Influence of tobermorite formation on mechanical properties of hydrothermally solidified blast furnace slag
Abstract A hydrothermal processing method has been used to solidify blast furnace water-cooled slag (BFWS), in which the BFWS could be solidified in an autoclave under saturated steam pressure (1.56 MPa) at 200 °C for 12 h by the additions of quartz or coal fly ash. The experimental results showed t...
Ausführliche Beschreibung
Autor*in: |
Jing, Zhenzi [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2007 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2007 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials science - Springer US, 1966, 43(2007), 7 vom: 06. Dez., Seite 2356-2361 |
---|---|
Übergeordnetes Werk: |
volume:43 ; year:2007 ; number:7 ; day:06 ; month:12 ; pages:2356-2361 |
Links: |
---|
DOI / URN: |
10.1007/s10853-007-2025-8 |
---|
Katalog-ID: |
OLC2046337743 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2046337743 | ||
003 | DE-627 | ||
005 | 20230503123827.0 | ||
007 | tu | ||
008 | 200820s2007 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10853-007-2025-8 |2 doi | |
035 | |a (DE-627)OLC2046337743 | ||
035 | |a (DE-He213)s10853-007-2025-8-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Jing, Zhenzi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Influence of tobermorite formation on mechanical properties of hydrothermally solidified blast furnace slag |
264 | 1 | |c 2007 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2007 | ||
520 | |a Abstract A hydrothermal processing method has been used to solidify blast furnace water-cooled slag (BFWS), in which the BFWS could be solidified in an autoclave under saturated steam pressure (1.56 MPa) at 200 °C for 12 h by the additions of quartz or coal fly ash. The experimental results showed that the addition of the quartz or fly ash was favorable to the formation of tobermorite, and the tobermorite formation in turn exerted a signifiant influence on tensile strength. The strength development depended on both tobermorite formation and the density of the tobermorite formed. The excessive addition of quartz appeared to cause strength deterioration due to the fact that the residual quartz affected the formation of tobermorite in the solidified specimens. Fly ash could be used as an additive for the hydrothermal solidification of BFWS, which may offer both energy saving and cost reduction. | ||
650 | 4 | |a Blast Furnace Slag | |
650 | 4 | |a Pore Distribution | |
650 | 4 | |a Tobermorite | |
650 | 4 | |a Brazilian Testing | |
650 | 4 | |a Filling Degree | |
700 | 1 | |a Jin, F. |4 aut | |
700 | 1 | |a Hashida, T. |4 aut | |
700 | 1 | |a Yamasaki, N. |4 aut | |
700 | 1 | |a Ishida, Emile H. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials science |d Springer US, 1966 |g 43(2007), 7 vom: 06. Dez., Seite 2356-2361 |w (DE-627)129546372 |w (DE-600)218324-9 |w (DE-576)014996774 |x 0022-2461 |7 nnns |
773 | 1 | 8 | |g volume:43 |g year:2007 |g number:7 |g day:06 |g month:12 |g pages:2356-2361 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10853-007-2025-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 43 |j 2007 |e 7 |b 06 |c 12 |h 2356-2361 |
author_variant |
z j zj f j fj t h th n y ny e h i eh ehi |
---|---|
matchkey_str |
article:00222461:2007----::nlecotbroieomtoomcaiapoeteohdohral |
hierarchy_sort_str |
2007 |
publishDate |
2007 |
allfields |
10.1007/s10853-007-2025-8 doi (DE-627)OLC2046337743 (DE-He213)s10853-007-2025-8-p DE-627 ger DE-627 rakwb eng 670 VZ Jing, Zhenzi verfasserin aut Influence of tobermorite formation on mechanical properties of hydrothermally solidified blast furnace slag 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract A hydrothermal processing method has been used to solidify blast furnace water-cooled slag (BFWS), in which the BFWS could be solidified in an autoclave under saturated steam pressure (1.56 MPa) at 200 °C for 12 h by the additions of quartz or coal fly ash. The experimental results showed that the addition of the quartz or fly ash was favorable to the formation of tobermorite, and the tobermorite formation in turn exerted a signifiant influence on tensile strength. The strength development depended on both tobermorite formation and the density of the tobermorite formed. The excessive addition of quartz appeared to cause strength deterioration due to the fact that the residual quartz affected the formation of tobermorite in the solidified specimens. Fly ash could be used as an additive for the hydrothermal solidification of BFWS, which may offer both energy saving and cost reduction. Blast Furnace Slag Pore Distribution Tobermorite Brazilian Testing Filling Degree Jin, F. aut Hashida, T. aut Yamasaki, N. aut Ishida, Emile H. aut Enthalten in Journal of materials science Springer US, 1966 43(2007), 7 vom: 06. Dez., Seite 2356-2361 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:43 year:2007 number:7 day:06 month:12 pages:2356-2361 https://doi.org/10.1007/s10853-007-2025-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 43 2007 7 06 12 2356-2361 |
