Structural and optical characterization of Ni-doped CdS quantum dots
Abstract Ni-doped CdS quantum dots have been prepared by chemical precipitation technique. The X-diffraction results indicated that the particle size of Ni-doped CdS nanoparticles is smaller than that of undoped CdS and no secondary phase was observed. The average grain size of the nanoparticles is...
Ausführliche Beschreibung
Autor*in: |
Thambidurai, M. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2010 |
---|
Schlagwörter: |
High Resolution Transmission Electron Microscope |
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2010 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials science - Springer US, 1966, 46(2010), 9 vom: 29. Dez., Seite 3200-3206 |
---|---|
Übergeordnetes Werk: |
volume:46 ; year:2010 ; number:9 ; day:29 ; month:12 ; pages:3200-3206 |
Links: |
---|
DOI / URN: |
10.1007/s10853-010-5204-y |
---|
Katalog-ID: |
OLC2046366158 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2046366158 | ||
003 | DE-627 | ||
005 | 20230503124205.0 | ||
007 | tu | ||
008 | 200820s2010 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10853-010-5204-y |2 doi | |
035 | |a (DE-627)OLC2046366158 | ||
035 | |a (DE-He213)s10853-010-5204-y-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Thambidurai, M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Structural and optical characterization of Ni-doped CdS quantum dots |
264 | 1 | |c 2010 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2010 | ||
520 | |a Abstract Ni-doped CdS quantum dots have been prepared by chemical precipitation technique. The X-diffraction results indicated that the particle size of Ni-doped CdS nanoparticles is smaller than that of undoped CdS and no secondary phase was observed. The average grain size of the nanoparticles is found to lie in the range of 2.7–4 nm. The compositional analysis results show that Cd, Ni, and S are present in the samples. HRTEM studies reveal that the average particle size of undoped and Ni-doped CdS quantum dots is 2 and 3 nm, respectively. Raman spectra shows that 1LO, 2LO, and 3LO peaks of the Ni-doped CdS samples are slightly red shifted when compared to that of undoped CdS. The absorption edge of Ni-doped CdS nanoparticles is found to shift towards the higher-wavelength (red shift) side when compared to that of undoped CdS and the band gap is observed to lie in the range of 3.79–3.95 eV. This band gap is higher than that of the bulk CdS and is due to quantum confinement effect present in CdS nanoparticles. | ||
650 | 4 | |a High Resolution Transmission Electron Microscope | |
650 | 4 | |a High Resolution Transmission Electron Microscope | |
650 | 4 | |a Field Emission Scanning Electron Microscope Image | |
650 | 4 | |a Quantum Confinement Effect | |
650 | 4 | |a High Resolution Transmission Electron Microscope Image | |
700 | 1 | |a Muthukumarasamy, N. |4 aut | |
700 | 1 | |a Agilan, S. |4 aut | |
700 | 1 | |a Sabari Arul, N. |4 aut | |
700 | 1 | |a Murugan, N. |4 aut | |
700 | 1 | |a Balasundaraprabhu, R. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials science |d Springer US, 1966 |g 46(2010), 9 vom: 29. Dez., Seite 3200-3206 |w (DE-627)129546372 |w (DE-600)218324-9 |w (DE-576)014996774 |x 0022-2461 |7 nnns |
773 | 1 | 8 | |g volume:46 |g year:2010 |g number:9 |g day:29 |g month:12 |g pages:3200-3206 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10853-010-5204-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 46 |j 2010 |e 9 |b 29 |c 12 |h 3200-3206 |
author_variant |
m t mt n m nm s a sa a n s an ans n m nm r b rb |
---|---|
matchkey_str |
article:00222461:2010----::tutrlnotclhrceiainfio |
hierarchy_sort_str |
2010 |
publishDate |
2010 |
allfields |
10.1007/s10853-010-5204-y doi (DE-627)OLC2046366158 (DE-He213)s10853-010-5204-y-p DE-627 ger DE-627 rakwb eng 670 VZ Thambidurai, M. verfasserin aut Structural and optical characterization of Ni-doped CdS quantum dots 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2010 Abstract Ni-doped CdS quantum dots have been prepared by chemical precipitation technique. The X-diffraction results indicated that the particle size of Ni-doped CdS nanoparticles is smaller than that of undoped CdS and no secondary phase was observed. The average grain size of the nanoparticles is found to lie in the range of 2.7–4 nm. The compositional analysis results show that Cd, Ni, and S are present in the samples. HRTEM studies reveal that the average particle size of undoped