Structure and magnetic properties of $ Ni_{x} $$ Zn_{1−x} $$ Fe_{2} $$ O_{4} $ thin films prepared through electrodeposition method
Abstract Nanocrystalline nickel–zinc ferrites $ Ni_{x} $$ Zn_{1−x} $$ Fe_{2} $$ O_{4} $ thin films have been studied and synthesized via electrodeposition–anodization process. Electrodeposited (NiZn)$ Fe_{2} $ alloys were obtained from non-aqueous ethylene glycol sulphate bath. The formed alloys wer...
Ausführliche Beschreibung
Autor*in: |
Saba, A. E. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2011 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials science - Springer US, 1966, 46(2011), 10 vom: 26. Jan., Seite 3574-3582 |
---|---|
Übergeordnetes Werk: |
volume:46 ; year:2011 ; number:10 ; day:26 ; month:01 ; pages:3574-3582 |
Links: |
---|
DOI / URN: |
10.1007/s10853-011-5271-8 |
---|
Katalog-ID: |
OLC2046366522 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2046366522 | ||
003 | DE-627 | ||
005 | 20230503124052.0 | ||
007 | tu | ||
008 | 200820s2011 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10853-011-5271-8 |2 doi | |
035 | |a (DE-627)OLC2046366522 | ||
035 | |a (DE-He213)s10853-011-5271-8-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Saba, A. E. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Structure and magnetic properties of $ Ni_{x} $$ Zn_{1−x} $$ Fe_{2} $$ O_{4} $ thin films prepared through electrodeposition method |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2011 | ||
520 | |a Abstract Nanocrystalline nickel–zinc ferrites $ Ni_{x} $$ Zn_{1−x} $$ Fe_{2} $$ O_{4} $ thin films have been studied and synthesized via electrodeposition–anodization process. Electrodeposited (NiZn)$ Fe_{2} $ alloys were obtained from non-aqueous ethylene glycol sulphate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (NiZn)$ Fe_{2} $ alloys such as the bath composition and the current density were studied and optimized. The anodized (NiZn)$ Fe_{2} $ alloy films were annealed in air at different temperatures ranging from 850 to 1000 °C for different times from 1 to 4 h. The change in the crystal structure, crystallite size, microstructure, and magnetic properties of the produced ferrites were investigated using X-ray diffraction patterns (XRD), scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). The results revealed the formation of Ni–Zn ferrites thin films were formed. The crystallite sizes of the produced films were in the range between 32 and 81 nm. High saturation magnetization of 48.81 emu/g was achieved for $ Ni_{0.5} $$ Zn_{0.5} $$ Fe_{2} $$ O_{4} $ thin film produced after annealing the alloy at 850 °C for 4 h. The annealing process of the oxidized alloy anodization process was found to be first order reaction. The activation energy of the crystallization of Ni–Zn ferrite was found to be 62 KJ/mol. | ||
650 | 4 | |a Ferrite | |
650 | 4 | |a Current Efficiency | |
650 | 4 | |a NiZn | |
650 | 4 | |a Zinc Ferrite | |
650 | 4 | |a Nickel Ferrite | |
700 | 1 | |a Elsayed, E. M. |4 aut | |
700 | 1 | |a Moharam, M. M. |4 aut | |
700 | 1 | |a Rashad, M. M. |4 aut | |
700 | 1 | |a Abou-Shahba, R. M. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials science |d Springer US, 1966 |g 46(2011), 10 vom: 26. Jan., Seite 3574-3582 |w (DE-627)129546372 |w (DE-600)218324-9 |w (DE-576)014996774 |x 0022-2461 |7 nnns |
773 | 1 | 8 | |g volume:46 |g year:2011 |g number:10 |g day:26 |g month:01 |g pages:3574-3582 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10853-011-5271-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 46 |j 2011 |e 10 |b 26 |c 01 |h 3574-3582 |
author_variant |
a e s ae aes e m e em eme m m m mm mmm m m r mm mmr r m a s rma rmas |
---|---|
matchkey_str |
article:00222461:2011----::tutradantcrprisfixn1f_o4hnimpeaetr |
hierarchy_sort_str |
2011 |
publishDate |
2011 |
allfields |
10.1007/s10853-011-5271-8 doi (DE-627)OLC2046366522 (DE-He213)s10853-011-5271-8-p DE-627 ger DE-627 rakwb eng 670 VZ Saba, A. E. verfasserin aut Structure and magnetic properties of $ Ni_{x} $$ Zn_{1−x} $$ Fe_{2} $$ O_{4} $ thin films prepared through electrodeposition method 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract Nanocrystalline nickel–zinc ferrites $ Ni_{x} $$ Zn_{1−x} $$ Fe_{2} $$ O_{4} $ thin films have been studied and synthesized via electrodeposition–anodization process. Electrodeposited (NiZn)$ Fe_{2} $ alloys were obtained from non-aqueous ethylene glycol sulphate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (NiZn)$ Fe_{2} $ alloys such as the bath composition and the current density were studied and optimized. The anodized (NiZn)$ Fe_{2} $ alloy films were annealed in air at different temperatures ranging from 850 to 1000 °C for different times from 1 to 4 h. The change in the crystal structure, crystallite size, microstructure, and magnetic properties of the produced ferrites were investigated using X-ray diffraction patterns (XRD), scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). The results revealed the formation of Ni–Zn ferrites thin films were formed. The crystallite sizes of the produced films were in the range between 32 and 81 nm. High saturation