Shear deformation and grain refinement during accumulative back extrusion of AZ31 magnesium alloy
Abstract The accumulative back extrusion (ABE), as a new-noble severe plastic deformation (SPD) technique, has been employed to clarify the microstructural evolutions of AZ31 magnesium alloy during severe deformation. The latter has been explored using a 3D finite element analysis along with the mic...
Ausführliche Beschreibung
Autor*in: |
Fatemi-Varzaneh, S. M. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2010 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2010 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials science - Springer US, 1966, 46(2010), 6 vom: 02. Nov., Seite 1937-1944 |
---|---|
Übergeordnetes Werk: |
volume:46 ; year:2010 ; number:6 ; day:02 ; month:11 ; pages:1937-1944 |
Links: |
---|
DOI / URN: |
10.1007/s10853-010-5029-8 |
---|
Katalog-ID: |
OLC2046364325 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2046364325 | ||
003 | DE-627 | ||
005 | 20230503124151.0 | ||
007 | tu | ||
008 | 200820s2010 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10853-010-5029-8 |2 doi | |
035 | |a (DE-627)OLC2046364325 | ||
035 | |a (DE-He213)s10853-010-5029-8-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Fatemi-Varzaneh, S. M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Shear deformation and grain refinement during accumulative back extrusion of AZ31 magnesium alloy |
264 | 1 | |c 2010 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2010 | ||
520 | |a Abstract The accumulative back extrusion (ABE), as a new-noble severe plastic deformation (SPD) technique, has been employed to clarify the microstructural evolutions of AZ31 magnesium alloy during severe deformation. The latter has been explored using a 3D finite element analysis along with the microstructural investigations. The distribution of ABE generated shear strain (SS) and its corresponding microstructures have been thoroughly studied. The results indicated that the restrictions of material flow during ABE processing had been led to the mechanical shear bands generation in the microstructure. In addition, the occurrence of continuous dynamic recrystallization (CDRX) within the bands has resulted in a local grain refinement in those areas. Consequently a bimodal structure including the fine recrystallized grains along with the elongated ones has been developed. The effect of deformation mode on the microstructural refinement has been also discussed through considering the developed SS history and the related microstructural refinement. | ||
650 | 4 | |a Shear Strain | |
650 | 4 | |a Magnesium Alloy | |
650 | 4 | |a Shear Band | |
650 | 4 | |a Simple Shear | |
650 | 4 | |a Work Piece | |
700 | 1 | |a Zarei-Hanzaki, A. |4 aut | |
700 | 1 | |a Izadi, S. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials science |d Springer US, 1966 |g 46(2010), 6 vom: 02. Nov., Seite 1937-1944 |w (DE-627)129546372 |w (DE-600)218324-9 |w (DE-576)014996774 |x 0022-2461 |7 nnns |
773 | 1 | 8 | |g volume:46 |g year:2010 |g number:6 |g day:02 |g month:11 |g pages:1937-1944 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10853-010-5029-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 46 |j 2010 |e 6 |b 02 |c 11 |h 1937-1944 |
author_variant |
s m f v smf smfv a z h azh s i si |
---|---|
matchkey_str |
article:00222461:2010----::hadfrainnganeieetuigcuuaieakxrs |
hierarchy_sort_str |
2010 |
publishDate |
2010 |
allfields |
10.1007/s10853-010-5029-8 doi (DE-627)OLC2046364325 (DE-He213)s10853-010-5029-8-p DE-627 ger DE-627 rakwb eng 670 VZ Fatemi-Varzaneh, S. M. verfasserin aut Shear deformation and grain refinement during accumulative back extrusion of AZ31 magnesium alloy 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2010 Abstract The accumulative back extrusion (ABE), as a new-noble severe plastic deformation (SPD) technique, has been employed to clarify the microstructural evolutions of AZ31 magnesium alloy during severe deformation. The latter has been explored using a 3D finite element analysis along with the microstructural investigations. The distribution of ABE generated shear strain (SS) and its corresponding microstructures have been thoroughly studied. The results indicated that the restrictions of material flow during ABE processing had been led to the mechanical shear bands generation in the microstructure. In addition, the occurrence of continuous dynamic recrystallization (CDRX) within the bands has resulted in a local grain refinement in those areas. Consequently a bimodal structure including the fine recrystallized grains along with the elongated ones has been developed. The effect of deformation mode on the microstructural refinement has been also discussed through considering the developed SS history and the related microstructural refinement. Shear Strain Magnesium Alloy Shear Band Simple Shear Work Piece Zarei-Hanzaki, A. aut Izadi, S. aut Enthalten in Journal of materials science Springer US, 1966 46(2010), 6 vom: 02. Nov., Seite 1937-1944 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:46 year:2010 number:6 day:02 month:11 pages:1937-1944 https://doi.org/10.1007/s10853-010-5029-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 46 2010 6 02 11 1937-1944 |
