosion Crack Failure Load Sharp Notch Šajgalík, P. aut Steen, M. aut Semerad, E. aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 36(2001), 18 vom: Sept., Seite 4469-4477 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:36 year:2001 number:18 month:09 pages:4469-4477 https://doi.org/10.1023/A:1017982719694 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 AR 36 2001 18 09 4469-4477 |
allfieldsGer |
10.1023/A:1017982719694 doi (DE-627)OLC2046269659 (DE-He213)A:1017982719694-p DE-627 ger DE-627 rakwb eng 670 VZ Dusza, J. verfasserin aut Low-cycle fatigue strength under step loading of a Si3N4 + SiC nanocomposite at 1350°C 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2001 Abstract The low-cycle fatigue behaviour of a hot pressed silicon nitride/silicon carbide nanocomposite and a reference monolithic $ Si_{3} $$ N_{4} $ have been investigated in 4-point bending at 1350°C in air using stepwise loading. The nanocomposite was prepared using 20% of SiCN amorphous powder as an additive, together with 5% yttria, to crystalline α-silicon nitride powder. Two types of specimen have been tested, with and without a sharp notch (notch tip radius ∼10 μm) at applied loads from 50 N with steps of 25 N and from 50 N with steps of 50 N, respectively. Five cycles have been performed at all applied load levels with an amplitude of 50 N for both types of specimen. The deflection of the specimens has been recorded up to specimen failure. The failure load of the unnotched nanocomposite was significantly higher than that of the monolithic material whereas for the notched specimens only a small difference has been found between the failure loads of the monolithic and the composite. Notched specimens of both materials exhibited a similar size of the slow crack growth area at catastrophic fracture, whereas for unnotched specimens the size of the slow crack growth area was significantly larger for the monolithic ceramic. The nanocomposite exhibits higher fatigue strength due to its higher resistance against stress corrosion damage and stress corrosion crack growth. Fatigue Strength Stress Corrosion Stress Corrosion Crack Failure Load Sharp Notch Šajgalík, P. aut Steen, M. aut Semerad, E. aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 36(2001), 18 vom: Sept., Seite 4469-4477 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:36 year:2001 number:18 month:09 pages:4469-4477 https://doi.org/10.1023/A:1017982719694 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 AR 36 2001 18 09 4469-4477 |
allfieldsSound |
10.1023/A:1017982719694 doi (DE-627)OLC2046269659 (DE-He213)A:1017982719694-p DE-627 ger DE-627 rakwb eng 670 VZ Dusza, J. verfasserin aut Low-cycle fatigue strength under step loading of a Si3N4 + SiC nanocomposite at 1350°C 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2001 Abstract The low-cycle fatigue behaviour of a hot pressed silicon nitride/silicon carbide nanocomposite and a reference monolithic $ Si_{3} $$ N_{4} $ have been investigated in 4-point bending at 1350°C in air using stepwise loading. The nanocomposite was prepared using 20% of SiCN amorphous powder as an additive, together with 5% yttria, to crystalline α-silicon nitride powder. Two types of specimen have been tested, with and without a sharp notch (notch tip radius ∼10 μm) at applied loads from 50 N with steps of 25 N and from 50 N with steps of 50 N, respectively. Five cycles have been performed at all applied load levels with an amplitude of 50 N for both types of specimen. The deflection of the specimens has been recorded up to specimen failure. The failure load of the unnotched nanocomposite was significantly higher than that of the monolithic material whereas for the notched specimens only a small difference has been found between the failure loads of the monolithic and the composite. Notched specimens of both materials exhibited a similar size of the slow crack growth area at catastrophic fracture, whereas for unnotched specimens the size of the slow crack growth area was significantly larger for the monolithic ceramic. The nanocomposite exhibits higher fatigue strength due to its higher resistance against stress corrosion damage and stress corrosion crack growth. Fatigue Strength Stress Corrosion Stress Corrosion Crack Failure Load Sharp Notch Šajgalík, P. aut Steen, M. aut Semerad, E. aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 36(2001), 18 vom: Sept., Seite 4469-4477 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:36 year:2001 number:18 month:09 pages:4469-4477 https://doi.org/10.1023/A:1017982719694 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 AR 36 2001 18 09 4469-4477 |
language |
English |
source |
Enthalten in Journal of materials science 36(2001), 18 vom: Sept., Seite 4469-4477 volume:36 year:2001 number:18 month:09 pages:4469-4477 |