and Ni-doped CdS quantum dots is 2 and 3 nm, respectively. Raman spectra shows that 1LO, 2LO, and 3LO peaks of the Ni-doped CdS samples are slightly red shifted when compared to that of undoped CdS. The absorption edge of Ni-doped CdS nanoparticles is found to shift towards the higher-wavelength (red shift) side when compared to that of undoped CdS and the band gap is observed to lie in the range of 3.79–3.95 eV. This band gap is higher than that of the bulk CdS and is due to quantum confinement effect present in CdS nanoparticles. High Resolution Transmission Electron Microscope High Resolution Transmission Electron Microscope Field Emission Scanning Electron Microscope Image Quantum Confinement Effect High Resolution Transmission Electron Microscope Image Muthukumarasamy, N. aut Agilan, S. aut Sabari Arul, N. aut Murugan, N. aut Balasundaraprabhu, R. aut Enthalten in Journal of materials science Springer US, 1966 46(2010), 9 vom: 29. Dez., Seite 3200-3206 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:46 year:2010 number:9 day:29 month:12 pages:3200-3206 https://doi.org/10.1007/s10853-010-5204-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 46 2010 9 29 12 3200-3206 |
spelling |
10.1007/s10853-010-5204-y doi (DE-627)OLC2046366158 (DE-He213)s10853-010-5204-y-p DE-627 ger DE-627 rakwb eng 670 VZ Thambidurai, M. verfasserin aut Structural and optical characterization of Ni-doped CdS quantum dots 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2010 Abstract Ni-doped CdS quantum dots have been prepared by chemical precipitation technique. The X-diffraction results indicated that the particle size of Ni-doped CdS nanoparticles is smaller than that of undoped CdS and no secondary phase was observed. The average grain size of the nanoparticles is found to lie in the range of 2.7–4 nm. The compositional analysis results show that Cd, Ni, and S are present in the samples. HRTEM studies reveal that the average particle size of undoped and Ni-doped CdS quantum dots is 2 and 3 nm, respectively. Raman spectra shows that 1LO, 2LO, and 3LO peaks of the Ni-doped CdS samples are slightly red shifted when compared to that of undoped CdS. The absorption edge of Ni-doped CdS nanoparticles is found to shift towards the higher-wavelength (red shift) side when compared to that of undoped CdS and the band gap is observed to lie in the range of 3.79–3.95 eV. This band gap is higher than that of the bulk CdS and is due to quantum confinement effect present in CdS nanoparticles. High Resolution Transmission Electron Microscope High Resolution Transmission Electron Microscope Field Emission Scanning Electron Microscope Image Quantum Confinement Effect High Resolution Transmission Electron Microscope Image Muthukumarasamy, N. aut Agilan, S. aut Sabari Arul, N. aut Murugan, N. aut Balasundaraprabhu, R. aut Enthalten in Journal of materials science Springer US, 1966 46(2010), 9 vom: 29. Dez., Seite 3200-3206 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:46 year:2010 number:9 day:29 month:12 pages:3200-3206 https://doi.org/10.1007/s10853-010-5204-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 46 2010 9 29 12 3200-3206 |
allfields_unstemmed |
10.1007/s10853-010-5204-y doi (DE-627)OLC2046366158 (DE-He213)s10853-010-5204-y-p DE-627 ger DE-627 rakwb eng 670 VZ Thambidurai, M. verfasserin aut Structural and optical characterization of Ni-doped CdS quantum dots 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2010 Abstract Ni-doped CdS quantum dots have been prepared by chemical precipitation technique. The X-diffraction results indicated that the particle size of Ni-doped CdS nanoparticles is smaller than that of undoped CdS and no secondary phase was observed. The average grain size of the nanoparticles is found to lie in the range of 2.7–4 nm. The compositional analysis results show that Cd, Ni, and S are present in the samples. HRTEM studies reveal that the average particle size of undoped and Ni-doped CdS quantum dots is 2 and 3 nm, respectively. Raman spectra shows that 1LO, 2LO, and 3LO peaks of the Ni-doped CdS samples are slightly red shifted when compared to that of undoped CdS. The absorption edge of Ni-doped CdS nanoparticles is found to shift towards the higher-wavelength (red shift) side when compared to that of undoped CdS and the band gap is observed to lie in the range of 3.79–3.95 eV. This band gap is higher than that of the bulk CdS and is due to quantum confinement effect present in CdS nanoparticles. High Resolution Transmission Electron Microscope High Resolution Transmission Electron Microscope Field Emission Scanning Electron Microscope Image Quantum Confinement Effect High Resolution Transmission Electron Microscope Image Muthukumarasamy, N. aut Agilan, S. aut Sabari Arul, N. aut Murugan, N. aut Balasundaraprabhu, R. aut Enthalten in Journal of materials science Springer US, 1966 46(2010), 9 vom: 29. Dez., Seite 3200-3206 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:46 year:2010 number:9 day:29 month:12 pages:3200-3206 https://doi.org/10.1007/s10853-010-5204-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 46 2010 9 29 12 3200-3206 |