spelling |
10.1007/s10853-007-2025-8 doi (DE-627)OLC2046337743 (DE-He213)s10853-007-2025-8-p DE-627 ger DE-627 rakwb eng 670 VZ Jing, Zhenzi verfasserin aut Influence of tobermorite formation on mechanical properties of hydrothermally solidified blast furnace slag 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract A hydrothermal processing method has been used to solidify blast furnace water-cooled slag (BFWS), in which the BFWS could be solidified in an autoclave under saturated steam pressure (1.56 MPa) at 200 °C for 12 h by the additions of quartz or coal fly ash. The experimental results showed that the addition of the quartz or fly ash was favorable to the formation of tobermorite, and the tobermorite formation in turn exerted a signifiant influence on tensile strength. The strength development depended on both tobermorite formation and the density of the tobermorite formed. The excessive addition of quartz appeared to cause strength deterioration due to the fact that the residual quartz affected the formation of tobermorite in the solidified specimens. Fly ash could be used as an additive for the hydrothermal solidification of BFWS, which may offer both energy saving and cost reduction. Blast Furnace Slag Pore Distribution Tobermorite Brazilian Testing Filling Degree Jin, F. aut Hashida, T. aut Yamasaki, N. aut Ishida, Emile H. aut Enthalten in Journal of materials science Springer US, 1966 43(2007), 7 vom: 06. Dez., Seite 2356-2361 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:43 year:2007 number:7 day:06 month:12 pages:2356-2361 https://doi.org/10.1007/s10853-007-2025-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 43 2007 7 06 12 2356-2361 |
allfields_unstemmed |
10.1007/s10853-007-2025-8 doi (DE-627)OLC2046337743 (DE-He213)s10853-007-2025-8-p DE-627 ger DE-627 rakwb eng 670 VZ Jing, Zhenzi verfasserin aut Influence of tobermorite formation on mechanical properties of hydrothermally solidified blast furnace slag 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract A hydrothermal processing method has been used to solidify blast furnace water-cooled slag (BFWS), in which the BFWS could be solidified in an autoclave under saturated steam pressure (1.56 MPa) at 200 °C for 12 h by the additions of quartz or coal fly ash. The experimental results showed that the addition of the quartz or fly ash was favorable to the formation of tobermorite, and the tobermorite formation in turn exerted a signifiant influence on tensile strength. The strength development depended on both tobermorite formation and the density of the tobermorite formed. The excessive addition of quartz appeared to cause strength deterioration due to the fact that the residual quartz affected the formation of tobermorite in the solidified specimens. Fly ash could be used as an additive for the hydrothermal solidification of BFWS, which may offer both energy saving and cost reduction. Blast Furnace Slag Pore Distribution Tobermorite Brazilian Testing Filling Degree Jin, F. aut Hashida, T. aut Yamasaki, N. aut Ishida, Emile H. aut Enthalten in Journal of materials science Springer US, 1966 43(2007), 7 vom: 06. Dez., Seite 2356-2361 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:43 year:2007 number:7 day:06 month:12 pages:2356-2361 https://doi.org/10.1007/s10853-007-2025-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 43 2007 7 06 12 2356-2361 |
allfieldsGer |
10.1007/s10853-007-2025-8 doi (DE-627)OLC2046337743 (DE-He213)s10853-007-2025-8-p DE-627 ger DE-627 rakwb eng 670 VZ Jing, Zhenzi verfasserin aut Influence of tobermorite formation on mechanical properties of hydrothermally solidified blast furnace slag 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract A hydrothermal processing method has been used to solidify blast furnace water-cooled slag (BFWS), in which the BFWS could be solidified in an autoclave under saturated steam pressure (1.56 MPa) at 200 °C for 12 h by the additions of quartz or coal fly ash. The experimental results showed that the addition of the quartz or fly ash was favorable to the formation of tobermorite, and the tobermorite formation in turn exerted a signifiant influence on tensile strength. The strength development depended on both tobermorite formation and the density of the tobermorite formed. The excessive addition of quartz appeared to cause strength deterioration due to the fact that the residual quartz affected the formation of tobermorite in the solidified specimens. Fly ash could be used as an additive for the hydrothermal solidification of BFWS, which may offer both energy saving and cost reduction. Blast Furnace Slag Pore Distribution Tobermorite Brazilian Testing Filling Degree Jin, F. aut Hashida, T. aut Yamasaki, N. aut Ishida, Emile H. aut Enthalten in Journal of materials science Springer US, 1966 43(2007), 7 vom: 06. Dez., Seite 2356-2361 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:43 year:2007 number:7 day:06 month:12 pages:2356-2361 https://doi.org/10.1007/s10853-007-2025-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 43 2007 7 06 12 2356-2361 |
