Direct bonding of CMP-Cu films by surface activated bonding (SAB) method
Abstract The chemical mechanical polishing (CMP) process is indispensable to the fabrication of Cu wiring layers in the large-scale integration (LSI). Recently, a direct bonding method with low bonding temperature is required for the CMP-Cu surface in order to obtain a narrow bonding pitch. In this...
Ausführliche Beschreibung
Autor*in: |
Shigetou, A. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2005 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science + Business Media, Inc. 2005 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials science - Kluwer Academic Publishers, 1966, 40(2005), 12 vom: Juni, Seite 3149-3154 |
---|---|
Übergeordnetes Werk: |
volume:40 ; year:2005 ; number:12 ; month:06 ; pages:3149-3154 |
Links: |
---|
DOI / URN: |
10.1007/s10853-005-2677-1 |
---|
Katalog-ID: |
OLC2046303318 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2046303318 | ||
003 | DE-627 | ||
005 | 20230512181044.0 | ||
007 | tu | ||
008 | 200820s2005 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10853-005-2677-1 |2 doi | |
035 | |a (DE-627)OLC2046303318 | ||
035 | |a (DE-He213)s10853-005-2677-1-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Shigetou, A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Direct bonding of CMP-Cu films by surface activated bonding (SAB) method |
264 | 1 | |c 2005 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science + Business Media, Inc. 2005 | ||
520 | |a Abstract The chemical mechanical polishing (CMP) process is indispensable to the fabrication of Cu wiring layers in the large-scale integration (LSI). Recently, a direct bonding method with low bonding temperature is required for the CMP-Cu surface in order to obtain a narrow bonding pitch. In this study, we realized a direct bonding between CMP-Cu films by means of the surface activated bonding (SAB) method at room temperature. The critical vacuum pressure to obtain large bonding strength was estimated at about 4×$ 10^{−3} $ Pa from the growth rate of oxide on an active surface measured by the X-ray photoelectron spectroscope (XPS). The films were bonded successfully at the vacuum pressure better than around 3×$ 10^{−3} $ Pa with the shear strength larger than 50 MPa. The transmission electron microscope (TEM) observation showed that the polycrystalline films with the mean surface roughness of 0.3 nm were bonded directly between Cu grains in atomic level. Moreover, the adhesion between the films was improved due to the stress relaxation at the interface during the thermal aging test conducted at 200 and 300^∘C in the vacuum condition. | ||
650 | 4 | |a Shear Strength | |
650 | 4 | |a Thermal Aging | |
650 | 4 | |a Aging Test | |
650 | 4 | |a Chemical Mechanical Polishing | |
650 | 4 | |a Vacuum Pressure | |
700 | 1 | |a Itoh, T. |4 aut | |
700 | 1 | |a Suga, T. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials science |d Kluwer Academic Publishers, 1966 |g 40(2005), 12 vom: Juni, Seite 3149-3154 |w (DE-627)129546372 |w (DE-600)218324-9 |w (DE-576)014996774 |x 0022-2461 |7 nnns |
773 | 1 | 8 | |g volume:40 |g year:2005 |g number:12 |g month:06 |g pages:3149-3154 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10853-005-2677-1 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 40 |j 2005 |e 12 |c 06 |h 3149-3154 |
author_variant |
a s as t i ti t s ts |
---|---|
matchkey_str |
article:00222461:2005----::ietodnocpuimbsraeciae |
hierarchy_sort_str |
2005 |
publishDate |
2005 |
allfields |
10.1007/s10853-005-2677-1 doi (DE-627)OLC2046303318 (DE-He213)s10853-005-2677-1-p DE-627 ger DE-627 rakwb eng 670 VZ Shigetou, A. verfasserin aut Direct bonding of CMP-Cu films by surface activated bonding (SAB) method 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science + Business Media, Inc. 2005 Abstract The chemical mechanical polishing (CMP) process is indispensable to the fabrication of Cu wiring layers in the large-scale integration (LSI). Recently, a direct bonding method with low bonding temperature is required for the CMP-Cu surface in order to obtain a narrow bonding pitch. In this study, we realized a direct bonding between CMP-Cu films by means of the surface activated bonding (SAB) method at room temperature. The critical vacuum pressure to obtain large bonding strength was estimated at about 4×$ 10^{−3} $ Pa from the growth rate of oxide on an active surface measured by the X-ray photoelectron spectroscope (XPS). The films were bonded successfully at the vacuum pressure better than around 3×$ 10^{−3} $ Pa with the shear strength larger than 50 MPa. The transmission electron microscope (TEM) observation showed that the polycrystalline films with the mean surface roughness of 0.3 nm were bonded directly between Cu grains in atomic level. Moreover, the adhesion between the films was improved due to the stress relaxation at the interface during the thermal aging test conducted at 200 and 300^∘C in the vacuum condition. Shear Strength Thermal Aging Aging Test Chemical Mechanical Polishing Vacuum Pressure Itoh, T. aut Suga, T. aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 40(2005), 12 vom: Juni, Seite 3149-3154 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:40 year:2005 number:12 month:06 pages:3149-3154 https://doi.org/10.1007/s10853-005-2677-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4319 GBV_ILN_4323 AR 40 2005 12 06 3149-3154 |