allfieldsGer |
10.1007/s10853-010-5204-y doi (DE-627)OLC2046366158 (DE-He213)s10853-010-5204-y-p DE-627 ger DE-627 rakwb eng 670 VZ Thambidurai, M. verfasserin aut Structural and optical characterization of Ni-doped CdS quantum dots 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2010 Abstract Ni-doped CdS quantum dots have been prepared by chemical precipitation technique. The X-diffraction results indicated that the particle size of Ni-doped CdS nanoparticles is smaller than that of undoped CdS and no secondary phase was observed. The average grain size of the nanoparticles is found to lie in the range of 2.7–4 nm. The compositional analysis results show that Cd, Ni, and S are present in the samples. HRTEM studies reveal that the average particle size of undoped and Ni-doped CdS quantum dots is 2 and 3 nm, respectively. Raman spectra shows that 1LO, 2LO, and 3LO peaks of the Ni-doped CdS samples are slightly red shifted when compared to that of undoped CdS. The absorption edge of Ni-doped CdS nanoparticles is found to shift towards the higher-wavelength (red shift) side when compared to that of undoped CdS and the band gap is observed to lie in the range of 3.79–3.95 eV. This band gap is higher than that of the bulk CdS and is due to quantum confinement effect present in CdS nanoparticles. High Resolution Transmission Electron Microscope High Resolution Transmission Electron Microscope Field Emission Scanning Electron Microscope Image Quantum Confinement Effect High Resolution Transmission Electron Microscope Image Muthukumarasamy, N. aut Agilan, S. aut Sabari Arul, N. aut Murugan, N. aut Balasundaraprabhu, R. aut Enthalten in Journal of materials science Springer US, 1966 46(2010), 9 vom: 29. Dez., Seite 3200-3206 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:46 year:2010 number:9 day:29 month:12 pages:3200-3206 https://doi.org/10.1007/s10853-010-5204-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 46 2010 9 29 12 3200-3206 |
allfieldsSound |
10.1007/s10853-010-5204-y doi (DE-627)OLC2046366158 (DE-He213)s10853-010-5204-y-p DE-627 ger DE-627 rakwb eng 670 VZ Thambidurai, M. verfasserin aut Structural and optical characterization of Ni-doped CdS quantum dots 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2010 Abstract Ni-doped CdS quantum dots have been prepared by chemical precipitation technique. The X-diffraction results indicated that the particle size of Ni-doped CdS nanoparticles is smaller than that of undoped CdS and no secondary phase was observed. The average grain size of the nanoparticles is found to lie in the range of 2.7–4 nm. The compositional analysis results show that Cd, Ni, and S are present in the samples. HRTEM studies reveal that the average particle size of undoped and Ni-doped CdS quantum dots is 2 and 3 nm, respectively. Raman spectra shows that 1LO, 2LO, and 3LO peaks of the Ni-doped CdS samples are slightly red shifted when compared to that of undoped CdS. The absorption edge of Ni-doped CdS nanoparticles is found to shift towards the higher-wavelength (red shift) side when compared to that of undoped CdS and the band gap is observed to lie in the range of 3.79–3.95 eV. This band gap is higher than that of the bulk CdS and is due to quantum confinement effect present in CdS nanoparticles. High Resolution Transmission Electron Microscope High Resolution Transmission Electron Microscope Field Emission Scanning Electron Microscope Image Quantum Confinement Effect High Resolution Transmission Electron Microscope Image Muthukumarasamy, N. aut Agilan, S. aut Sabari Arul, N. aut Murugan, N. aut Balasundaraprabhu, R. aut Enthalten in Journal of materials science Springer US, 1966 46(2010), 9 vom: 29. Dez., Seite 3200-3206 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:46 year:2010 number:9 day:29 month:12 pages:3200-3206 https://doi.org/10.1007/s10853-010-5204-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 46 2010 9 29 12 3200-3206 |