allfieldsSound |
10.1007/s10853-007-2025-8 doi (DE-627)OLC2046337743 (DE-He213)s10853-007-2025-8-p DE-627 ger DE-627 rakwb eng 670 VZ Jing, Zhenzi verfasserin aut Influence of tobermorite formation on mechanical properties of hydrothermally solidified blast furnace slag 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract A hydrothermal processing method has been used to solidify blast furnace water-cooled slag (BFWS), in which the BFWS could be solidified in an autoclave under saturated steam pressure (1.56 MPa) at 200 °C for 12 h by the additions of quartz or coal fly ash. The experimental results showed that the addition of the quartz or fly ash was favorable to the formation of tobermorite, and the tobermorite formation in turn exerted a signifiant influence on tensile strength. The strength development depended on both tobermorite formation and the density of the tobermorite formed. The excessive addition of quartz appeared to cause strength deterioration due to the fact that the residual quartz affected the formation of tobermorite in the solidified specimens. Fly ash could be used as an additive for the hydrothermal solidification of BFWS, which may offer both energy saving and cost reduction. Blast Furnace Slag Pore Distribution Tobermorite Brazilian Testing Filling Degree Jin, F. aut Hashida, T. aut Yamasaki, N. aut Ishida, Emile H. aut Enthalten in Journal of materials science Springer US, 1966 43(2007), 7 vom: 06. Dez., Seite 2356-2361 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:43 year:2007 number:7 day:06 month:12 pages:2356-2361 https://doi.org/10.1007/s10853-007-2025-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 43 2007 7 06 12 2356-2361 |
language |
English |
source |
Enthalten in Journal of materials science 43(2007), 7 vom: 06. Dez., Seite 2356-2361 volume:43 year:2007 number:7 day:06 month:12 pages:2356-2361 |
sourceStr |
Enthalten in Journal of materials science 43(2007), 7 vom: 06. Dez., Seite 2356-2361 volume:43 year:2007 number:7 day:06 month:12 pages:2356-2361 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Blast Furnace Slag Pore Distribution Tobermorite Brazilian Testing Filling Degree |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of materials science |
authorswithroles_txt_mv |
Jing, Zhenzi @@aut@@ Jin, F. @@aut@@ Hashida, T. @@aut@@ Yamasaki, N. @@aut@@ Ishida, Emile H. @@aut@@ |
publishDateDaySort_date |
2007-12-06T00:00:00Z |
hierarchy_top_id |
129546372 |
dewey-sort |
3670 |
id |
OLC2046337743 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046337743</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503123827.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10853-007-2025-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046337743</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10853-007-2025-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jing, Zhenzi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Influence of tobermorite formation on mechanical properties of hydrothermally solidified blast furnace slag</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A hydrothermal processing method has been used to solidify blast furnace water-cooled slag (BFWS), in which the BFWS could be solidified in an autoclave under saturated steam pressure (1.56 MPa) at 200 °C for 12 h by the additions of quartz or coal fly ash. The experimental results showed that the addition of the quartz or fly ash was favorable to the formation of tobermorite, and the tobermorite formation in turn exerted a signifiant influence on tensile strength. The strength development depended on both tobermorite formation and the density of the tobermorite formed. The excessive addition of quartz appeared to cause strength deterioration due to the fact that the residual quartz affected the formation of tobermorite in the solidified specimens. Fly ash could be used as an additive for the hydrothermal solidification of BFWS, which may offer both energy saving and cost reduction.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blast Furnace Slag</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pore Distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tobermorite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brazilian Testing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Filling Degree</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jin, F.