spelling |
10.1007/s10853-005-2677-1 doi (DE-627)OLC2046303318 (DE-He213)s10853-005-2677-1-p DE-627 ger DE-627 rakwb eng 670 VZ Shigetou, A. verfasserin aut Direct bonding of CMP-Cu films by surface activated bonding (SAB) method 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science + Business Media, Inc. 2005 Abstract The chemical mechanical polishing (CMP) process is indispensable to the fabrication of Cu wiring layers in the large-scale integration (LSI). Recently, a direct bonding method with low bonding temperature is required for the CMP-Cu surface in order to obtain a narrow bonding pitch. In this study, we realized a direct bonding between CMP-Cu films by means of the surface activated bonding (SAB) method at room temperature. The critical vacuum pressure to obtain large bonding strength was estimated at about 4×$ 10^{−3} $ Pa from the growth rate of oxide on an active surface measured by the X-ray photoelectron spectroscope (XPS). The films were bonded successfully at the vacuum pressure better than around 3×$ 10^{−3} $ Pa with the shear strength larger than 50 MPa. The transmission electron microscope (TEM) observation showed that the polycrystalline films with the mean surface roughness of 0.3 nm were bonded directly between Cu grains in atomic level. Moreover, the adhesion between the films was improved due to the stress relaxation at the interface during the thermal aging test conducted at 200 and 300^∘C in the vacuum condition. Shear Strength Thermal Aging Aging Test Chemical Mechanical Polishing Vacuum Pressure Itoh, T. aut Suga, T. aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 40(2005), 12 vom: Juni, Seite 3149-3154 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:40 year:2005 number:12 month:06 pages:3149-3154 https://doi.org/10.1007/s10853-005-2677-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4319 GBV_ILN_4323 AR 40 2005 12 06 3149-3154 |
allfields_unstemmed |
10.1007/s10853-005-2677-1 doi (DE-627)OLC2046303318 (DE-He213)s10853-005-2677-1-p DE-627 ger DE-627 rakwb eng 670 VZ Shigetou, A. verfasserin aut Direct bonding of CMP-Cu films by surface activated bonding (SAB) method 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science + Business Media, Inc. 2005 Abstract The chemical mechanical polishing (CMP) process is indispensable to the fabrication of Cu wiring layers in the large-scale integration (LSI). Recently, a direct bonding method with low bonding temperature is required for the CMP-Cu surface in order to obtain a narrow bonding pitch. In this study, we realized a direct bonding between CMP-Cu films by means of the surface activated bonding (SAB) method at room temperature. The critical vacuum pressure to obtain large bonding strength was estimated at about 4×$ 10^{−3} $ Pa from the growth rate of oxide on an active surface measured by the X-ray photoelectron spectroscope (XPS). The films were bonded successfully at the vacuum pressure better than around 3×$ 10^{−3} $ Pa with the shear strength larger than 50 MPa. The transmission electron microscope (TEM) observation showed that the polycrystalline films with the mean surface roughness of 0.3 nm were bonded directly between Cu grains in atomic level. Moreover, the adhesion between the films was improved due to the stress relaxation at the interface during the thermal aging test conducted at 200 and 300^∘C in the vacuum condition. Shear Strength Thermal Aging Aging Test Chemical Mechanical Polishing Vacuum Pressure Itoh, T. aut Suga, T. aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 40(2005), 12 vom: Juni, Seite 3149-3154 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:40 year:2005 number:12 month:06 pages:3149-3154 https://doi.org/10.1007/s10853-005-2677-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4319 GBV_ILN_4323 AR 40 2005 12 06 3149-3154 |
allfieldsGer |
10.1007/s10853-005-2677-1 doi (DE-627)OLC2046303318 (DE-He213)s10853-005-2677-1-p DE-627 ger DE-627 rakwb eng 670 VZ Shigetou, A. verfasserin aut Direct bonding of CMP-Cu films by surface activated bonding (SAB) method 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science + Business Media, Inc. 2005 Abstract The chemical mechanical polishing (CMP) process is indispensable to the fabrication of Cu wiring layers in the large-scale integration (LSI). Recently, a direct bonding method with low bonding temperature is required for the CMP-Cu surface in order to obtain a narrow bonding pitch. In this study, we realized a direct bonding between CMP-Cu films by means of the surface activated bonding (SAB) method at room temperature. The critical vacuum pressure to obtain large bonding strength was estimated at about 4×$ 10^{−3} $ Pa from the growth rate of oxide on an active surface measured by the X-ray photoelectron spectroscope (XPS). The films were bonded successfully at the vacuum pressure better than around 3×$ 10^{−3} $ Pa with the shear strength larger than 50 MPa. The transmission electron microscope (TEM) observation showed that the polycrystalline films with the mean surface roughness of 0.3 nm were bonded directly between Cu grains in atomic level. Moreover, the adhesion between the films was improved due to the stress relaxation at the interface during the thermal aging test conducted at 200 and 300^∘C in the vacuum condition. Shear Strength Thermal Aging Aging Test Chemical Mechanical Polishing Vacuum Pressure Itoh, T. aut Suga, T. aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 40(2005), 12 vom: Juni, Seite 3149-3154 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:40 year:2005 number:12 month:06 pages:3149-3154 https://doi.org/10.1007/s10853-005-2677-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4319 GBV_ILN_4323 AR 40 2005 12 06 3149-3154 |