language |
English |
source |
Enthalten in Journal of materials science 46(2010), 9 vom: 29. Dez., Seite 3200-3206 volume:46 year:2010 number:9 day:29 month:12 pages:3200-3206 |
sourceStr |
Enthalten in Journal of materials science 46(2010), 9 vom: 29. Dez., Seite 3200-3206 volume:46 year:2010 number:9 day:29 month:12 pages:3200-3206 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
High Resolution Transmission Electron Microscope Field Emission Scanning Electron Microscope Image Quantum Confinement Effect High Resolution Transmission Electron Microscope Image |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of materials science |
authorswithroles_txt_mv |
Thambidurai, M. @@aut@@ Muthukumarasamy, N. @@aut@@ Agilan, S. @@aut@@ Sabari Arul, N. @@aut@@ Murugan, N. @@aut@@ Balasundaraprabhu, R. @@aut@@ |
publishDateDaySort_date |
2010-12-29T00:00:00Z |
hierarchy_top_id |
129546372 |
dewey-sort |
3670 |
id |
OLC2046366158 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046366158</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503124205.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10853-010-5204-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046366158</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10853-010-5204-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Thambidurai, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Structural and optical characterization of Ni-doped CdS quantum dots</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Ni-doped CdS quantum dots have been prepared by chemical precipitation technique. The X-diffraction results indicated that the particle size of Ni-doped CdS nanoparticles is smaller than that of undoped CdS and no secondary phase was observed. The average grain size of the nanoparticles is found to lie in the range of 2.7–4 nm. The compositional analysis results show that Cd, Ni, and S are present in the samples. HRTEM studies reveal that the average particle size of undoped and Ni-doped CdS quantum dots is 2 and 3 nm, respectively. Raman spectra shows that 1LO, 2LO, and 3LO peaks of the Ni-doped CdS samples are slightly red shifted when compared to that of undoped CdS. The absorption edge of Ni-doped CdS nanoparticles is found to shift towards the higher-wavelength (red shift) side when compared to that of undoped CdS and the band gap is observed to lie in the range of 3.79–3.95 eV. This band gap is higher than that of the bulk CdS and is due to quantum confinement effect present in CdS nanoparticles.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High Resolution Transmission Electron Microscope</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High Resolution Transmission Electron Microscope</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field Emission Scanning Electron Microscope Image</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Confinement Effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High Resolution Transmission Electron Microscope Image</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Muthukumarasamy, N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Agilan, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sabari Arul, N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Murugan, N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Balasundaraprabhu, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Springer US, 1966</subfield><subfield code="g">46(2010), 9 vom: 29. Dez., Seite 3200-3206</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:9</subfield><subfield code="g">day:29</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:3200-3206</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10853-010-5204-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2010</subfield><subfield code="e">9</subfield><subfield code="b">29</subfield><subfield code="c">12</subfield><subfield code="h">3200-3206</subfield></datafield></record></collection>
|
author |
Thambidurai, M. |
spellingShingle |
Thambidurai, M. ddc 670 misc High Resolution Transmission Electron Microscope misc Field Emission Scanning Electron Microscope Image misc Quantum Confinement Effect misc High Resolution Transmission Electron Microscope Image Structural and optical characterization of Ni-doped CdS quantum dots |
authorStr |