sourceStr |
Enthalten in Journal of materials science 36(2001), 18 vom: Sept., Seite 4469-4477 volume:36 year:2001 number:18 month:09 pages:4469-4477 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Fatigue Strength Stress Corrosion Stress Corrosion Crack Failure Load Sharp Notch |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of materials science |
authorswithroles_txt_mv |
Dusza, J. @@aut@@ Šajgalík, P. @@aut@@ Steen, M. @@aut@@ Semerad, E. @@aut@@ |
publishDateDaySort_date |
2001-09-01T00:00:00Z |
hierarchy_top_id |
129546372 |
dewey-sort |
3670 |
id |
OLC2046269659 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046269659</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503123024.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2001 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/A:1017982719694</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046269659</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)A:1017982719694-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dusza, J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Low-cycle fatigue strength under step loading of a Si3N4 + SiC nanocomposite at 1350°C</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2001</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kluwer Academic Publishers 2001</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The low-cycle fatigue behaviour of a hot pressed silicon nitride/silicon carbide nanocomposite and a reference monolithic $ Si_{3} $$ N_{4} $ have been investigated in 4-point bending at 1350°C in air using stepwise loading. The nanocomposite was prepared using 20% of SiCN amorphous powder as an additive, together with 5% yttria, to crystalline α-silicon nitride powder. Two types of specimen have been tested, with and without a sharp notch (notch tip radius ∼10 μm) at applied loads from 50 N with steps of 25 N and from 50 N with steps of 50 N, respectively. Five cycles have been performed at all applied load levels with an amplitude of 50 N for both types of specimen. The deflection of the specimens has been recorded up to specimen failure. The failure load of the unnotched nanocomposite was significantly higher than that of the monolithic material whereas for the notched specimens only a small difference has been found between the failure loads of the monolithic and the composite. Notched specimens of both materials exhibited a similar size of the slow crack growth area at catastrophic fracture, whereas for unnotched specimens the size of the slow crack growth area was significantly larger for the monolithic ceramic. The nanocomposite exhibits higher fatigue strength due to its higher resistance against stress corrosion damage and stress corrosion crack growth.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fatigue Strength</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress Corrosion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress Corrosion Crack</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Failure Load</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sharp Notch</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Šajgalík, P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Steen, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Semerad, E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Kluwer Academic Publishers, 1966</subfield><subfield code="g">36(2001), 18 vom: Sept., Seite 4469-4477</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:36</subfield><subfield code="g">year:2001</subfield><subfield code="g">number:18</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:4469-4477</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/A:1017982719694</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">36</subfield><subfield code="j">2001</subfield><subfield code="e">18</subfield><subfield code="c">09</subfield><subfield code="h">4469-4477</subfield></datafield></record></collection>
|
author |
Dusza, J. |
spellingShingle |
Dusza, J. ddc 670 misc Fatigue Strength misc Stress Corrosion misc Stress Corrosion Crack misc Failure Load misc Sharp Notch Low-cycle fatigue strength under step loading of a Si3N4 + SiC nanocomposite at 1350°C |
authorStr |
Dusza, J. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129546372 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-2461 |
topic_title |
670 VZ Low-cycle fatigue strength under step loading of a Si3N4 + SiC nanocomposite at 1350°C Fatigue Strength Stress Corrosion Stress Corrosion Crack Failure Load Sharp Notch |
topic |
ddc 670 misc Fatigue Strength misc Stress Corrosion misc Stress Corrosion Crack misc Failure Load misc Sharp Notch |
topic_unstemmed |
ddc 670 misc Fatigue Strength misc Stress Corrosion misc Stress Corrosion Crack misc Failure Load misc Sharp Notch |