allfieldsSound |
10.1007/s10853-005-2677-1 doi (DE-627)OLC2046303318 (DE-He213)s10853-005-2677-1-p DE-627 ger DE-627 rakwb eng 670 VZ Shigetou, A. verfasserin aut Direct bonding of CMP-Cu films by surface activated bonding (SAB) method 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science + Business Media, Inc. 2005 Abstract The chemical mechanical polishing (CMP) process is indispensable to the fabrication of Cu wiring layers in the large-scale integration (LSI). Recently, a direct bonding method with low bonding temperature is required for the CMP-Cu surface in order to obtain a narrow bonding pitch. In this study, we realized a direct bonding between CMP-Cu films by means of the surface activated bonding (SAB) method at room temperature. The critical vacuum pressure to obtain large bonding strength was estimated at about 4×$ 10^{−3} $ Pa from the growth rate of oxide on an active surface measured by the X-ray photoelectron spectroscope (XPS). The films were bonded successfully at the vacuum pressure better than around 3×$ 10^{−3} $ Pa with the shear strength larger than 50 MPa. The transmission electron microscope (TEM) observation showed that the polycrystalline films with the mean surface roughness of 0.3 nm were bonded directly between Cu grains in atomic level. Moreover, the adhesion between the films was improved due to the stress relaxation at the interface during the thermal aging test conducted at 200 and 300^∘C in the vacuum condition. Shear Strength Thermal Aging Aging Test Chemical Mechanical Polishing Vacuum Pressure Itoh, T. aut Suga, T. aut Enthalten in Journal of materials science Kluwer Academic Publishers, 1966 40(2005), 12 vom: Juni, Seite 3149-3154 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:40 year:2005 number:12 month:06 pages:3149-3154 https://doi.org/10.1007/s10853-005-2677-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4319 GBV_ILN_4323 AR 40 2005 12 06 3149-3154 |
language |
English |
source |
Enthalten in Journal of materials science 40(2005), 12 vom: Juni, Seite 3149-3154 volume:40 year:2005 number:12 month:06 pages:3149-3154 |
sourceStr |
Enthalten in Journal of materials science 40(2005), 12 vom: Juni, Seite 3149-3154 volume:40 year:2005 number:12 month:06 pages:3149-3154 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Shear Strength Thermal Aging Aging Test Chemical Mechanical Polishing Vacuum Pressure |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of materials science |
authorswithroles_txt_mv |
Shigetou, A. @@aut@@ Itoh, T. @@aut@@ Suga, T. @@aut@@ |
publishDateDaySort_date |
2005-06-01T00:00:00Z |
hierarchy_top_id |
129546372 |
dewey-sort |
3670 |
id |
OLC2046303318 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046303318</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230512181044.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2005 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10853-005-2677-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046303318</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10853-005-2677-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shigetou, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Direct bonding of CMP-Cu films by surface activated bonding (SAB) method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2005</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science + Business Media, Inc. 2005</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The chemical mechanical polishing (CMP) process is indispensable to the fabrication of Cu wiring layers in the large-scale integration (LSI). Recently, a direct bonding method with low bonding temperature is required for the CMP-Cu surface in order to obtain a narrow bonding pitch. In this study, we realized a direct bonding between CMP-Cu films by means of the surface activated bonding (SAB) method at room temperature. The critical vacuum pressure to obtain large bonding strength was estimated at about 4×$ 10^{−3} $ Pa from the growth rate of oxide on an active surface measured by the X-ray photoelectron spectroscope (XPS). The films were bonded successfully at the vacuum pressure better than around 3×$ 10^{−3} $ Pa with the shear strength larger than 50 MPa. The transmission electron microscope (TEM) observation showed that the polycrystalline films with the mean surface roughness of 0.3 nm were bonded directly between Cu grains in atomic level. Moreover, the adhesion between the films was improved due to the stress relaxation at the interface during the thermal aging test conducted at 200 and 300^∘C in the vacuum condition.