spelling |
10.1007/s10853-010-5029-8 doi (DE-627)OLC2046364325 (DE-He213)s10853-010-5029-8-p DE-627 ger DE-627 rakwb eng 670 VZ Fatemi-Varzaneh, S. M. verfasserin aut Shear deformation and grain refinement during accumulative back extrusion of AZ31 magnesium alloy 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2010 Abstract The accumulative back extrusion (ABE), as a new-noble severe plastic deformation (SPD) technique, has been employed to clarify the microstructural evolutions of AZ31 magnesium alloy during severe deformation. The latter has been explored using a 3D finite element analysis along with the microstructural investigations. The distribution of ABE generated shear strain (SS) and its corresponding microstructures have been thoroughly studied. The results indicated that the restrictions of material flow during ABE processing had been led to the mechanical shear bands generation in the microstructure. In addition, the occurrence of continuous dynamic recrystallization (CDRX) within the bands has resulted in a local grain refinement in those areas. Consequently a bimodal structure including the fine recrystallized grains along with the elongated ones has been developed. The effect of deformation mode on the microstructural refinement has been also discussed through considering the developed SS history and the related microstructural refinement. Shear Strain Magnesium Alloy Shear Band Simple Shear Work Piece Zarei-Hanzaki, A. aut Izadi, S. aut Enthalten in Journal of materials science Springer US, 1966 46(2010), 6 vom: 02. Nov., Seite 1937-1944 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:46 year:2010 number:6 day:02 month:11 pages:1937-1944 https://doi.org/10.1007/s10853-010-5029-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 46 2010 6 02 11 1937-1944 |
allfields_unstemmed |
10.1007/s10853-010-5029-8 doi (DE-627)OLC2046364325 (DE-He213)s10853-010-5029-8-p DE-627 ger DE-627 rakwb eng 670 VZ Fatemi-Varzaneh, S. M. verfasserin aut Shear deformation and grain refinement during accumulative back extrusion of AZ31 magnesium alloy 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2010 Abstract The accumulative back extrusion (ABE), as a new-noble severe plastic deformation (SPD) technique, has been employed to clarify the microstructural evolutions of AZ31 magnesium alloy during severe deformation. The latter has been explored using a 3D finite element analysis along with the microstructural investigations. The distribution of ABE generated shear strain (SS) and its corresponding microstructures have been thoroughly studied. The results indicated that the restrictions of material flow during ABE processing had been led to the mechanical shear bands generation in the microstructure. In addition, the occurrence of continuous dynamic recrystallization (CDRX) within the bands has resulted in a local grain refinement in those areas. Consequently a bimodal structure including the fine recrystallized grains along with the elongated ones has been developed. The effect of deformation mode on the microstructural refinement has been also discussed through considering the developed SS history and the related microstructural refinement. Shear Strain Magnesium Alloy Shear Band Simple Shear Work Piece Zarei-Hanzaki, A. aut Izadi, S. aut Enthalten in Journal of materials science Springer US, 1966 46(2010), 6 vom: 02. Nov., Seite 1937-1944 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:46 year:2010 number:6 day:02 month:11 pages:1937-1944 https://doi.org/10.1007/s10853-010-5029-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 46 2010 6 02 11 1937-1944 |
allfieldsGer |
10.1007/s10853-010-5029-8 doi (DE-627)OLC2046364325 (DE-He213)s10853-010-5029-8-p DE-627 ger DE-627 rakwb eng 670 VZ Fatemi-Varzaneh, S. M. verfasserin aut Shear deformation and grain refinement during accumulative back extrusion of AZ31 magnesium alloy 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2010 Abstract The accumulative back extrusion (ABE), as a new-noble severe plastic deformation (SPD) technique, has been employed to clarify the microstructural evolutions of AZ31 magnesium alloy during severe deformation. The latter has been explored using a 3D finite element analysis along with the microstructural investigations. The distribution of ABE generated shear strain (SS) and its corresponding microstructures have been thoroughly studied. The results indicated that the restrictions of material flow during ABE processing had been led to the mechanical shear bands generation in the microstructure. In addition, the occurrence of continuous dynamic