topic_browse |
ddc 670 misc Fatigue Strength misc Stress Corrosion misc Stress Corrosion Crack misc Failure Load misc Sharp Notch |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials science |
hierarchy_parent_id |
129546372 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of materials science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 |
title |
Low-cycle fatigue strength under step loading of a Si3N4 + SiC nanocomposite at 1350°C |
ctrlnum |
(DE-627)OLC2046269659 (DE-He213)A:1017982719694-p |
title_full |
Low-cycle fatigue strength under step loading of a Si3N4 + SiC nanocomposite at 1350°C |
author_sort |
Dusza, J. |
journal |
Journal of materials science |
journalStr |
Journal of materials science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2001 |
contenttype_str_mv |
txt |
container_start_page |
4469 |
author_browse |
Dusza, J. Šajgalík, P. Steen, M. Semerad, E. |
container_volume |
36 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Dusza, J. |
doi_str_mv |
10.1023/A:1017982719694 |
dewey-full |
670 |
title_sort |
low-cycle fatigue strength under step loading of a si3n4 + sic nanocomposite at 1350°c |
title_auth |
Low-cycle fatigue strength under step loading of a Si3N4 + SiC nanocomposite at 1350°C |
abstract |
Abstract The low-cycle fatigue behaviour of a hot pressed silicon nitride/silicon carbide nanocomposite and a reference monolithic $ Si_{3} $$ N_{4} $ have been investigated in 4-point bending at 1350°C in air using stepwise loading. The nanocomposite was prepared using 20% of SiCN amorphous powder as an additive, together with 5% yttria, to crystalline α-silicon nitride powder. Two types of specimen have been tested, with and without a sharp notch (notch tip radius ∼10 μm) at applied loads from 50 N with steps of 25 N and from 50 N with steps of 50 N, respectively. Five cycles have been performed at all applied load levels with an amplitude of 50 N for both types of specimen. The deflection of the specimens has been recorded up to specimen failure. The failure load of the unnotched nanocomposite was significantly higher than that of the monolithic material whereas for the notched specimens only a small difference has been found between the failure loads of the monolithic and the composite. Notched specimens of both materials exhibited a similar size of the slow crack growth area at catastrophic fracture, whereas for unnotched specimens the size of the slow crack growth area was significantly larger for the monolithic ceramic. The nanocomposite exhibits higher fatigue strength due to its higher resistance against stress corrosion damage and stress corrosion crack growth. © Kluwer Academic Publishers 2001 |
abstractGer |
Abstract The low-cycle fatigue behaviour of a hot pressed silicon nitride/silicon carbide nanocomposite and a reference monolithic $ Si_{3} $$ N_{4} $ have been investigated in 4-point bending at 1350°C in air using stepwise loading. The nanocomposite was prepared using 20% of SiCN amorphous powder as an additive, together with 5% yttria, to crystalline α-silicon nitride powder. Two types of specimen have been tested, with and without a sharp notch (notch tip radius ∼10 μm) at applied loads from 50 N with steps of 25 N and from 50 N with steps of 50 N, respectively. Five cycles have been performed at all applied load levels with an amplitude of 50 N for both types of specimen. The deflection of the specimens has been recorded up to specimen failure. The failure load of the unnotched nanocomposite was significantly higher than that of the monolithic material whereas for the notched specimens only a small difference has been found between the failure loads of the monolithic and the composite. Notched specimens of both materials exhibited a similar size of the slow crack growth area at catastrophic fracture, whereas for unnotched specimens the size of the slow crack growth area was significantly larger for the monolithic ceramic. The nanocomposite exhibits higher fatigue strength due to its higher resistance against stress corrosion damage and stress corrosion crack growth. © Kluwer Academic Publishers 2001 |
abstract_unstemmed |