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shear Strength</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal Aging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aging Test</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical Mechanical Polishing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vacuum Pressure</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Itoh, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Suga, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Kluwer Academic Publishers, 1966</subfield><subfield code="g">40(2005), 12 vom: Juni, Seite 3149-3154</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:40</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:12</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:3149-3154</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10853-005-2677-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">40</subfield><subfield code="j">2005</subfield><subfield code="e">12</subfield><subfield code="c">06</subfield><subfield code="h">3149-3154</subfield></datafield></record></collection>
|
author |
Shigetou, A. |
spellingShingle |
Shigetou, A. ddc 670 misc Shear Strength misc Thermal Aging misc Aging Test misc Chemical Mechanical Polishing misc Vacuum Pressure Direct bonding of CMP-Cu films by surface activated bonding (SAB) method |
authorStr |
Shigetou, A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129546372 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-2461 |
topic_title |
670 VZ Direct bonding of CMP-Cu films by surface activated bonding (SAB) method Shear Strength Thermal Aging Aging Test Chemical Mechanical Polishing Vacuum Pressure |
topic |
ddc 670 misc Shear Strength misc Thermal Aging misc Aging Test misc Chemical Mechanical Polishing misc Vacuum Pressure |
topic_unstemmed |
ddc 670 misc Shear Strength misc Thermal Aging misc Aging Test misc Chemical Mechanical Polishing misc Vacuum Pressure |
topic_browse |
ddc 670 misc Shear Strength misc Thermal Aging misc Aging Test misc Chemical Mechanical Polishing misc Vacuum Pressure |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials science |
hierarchy_parent_id |
129546372 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of materials science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 |
title |
Direct bonding of CMP-Cu films by surface activated bonding (SAB) method |
ctrlnum |
(DE-627)OLC2046303318 (DE-He213)s10853-005-2677-1-p |
title_full |
Direct bonding of CMP-Cu films by surface activated bonding (SAB) method |
author_sort |
Shigetou, A. |
journal |
Journal of materials science |
journalStr |
Journal of materials science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2005 |
contenttype_str_mv |
txt |
container_start_page |
3149 |
author_browse |
Shigetou, A. Itoh, T. Suga, T. |
container_volume |
40 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Shigetou, A. |
doi_str_mv |
10.1007/s10853-005-2677-1 |
dewey-full |
670 |
title_sort |
direct bonding of cmp-cu films by surface activated bonding (sab) method |
title_auth |
Direct bonding of CMP-Cu films by surface activated bonding (SAB) method |
abstract |
Abstract The chemical mechanical polishing (CMP) process is indispensable to the fabrication of Cu wiring layers in the large-scale integration (LSI). Recently, a direct bonding method with low bonding temperature is required for the CMP-Cu surface in order to obtain a narrow bonding pitch. In this study, we realized a direct bonding between CMP-Cu films by means of the surface activated bonding (SAB) method at room temperature. The critical vacuum pressure to obtain large bonding strength was estimated at about 4×$ 10^{−3} $ Pa from the growth rate of oxide on an active surface measured by the X-ray photoelectron spectroscope (XPS). The films were bonded successfully at the vacuum pressure better than around 3×$ 10^{−3} $ Pa with the shear strength larger than 50 MPa. The transmission electron microscope (TEM) observation showed that the polycrystalline films with the mean surface roughness of 0.3 nm were bonded directly between Cu grains in atomic level. Moreover, the adhesion between the films was improved due to the stress relaxation at the interface during the thermal aging test conducted at 200 and 300^∘C in the vacuum condition. © Springer Science + Business Media, Inc. 2005 |
abstractGer |
Abstract The chemical mechanical polishing (CMP) process is indispensable to the fabrication of Cu wiring layers in the large-scale integration (LSI). Recently, a direct bonding method with low bonding temperature is required for the CMP-Cu surface in order to obtain a narrow bonding pitch. In this study, we realized a direct bonding between CMP-Cu films by means of the surface activated bonding (SAB) method at room temperature. The critical vacuum pressure to obtain large bonding strength was estimated at about 4×$ 10^{−3} $ Pa from the growth rate of oxide on an active surface measured by the X-ray photoelectron spectroscope (XPS). The films were bonded successfully at the vacuum pressure better than around 3×$ 10^{−3} $ Pa with the shear strength larger than 50 MPa. The transmission electron microscope (TEM) observation showed that the polycrystalline films with the mean surface roughness of 0.3 nm were bonded directly between Cu grains in atomic level. Moreover, the adhesion between the films was improved due to the stress relaxation at the interface during the thermal aging test conducted at 200 and 300^∘C in the vacuum condition. © Springer Science + Business Media, Inc. 2005 |