recrystallization (CDRX) within the bands has resulted in a local grain refinement in those areas. Consequently a bimodal structure including the fine recrystallized grains along with the elongated ones has been developed. The effect of deformation mode on the microstructural refinement has been also discussed through considering the developed SS history and the related microstructural refinement. Shear Strain Magnesium Alloy Shear Band Simple Shear Work Piece Zarei-Hanzaki, A. aut Izadi, S. aut Enthalten in Journal of materials science Springer US, 1966 46(2010), 6 vom: 02. Nov., Seite 1937-1944 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:46 year:2010 number:6 day:02 month:11 pages:1937-1944 https://doi.org/10.1007/s10853-010-5029-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 46 2010 6 02 11 1937-1944 |
allfieldsSound |
10.1007/s10853-010-5029-8 doi (DE-627)OLC2046364325 (DE-He213)s10853-010-5029-8-p DE-627 ger DE-627 rakwb eng 670 VZ Fatemi-Varzaneh, S. M. verfasserin aut Shear deformation and grain refinement during accumulative back extrusion of AZ31 magnesium alloy 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2010 Abstract The accumulative back extrusion (ABE), as a new-noble severe plastic deformation (SPD) technique, has been employed to clarify the microstructural evolutions of AZ31 magnesium alloy during severe deformation. The latter has been explored using a 3D finite element analysis along with the microstructural investigations. The distribution of ABE generated shear strain (SS) and its corresponding microstructures have been thoroughly studied. The results indicated that the restrictions of material flow during ABE processing had been led to the mechanical shear bands generation in the microstructure. In addition, the occurrence of continuous dynamic recrystallization (CDRX) within the bands has resulted in a local grain refinement in those areas. Consequently a bimodal structure including the fine recrystallized grains along with the elongated ones has been developed. The effect of deformation mode on the microstructural refinement has been also discussed through considering the developed SS history and the related microstructural refinement. Shear Strain Magnesium Alloy Shear Band Simple Shear Work Piece Zarei-Hanzaki, A. aut Izadi, S. aut Enthalten in Journal of materials science Springer US, 1966 46(2010), 6 vom: 02. Nov., Seite 1937-1944 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:46 year:2010 number:6 day:02 month:11 pages:1937-1944 https://doi.org/10.1007/s10853-010-5029-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 46 2010 6 02 11 1937-1944 |
language |
English |
source |
Enthalten in Journal of materials science 46(2010), 6 vom: 02. Nov., Seite 1937-1944 volume:46 year:2010 number:6 day:02 month:11 pages:1937-1944 |
sourceStr |
Enthalten in Journal of materials science 46(2010), 6 vom: 02. Nov., Seite 1937-1944 volume:46 year:2010 number:6 day:02 month:11 pages:1937-1944 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Shear Strain Magnesium Alloy Shear Band Simple Shear Work Piece |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of materials science |
authorswithroles_txt_mv |
Fatemi-Varzaneh, S. M. @@aut@@ Zarei-Hanzaki, A. @@aut@@ Izadi, S. @@aut@@ |
publishDateDaySort_date |
2010-11-02T00:00:00Z |
hierarchy_top_id |
129546372 |
dewey-sort |
3670 |
id |
OLC2046364325 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046364325</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503124151.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10853-010-5029-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046364325</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10853-010-5029-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fatemi-Varzaneh, S. M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Shear deformation and grain refinement during accumulative back extrusion of AZ31 magnesium alloy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The accumulative back extrusion (ABE), as a new-noble severe plastic deformation (SPD) technique, has been employed to clarify the microstructural evolutions of AZ31 magnesium alloy during severe deformation. The latter has been explored using a 3D finite element analysis along with the microstructural investigations. The distribution of ABE generated shear strain (SS) and its corresponding microstructures have been thoroughly studied. The results indicated that the restrictions of material flow during ABE processing had been led to the mechanical shear bands generation in the microstructure. In addition, the occurrence of continuous dynamic recrystallization (CDRX) within the bands has resulted in a local grain refinement in those areas. Consequently a bimodal structure including the fine recrystallized grains along with the elongated ones has been developed. The effect of deformation mode on the microstructural refinement has been also discussed through considering the developed SS history and the related microstructural refinement.