Abstract The low-cycle fatigue behaviour of a hot pressed silicon nitride/silicon carbide nanocomposite and a reference monolithic $ Si_{3} $$ N_{4} $ have been investigated in 4-point bending at 1350°C in air using stepwise loading. The nanocomposite was prepared using 20% of SiCN amorphous powder as an additive, together with 5% yttria, to crystalline α-silicon nitride powder. Two types of specimen have been tested, with and without a sharp notch (notch tip radius ∼10 μm) at applied loads from 50 N with steps of 25 N and from 50 N with steps of 50 N, respectively. Five cycles have been performed at all applied load levels with an amplitude of 50 N for both types of specimen. The deflection of the specimens has been recorded up to specimen failure. The failure load of the unnotched nanocomposite was significantly higher than that of the monolithic material whereas for the notched specimens only a small difference has been found between the failure loads of the monolithic and the composite. Notched specimens of both materials exhibited a similar size of the slow crack growth area at catastrophic fracture, whereas for unnotched specimens the size of the slow crack growth area was significantly larger for the monolithic ceramic. The nanocomposite exhibits higher fatigue strength due to its higher resistance against stress corrosion damage and stress corrosion crack growth. © Kluwer Academic Publishers 2001 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_20 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 |
container_issue |
18 |
title_short |
Low-cycle fatigue strength under step loading of a Si3N4 + SiC nanocomposite at 1350°C |
url |
https://doi.org/10.1023/A:1017982719694 |
remote_bool |
false |
author2 |
Šajgalík, P. Steen, M. Semerad, E. |
author2Str |
Šajgalík, P. Steen, M. Semerad, E. |
ppnlink |
129546372 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1023/A:1017982719694 |
up_date |
2024-07-04T04:39:55.684Z |
_version_ |
1803622018637103104 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046269659</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503123024.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2001 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/A:1017982719694</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046269659</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)A:1017982719694-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dusza, J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Low-cycle fatigue strength under step loading of a Si3N4 + SiC nanocomposite at 1350°C</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2001</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kluwer Academic Publishers 2001</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The low-cycle fatigue behaviour of a hot pressed silicon nitride/silicon carbide nanocomposite and a reference monolithic $ Si_{3} $$ N_{4} $ have been investigated in 4-point bending at 1350°C in air using stepwise loading. The nanocomposite was prepared using 20% of SiCN amorphous powder as an additive, together with 5% yttria, to crystalline α-silicon nitride powder. Two types of specimen have been tested, with and without a sharp notch (notch tip radius ∼10 μm) at applied loads from 50 N with steps of 25 N and from 50 N with steps of 50 N, respectively. Five cycles have been performed at all applied load levels with an amplitude of 50 N for both types of specimen. The deflection of the specimens has been recorded up to specimen failure. The failure load of the unnotched nanocomposite was significantly higher than that of the monolithic material whereas for the notched specimens only a small difference has been found between the failure loads of the monolithic and the composite. Notched specimens of both materials exhibited a similar size of the slow crack growth area at catastrophic fracture, whereas for unnotched specimens the size of the slow crack growth area was significantly larger for the monolithic ceramic. The nanocomposite exhibits higher fatigue strength due to its higher resistance against stress corrosion damage and stress corrosion crack growth.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fatigue Strength</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress Corrosion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress Corrosion Crack</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Failure Load</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sharp Notch</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Šajgalík, P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Steen, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Semerad, E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Kluwer Academic Publishers, 1966</subfield><subfield code="g">36(2001), 18 vom: Sept., Seite 4469-4477</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:36</subfield><subfield code="g">year:2001</subfield><subfield code="g">number:18</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:4469-4477</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/A:1017982719694</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">36</subfield><subfield code="j">2001</subfield><subfield code="e">18</subfield><subfield code="c">09</subfield><subfield code="h">4469-4477</subfield></datafield></record></collection>
|
score |
7.400978 |