abstract_unstemmed |
Abstract The chemical mechanical polishing (CMP) process is indispensable to the fabrication of Cu wiring layers in the large-scale integration (LSI). Recently, a direct bonding method with low bonding temperature is required for the CMP-Cu surface in order to obtain a narrow bonding pitch. In this study, we realized a direct bonding between CMP-Cu films by means of the surface activated bonding (SAB) method at room temperature. The critical vacuum pressure to obtain large bonding strength was estimated at about 4×$ 10^{−3} $ Pa from the growth rate of oxide on an active surface measured by the X-ray photoelectron spectroscope (XPS). The films were bonded successfully at the vacuum pressure better than around 3×$ 10^{−3} $ Pa with the shear strength larger than 50 MPa. The transmission electron microscope (TEM) observation showed that the polycrystalline films with the mean surface roughness of 0.3 nm were bonded directly between Cu grains in atomic level. Moreover, the adhesion between the films was improved due to the stress relaxation at the interface during the thermal aging test conducted at 200 and 300^∘C in the vacuum condition. © Springer Science + Business Media, Inc. 2005 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4319 GBV_ILN_4323 |
container_issue |
12 |
title_short |
Direct bonding of CMP-Cu films by surface activated bonding (SAB) method |
url |
https://doi.org/10.1007/s10853-005-2677-1 |
remote_bool |
false |
author2 |
Itoh, T. Suga, T. |
author2Str |
Itoh, T. Suga, T. |
ppnlink |
129546372 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10853-005-2677-1 |
up_date |
2024-07-04T04:44:38.364Z |
_version_ |
1803622315055906816 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046303318</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230512181044.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2005 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10853-005-2677-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046303318</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10853-005-2677-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shigetou, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Direct bonding of CMP-Cu films by surface activated bonding (SAB) method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2005</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science + Business Media, Inc. 2005</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The chemical mechanical polishing (CMP) process is indispensable to the fabrication of Cu wiring layers in the large-scale integration (LSI). Recently, a direct bonding method with low bonding temperature is required for the CMP-Cu surface in order to obtain a narrow bonding pitch. In this study, we realized a direct bonding between CMP-Cu films by means of the surface activated bonding (SAB) method at room temperature. The critical vacuum pressure to obtain large bonding strength was estimated at about 4×$ 10^{−3} $ Pa from the growth rate of oxide on an active surface measured by the X-ray photoelectron spectroscope (XPS). The films were bonded successfully at the vacuum pressure better than around 3×$ 10^{−3} $ Pa with the shear strength larger than 50 MPa. The transmission electron microscope (TEM) observation showed that the polycrystalline films with the mean surface roughness of 0.3 nm were bonded directly between Cu grains in atomic level. Moreover, the adhesion between the films was improved due to the stress relaxation at the interface during the thermal aging test conducted at 200 and 300^∘C in the vacuum condition.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shear Strength</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal Aging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aging Test</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical Mechanical Polishing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vacuum Pressure</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Itoh, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Suga, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Kluwer Academic Publishers, 1966</subfield><subfield code="g">40(2005), 12 vom: Juni, Seite 3149-3154</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:40</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:12</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:3149-3154</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10853-005-2677-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">40</subfield><subfield code="j">2005</subfield><subfield code="e">12</subfield><subfield code="c">06</subfield><subfield code="h">3149-3154</subfield></datafield></record></collection>
|
score |
7.401513 |