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shear Strain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnesium Alloy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shear Band</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simple Shear</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Work Piece</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zarei-Hanzaki, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Izadi, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Springer US, 1966</subfield><subfield code="g">46(2010), 6 vom: 02. Nov., Seite 1937-1944</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:6</subfield><subfield code="g">day:02</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:1937-1944</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10853-010-5029-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2010</subfield><subfield code="e">6</subfield><subfield code="b">02</subfield><subfield code="c">11</subfield><subfield code="h">1937-1944</subfield></datafield></record></collection>
|
author |
Fatemi-Varzaneh, S. M. |
spellingShingle |
Fatemi-Varzaneh, S. M. ddc 670 misc Shear Strain misc Magnesium Alloy misc Shear Band misc Simple Shear misc Work Piece Shear deformation and grain refinement during accumulative back extrusion of AZ31 magnesium alloy |
authorStr |
Fatemi-Varzaneh, S. M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129546372 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-2461 |
topic_title |
670 VZ Shear deformation and grain refinement during accumulative back extrusion of AZ31 magnesium alloy Shear Strain Magnesium Alloy Shear Band Simple Shear Work Piece |
topic |
ddc 670 misc Shear Strain misc Magnesium Alloy misc Shear Band misc Simple Shear misc Work Piece |
topic_unstemmed |
ddc 670 misc Shear Strain misc Magnesium Alloy misc Shear Band misc Simple Shear misc Work Piece |
topic_browse |
ddc 670 misc Shear Strain misc Magnesium Alloy misc Shear Band misc Simple Shear misc Work Piece |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials science |
hierarchy_parent_id |
129546372 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of materials science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 |
title |
Shear deformation and grain refinement during accumulative back extrusion of AZ31 magnesium alloy |
ctrlnum |
(DE-627)OLC2046364325 (DE-He213)s10853-010-5029-8-p |
title_full |
Shear deformation and grain refinement during accumulative back extrusion of AZ31 magnesium alloy |
author_sort |
Fatemi-Varzaneh, S. M. |
journal |
Journal of materials science |
journalStr |
Journal of materials science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
container_start_page |
1937 |
author_browse |
Fatemi-Varzaneh, S. M. Zarei-Hanzaki, A. Izadi, S. |
container_volume |
46 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Fatemi-Varzaneh, S. M. |
doi_str_mv |
10.1007/s10853-010-5029-8 |
dewey-full |
670 |
title_sort |
shear deformation and grain refinement during accumulative back extrusion of az31 magnesium alloy |
title_auth |
Shear deformation and grain refinement during accumulative back extrusion of AZ31 magnesium alloy |
abstract |
Abstract The accumulative back extrusion (ABE), as a new-noble severe plastic deformation (SPD) technique, has been employed to clarify the microstructural evolutions of AZ31 magnesium alloy during severe deformation. The latter has been explored using a 3D finite element analysis along with the microstructural investigations. The distribution of ABE generated shear strain (SS) and its corresponding microstructures have been thoroughly studied. The results indicated that the restrictions of material flow during ABE processing had been led to the mechanical shear bands generation in the microstructure. In addition, the occurrence of continuous dynamic recrystallization (CDRX) within the bands has resulted in a local grain refinement in those areas. Consequently a bimodal structure including the fine recrystallized grains along with the elongated ones has been developed. The effect of deformation mode on the microstructural refinement has been also discussed through considering the developed SS history and the related microstructural refinement. © Springer Science+Business Media, LLC 2010 |
abstractGer |