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hashida, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yamasaki, N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ishida, Emile H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Springer US, 1966</subfield><subfield code="g">43(2007), 7 vom: 06. Dez., Seite 2356-2361</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:43</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:7</subfield><subfield code="g">day:06</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:2356-2361</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10853-007-2025-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">43</subfield><subfield code="j">2007</subfield><subfield code="e">7</subfield><subfield code="b">06</subfield><subfield code="c">12</subfield><subfield code="h">2356-2361</subfield></datafield></record></collection>
|
author |
Jing, Zhenzi |
spellingShingle |
Jing, Zhenzi ddc 670 misc Blast Furnace Slag misc Pore Distribution misc Tobermorite misc Brazilian Testing misc Filling Degree Influence of tobermorite formation on mechanical properties of hydrothermally solidified blast furnace slag |
authorStr |
Jing, Zhenzi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129546372 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-2461 |
topic_title |
670 VZ Influence of tobermorite formation on mechanical properties of hydrothermally solidified blast furnace slag Blast Furnace Slag Pore Distribution Tobermorite Brazilian Testing Filling Degree |
topic |
ddc 670 misc Blast Furnace Slag misc Pore Distribution misc Tobermorite misc Brazilian Testing misc Filling Degree |
topic_unstemmed |
ddc 670 misc Blast Furnace Slag misc Pore Distribution misc Tobermorite misc Brazilian Testing misc Filling Degree |
topic_browse |
ddc 670 misc Blast Furnace Slag misc Pore Distribution misc Tobermorite misc Brazilian Testing misc Filling Degree |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials science |
hierarchy_parent_id |
129546372 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of materials science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 |
title |
Influence of tobermorite formation on mechanical properties of hydrothermally solidified blast furnace slag |
ctrlnum |
(DE-627)OLC2046337743 (DE-He213)s10853-007-2025-8-p |
title_full |
Influence of tobermorite formation on mechanical properties of hydrothermally solidified blast furnace slag |
author_sort |
Jing, Zhenzi |
journal |
Journal of materials science |
journalStr |
Journal of materials science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2007 |
contenttype_str_mv |
txt |
container_start_page |
2356 |
author_browse |
Jing, Zhenzi Jin, F. Hashida, T. Yamasaki, N. Ishida, Emile H. |
container_volume |
43 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Jing, Zhenzi |
doi_str_mv |
10.1007/s10853-007-2025-8 |
dewey-full |
670 |
title_sort |
influence of tobermorite formation on mechanical properties of hydrothermally solidified blast furnace slag |
title_auth |
Influence of tobermorite formation on mechanical properties of hydrothermally solidified blast furnace slag |
abstract |
Abstract A hydrothermal processing method has been used to solidify blast furnace water-cooled slag (BFWS), in which the BFWS could be solidified in an autoclave under saturated steam pressure (1.56 MPa) at 200 °C for 12 h by the additions of quartz or coal fly ash. The experimental results showed that the addition of the quartz or fly ash was favorable to the formation of tobermorite, and the tobermorite formation in turn exerted a signifiant influence on tensile strength. The strength development depended on both tobermorite formation and the density of the tobermorite formed. The excessive addition of quartz appeared to cause strength deterioration due to the fact that the residual quartz affected the formation of tobermorite in the solidified specimens. Fly ash could be used as an additive for the hydrothermal solidification of BFWS, which may offer both energy saving and cost reduction. © Springer Science+Business Media, LLC 2007 |
abstractGer |
Abstract A hydrothermal processing method has been used to solidify blast furnace water-cooled slag (BFWS), in which the BFWS could be solidified in an autoclave under saturated steam pressure (1.56 MPa) at 200 °C for 12 h by the additions of quartz or coal fly ash. The experimental results showed that the addition of the quartz or fly ash was favorable to the formation of tobermorite, and the tobermorite formation in turn exerted a signifiant influence on tensile strength. The strength development depended on both tobermorite formation and the density of the tobermorite formed. The excessive addition of quartz appeared to cause strength deterioration due to the fact that the residual quartz affected the formation of tobermorite in the solidified specimens. Fly ash could be used as an additive for the hydrothermal solidification of BFWS, which may offer both energy saving and cost reduction. © Springer Science+Business Media, LLC 2007 |