Thambidurai, M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129546372 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-2461 |
topic_title |
670 VZ Structural and optical characterization of Ni-doped CdS quantum dots High Resolution Transmission Electron Microscope Field Emission Scanning Electron Microscope Image Quantum Confinement Effect High Resolution Transmission Electron Microscope Image |
topic |
ddc 670 misc High Resolution Transmission Electron Microscope misc Field Emission Scanning Electron Microscope Image misc Quantum Confinement Effect misc High Resolution Transmission Electron Microscope Image |
topic_unstemmed |
ddc 670 misc High Resolution Transmission Electron Microscope misc Field Emission Scanning Electron Microscope Image misc Quantum Confinement Effect misc High Resolution Transmission Electron Microscope Image |
topic_browse |
ddc 670 misc High Resolution Transmission Electron Microscope misc Field Emission Scanning Electron Microscope Image misc Quantum Confinement Effect misc High Resolution Transmission Electron Microscope Image |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials science |
hierarchy_parent_id |
129546372 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of materials science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 |
title |
Structural and optical characterization of Ni-doped CdS quantum dots |
ctrlnum |
(DE-627)OLC2046366158 (DE-He213)s10853-010-5204-y-p |
title_full |
Structural and optical characterization of Ni-doped CdS quantum dots |
author_sort |
Thambidurai, M. |
journal |
Journal of materials science |
journalStr |
Journal of materials science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
container_start_page |
3200 |
author_browse |
Thambidurai, M. Muthukumarasamy, N. Agilan, S. Sabari Arul, N. Murugan, N. Balasundaraprabhu, R. |
container_volume |
46 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Thambidurai, M. |
doi_str_mv |
10.1007/s10853-010-5204-y |
dewey-full |
670 |
title_sort |
structural and optical characterization of ni-doped cds quantum dots |
title_auth |
Structural and optical characterization of Ni-doped CdS quantum dots |
abstract |
Abstract Ni-doped CdS quantum dots have been prepared by chemical precipitation technique. The X-diffraction results indicated that the particle size of Ni-doped CdS nanoparticles is smaller than that of undoped CdS and no secondary phase was observed. The average grain size of the nanoparticles is found to lie in the range of 2.7–4 nm. The compositional analysis results show that Cd, Ni, and S are present in the samples. HRTEM studies reveal that the average particle size of undoped and Ni-doped CdS quantum dots is 2 and 3 nm, respectively. Raman spectra shows that 1LO, 2LO, and 3LO peaks of the Ni-doped CdS samples are slightly red shifted when compared to that of undoped CdS. The absorption edge of Ni-doped CdS nanoparticles is found to shift towards the higher-wavelength (red shift) side when compared to that of undoped CdS and the band gap is observed to lie in the range of 3.79–3.95 eV. This band gap is higher than that of the bulk CdS and is due to quantum confinement effect present in CdS nanoparticles. © Springer Science+Business Media, LLC 2010 |
abstractGer |
Abstract Ni-doped CdS quantum dots have been prepared by chemical precipitation technique. The X-diffraction results indicated that the particle size of Ni-doped CdS nanoparticles is smaller than that of undoped CdS and no secondary phase was observed. The average grain size of the nanoparticles is found to lie in the range of 2.7–4 nm. The compositional analysis results show that Cd, Ni, and S are present in the samples. HRTEM studies reveal that the average particle size of undoped and Ni-doped CdS quantum dots is 2 and 3 nm, respectively. Raman spectra shows that 1LO, 2LO, and 3LO peaks of the Ni-doped CdS samples are slightly red shifted when compared to that of undoped CdS. The absorption edge of Ni-doped CdS nanoparticles is found to shift towards the higher-wavelength (red shift) side when compared to that of undoped CdS and the band gap is observed to lie in the range of 3.79–3.95 eV. This band gap is higher than that of the bulk CdS and is due to quantum confinement effect present in CdS nanoparticles. © Springer Science+Business Media, LLC 2010 |
abstract_unstemmed |