Abstract The accumulative back extrusion (ABE), as a new-noble severe plastic deformation (SPD) technique, has been employed to clarify the microstructural evolutions of AZ31 magnesium alloy during severe deformation. The latter has been explored using a 3D finite element analysis along with the microstructural investigations. The distribution of ABE generated shear strain (SS) and its corresponding microstructures have been thoroughly studied. The results indicated that the restrictions of material flow during ABE processing had been led to the mechanical shear bands generation in the microstructure. In addition, the occurrence of continuous dynamic recrystallization (CDRX) within the bands has resulted in a local grain refinement in those areas. Consequently a bimodal structure including the fine recrystallized grains along with the elongated ones has been developed. The effect of deformation mode on the microstructural refinement has been also discussed through considering the developed SS history and the related microstructural refinement. © Springer Science+Business Media, LLC 2010 |
abstract_unstemmed |
Abstract The accumulative back extrusion (ABE), as a new-noble severe plastic deformation (SPD) technique, has been employed to clarify the microstructural evolutions of AZ31 magnesium alloy during severe deformation. The latter has been explored using a 3D finite element analysis along with the microstructural investigations. The distribution of ABE generated shear strain (SS) and its corresponding microstructures have been thoroughly studied. The results indicated that the restrictions of material flow during ABE processing had been led to the mechanical shear bands generation in the microstructure. In addition, the occurrence of continuous dynamic recrystallization (CDRX) within the bands has resulted in a local grain refinement in those areas. Consequently a bimodal structure including the fine recrystallized grains along with the elongated ones has been developed. The effect of deformation mode on the microstructural refinement has been also discussed through considering the developed SS history and the related microstructural refinement. © Springer Science+Business Media, LLC 2010 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 |
container_issue |
6 |
title_short |
Shear deformation and grain refinement during accumulative back extrusion of AZ31 magnesium alloy |
url |
https://doi.org/10.1007/s10853-010-5029-8 |
remote_bool |
false |
author2 |
Zarei-Hanzaki, A. Izadi, S. |
author2Str |
Zarei-Hanzaki, A. Izadi, S. |
ppnlink |
129546372 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10853-010-5029-8 |
up_date |
2024-07-04T04:53:55.909Z |
_version_ |
1803622899683164160 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046364325</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503124151.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10853-010-5029-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046364325</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10853-010-5029-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fatemi-Varzaneh, S. M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Shear deformation and grain refinement during accumulative back extrusion of AZ31 magnesium alloy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The accumulative back extrusion (ABE), as a new-noble severe plastic deformation (SPD) technique, has been employed to clarify the microstructural evolutions of AZ31 magnesium alloy during severe deformation. The latter has been explored using a 3D finite element analysis along with the microstructural investigations. The distribution of ABE generated shear strain (SS) and its corresponding microstructures have been thoroughly studied. The results indicated that the restrictions of material flow during ABE processing had been led to the mechanical shear bands generation in the microstructure. In addition, the occurrence of continuous dynamic recrystallization (CDRX) within the bands has resulted in a local grain refinement in those areas. Consequently a bimodal structure including the fine recrystallized grains along with the elongated ones has been developed. The effect of deformation mode on the microstructural refinement has been also discussed through considering the developed SS history and the related microstructural refinement.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shear Strain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnesium Alloy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shear Band</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simple Shear</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Work Piece</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zarei-Hanzaki, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Izadi, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Springer US, 1966</subfield><subfield code="g">46(2010), 6 vom: 02. Nov., Seite 1937-1944</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:6</subfield><subfield code="g">day:02</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:1937-1944</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10853-010-5029-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2010</subfield><subfield code="e">6</subfield><subfield code="b">02</subfield><subfield code="c">11</subfield><subfield code="h">1937-1944</subfield></datafield></record></collection>
|
score |
7.4028063 |