abstract_unstemmed |
Abstract A hydrothermal processing method has been used to solidify blast furnace water-cooled slag (BFWS), in which the BFWS could be solidified in an autoclave under saturated steam pressure (1.56 MPa) at 200 °C for 12 h by the additions of quartz or coal fly ash. The experimental results showed that the addition of the quartz or fly ash was favorable to the formation of tobermorite, and the tobermorite formation in turn exerted a signifiant influence on tensile strength. The strength development depended on both tobermorite formation and the density of the tobermorite formed. The excessive addition of quartz appeared to cause strength deterioration due to the fact that the residual quartz affected the formation of tobermorite in the solidified specimens. Fly ash could be used as an additive for the hydrothermal solidification of BFWS, which may offer both energy saving and cost reduction. © Springer Science+Business Media, LLC 2007 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 |
container_issue |
7 |
title_short |
Influence of tobermorite formation on mechanical properties of hydrothermally solidified blast furnace slag |
url |
https://doi.org/10.1007/s10853-007-2025-8 |
remote_bool |
false |
author2 |
Jin, F. Hashida, T. Yamasaki, N. Ishida, Emile H. |
author2Str |
Jin, F. Hashida, T. Yamasaki, N. Ishida, Emile H. |
ppnlink |
129546372 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10853-007-2025-8 |
up_date |
2024-07-04T04:49:50.327Z |
_version_ |
1803622642170724352 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046337743</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503123827.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10853-007-2025-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046337743</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10853-007-2025-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jing, Zhenzi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Influence of tobermorite formation on mechanical properties of hydrothermally solidified blast furnace slag</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A hydrothermal processing method has been used to solidify blast furnace water-cooled slag (BFWS), in which the BFWS could be solidified in an autoclave under saturated steam pressure (1.56 MPa) at 200 °C for 12 h by the additions of quartz or coal fly ash. The experimental results showed that the addition of the quartz or fly ash was favorable to the formation of tobermorite, and the tobermorite formation in turn exerted a signifiant influence on tensile strength. The strength development depended on both tobermorite formation and the density of the tobermorite formed. The excessive addition of quartz appeared to cause strength deterioration due to the fact that the residual quartz affected the formation of tobermorite in the solidified specimens. Fly ash could be used as an additive for the hydrothermal solidification of BFWS, which may offer both energy saving and cost reduction.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blast Furnace Slag</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pore Distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tobermorite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brazilian Testing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Filling Degree</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jin, F.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hashida, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yamasaki, N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ishida, Emile H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Springer US, 1966</subfield><subfield code="g">43(2007), 7 vom: 06. Dez., Seite 2356-2361</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:43</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:7</subfield><subfield code="g">day:06</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:2356-2361</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10853-007-2025-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">43</subfield><subfield code="j">2007</subfield><subfield code="e">7</subfield><subfield code="b">06</subfield><subfield code="c">12</subfield><subfield code="h">2356-2361</subfield></datafield></record></collection>
|
score |
7.399147 |