Abstract Ni-doped CdS quantum dots have been prepared by chemical precipitation technique. The X-diffraction results indicated that the particle size of Ni-doped CdS nanoparticles is smaller than that of undoped CdS and no secondary phase was observed. The average grain size of the nanoparticles is found to lie in the range of 2.7–4 nm. The compositional analysis results show that Cd, Ni, and S are present in the samples. HRTEM studies reveal that the average particle size of undoped and Ni-doped CdS quantum dots is 2 and 3 nm, respectively. Raman spectra shows that 1LO, 2LO, and 3LO peaks of the Ni-doped CdS samples are slightly red shifted when compared to that of undoped CdS. The absorption edge of Ni-doped CdS nanoparticles is found to shift towards the higher-wavelength (red shift) side when compared to that of undoped CdS and the band gap is observed to lie in the range of 3.79–3.95 eV. This band gap is higher than that of the bulk CdS and is due to quantum confinement effect present in CdS nanoparticles. © Springer Science+Business Media, LLC 2010 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 |
container_issue |
9 |
title_short |
Structural and optical characterization of Ni-doped CdS quantum dots |
url |
https://doi.org/10.1007/s10853-010-5204-y |
remote_bool |
false |
author2 |
Muthukumarasamy, N. Agilan, S. Sabari Arul, N. Murugan, N. Balasundaraprabhu, R. |
author2Str |
Muthukumarasamy, N. Agilan, S. Sabari Arul, N. Murugan, N. Balasundaraprabhu, R. |
ppnlink |
129546372 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10853-010-5204-y |
up_date |
2024-07-04T04:54:14.338Z |
_version_ |
1803622918996885505 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046366158</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503124205.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10853-010-5204-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046366158</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10853-010-5204-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Thambidurai, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Structural and optical characterization of Ni-doped CdS quantum dots</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Ni-doped CdS quantum dots have been prepared by chemical precipitation technique. The X-diffraction results indicated that the particle size of Ni-doped CdS nanoparticles is smaller than that of undoped CdS and no secondary phase was observed. The average grain size of the nanoparticles is found to lie in the range of 2.7–4 nm. The compositional analysis results show that Cd, Ni, and S are present in the samples. HRTEM studies reveal that the average particle size of undoped and Ni-doped CdS quantum dots is 2 and 3 nm, respectively. Raman spectra shows that 1LO, 2LO, and 3LO peaks of the Ni-doped CdS samples are slightly red shifted when compared to that of undoped CdS. The absorption edge of Ni-doped CdS nanoparticles is found to shift towards the higher-wavelength (red shift) side when compared to that of undoped CdS and the band gap is observed to lie in the range of 3.79–3.95 eV. This band gap is higher than that of the bulk CdS and is due to quantum confinement effect present in CdS nanoparticles.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High Resolution Transmission Electron Microscope</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High Resolution Transmission Electron Microscope</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field Emission Scanning Electron Microscope Image</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Confinement Effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High Resolution Transmission Electron Microscope Image</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Muthukumarasamy, N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Agilan, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sabari Arul, N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Murugan, N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Balasundaraprabhu, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Springer US, 1966</subfield><subfield code="g">46(2010), 9 vom: 29. Dez., Seite 3200-3206</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:9</subfield><subfield code="g">day:29</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:3200-3206</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10853-010-5204-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2010</subfield><subfield code="e">9</subfield><subfield code="b">29</subfield><subfield code="c">12</subfield><subfield code="h">3200-3206</subfield></datafield></record></collection>
|
score |
7.402815 |