magnetization of 48.81 emu/g was achieved for $ Ni_{0.5} $$ Zn_{0.5} $$ Fe_{2} $$ O_{4} $ thin film produced after annealing the alloy at 850 °C for 4 h. The annealing process of the oxidized alloy anodization process was found to be first order reaction. The activation energy of the crystallization of Ni–Zn ferrite was found to be 62 KJ/mol. Ferrite Current Efficiency NiZn Zinc Ferrite Nickel Ferrite Elsayed, E. M. aut Moharam, M. M. aut Rashad, M. M. aut Abou-Shahba, R. M. aut Enthalten in Journal of materials science Springer US, 1966 46(2011), 10 vom: 26. Jan., Seite 3574-3582 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:46 year:2011 number:10 day:26 month:01 pages:3574-3582 https://doi.org/10.1007/s10853-011-5271-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 46 2011 10 26 01 3574-3582 |
spelling |
10.1007/s10853-011-5271-8 doi (DE-627)OLC2046366522 (DE-He213)s10853-011-5271-8-p DE-627 ger DE-627 rakwb eng 670 VZ Saba, A. E. verfasserin aut Structure and magnetic properties of $ Ni_{x} $$ Zn_{1−x} $$ Fe_{2} $$ O_{4} $ thin films prepared through electrodeposition method 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract Nanocrystalline nickel–zinc ferrites $ Ni_{x} $$ Zn_{1−x} $$ Fe_{2} $$ O_{4} $ thin films have been studied and synthesized via electrodeposition–anodization process. Electrodeposited (NiZn)$ Fe_{2} $ alloys were obtained from non-aqueous ethylene glycol sulphate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (NiZn)$ Fe_{2} $ alloys such as the bath composition and the current density were studied and optimized. The anodized (NiZn)$ Fe_{2} $ alloy films were annealed in air at different temperatures ranging from 850 to 1000 °C for different times from 1 to 4 h. The change in the crystal structure, crystallite size, microstructure, and magnetic properties of the produced ferrites were investigated using X-ray diffraction patterns (XRD), scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). The results revealed the formation of Ni–Zn ferrites thin films were formed. The crystallite sizes of the produced films were in the range between 32 and 81 nm. High saturation magnetization of 48.81 emu/g was achieved for $ Ni_{0.5} $$ Zn_{0.5} $$ Fe_{2} $$ O_{4} $ thin film produced after annealing the alloy at 850 °C for 4 h. The annealing process of the oxidized alloy anodization process was found to be first order reaction. The activation energy of the crystallization of Ni–Zn ferrite was found to be 62 KJ/mol. Ferrite Current Efficiency NiZn Zinc Ferrite Nickel Ferrite Elsayed, E. M. aut Moharam, M. M. aut Rashad, M. M. aut Abou-Shahba, R. M. aut Enthalten in Journal of materials science Springer US, 1966 46(2011), 10 vom: 26. Jan., Seite 3574-3582 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:46 year:2011 number:10 day:26 month:01 pages:3574-3582 https://doi.org/10.1007/s10853-011-5271-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 46 2011 10 26 01 3574-3582 |
allfields_unstemmed |
10.1007/s10853-011-5271-8 doi (DE-627)OLC2046366522 (DE-He213)s10853-011-5271-8-p DE-627 ger DE-627 rakwb eng 670 VZ Saba, A. E. verfasserin aut Structure and magnetic properties of $ Ni_{x} $$ Zn_{1−x} $$ Fe_{2} $$ O_{4} $ thin films prepared through electrodeposition method 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract Nanocrystalline nickel–zinc ferrites $ Ni_{x} $$ Zn_{1−x} $$ Fe_{2} $$ O_{4} $ thin films have been studied and synthesized via electrodeposition–anodization process. Electrodeposited (NiZn)$ Fe_{2} $ alloys were obtained from non-aqueous ethylene glycol sulphate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (NiZn)$ Fe_{2} $ alloys such as the bath composition and the current density were studied and optimized. The anodized (NiZn)$ Fe_{2} $ alloy films were annealed in air at different temperatures ranging from 850 to 1000 °C for different times from 1 to 4 h. The change in the crystal structure, crystallite size, microstructure, and magnetic properties of the produced ferrites were investigated using X-ray diffraction patterns (XRD), scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). The results revealed the formation of Ni–Zn ferrites thin films were formed. The crystallite sizes of the produced films were in the range between 32 and 81 nm. High saturation magnetization of 48.81 emu/g was achieved for $ Ni_{0.5} $$ Zn_{0.5} $$ Fe_{2} $$ O_{4} $ thin film produced after annealing the alloy at 850 °C for 4 h. The annealing process of the oxidized alloy anodization process was found to be first order reaction. The activation energy of the crystallization of Ni–Zn ferrite was found to be 62 KJ/mol. Ferrite Current Efficiency NiZn Zinc Ferrite Nickel Ferrite Elsayed, E. M. aut Moharam, M. M. aut Rashad, M. M. aut Abou-Shahba, R. M. aut Enthalten in Journal of materials science Springer US, 1966 46(2011), 10 vom: 26. Jan., Seite 3574-3582 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:46 year:2011 number:10 day:26 month:01 pages:3574-3582 https://doi.org/10.1007/s10853-011-5271-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 46 2011 10 26 01 3574-3582 |
allfieldsGer |
10.1007/s10853-011-5271-8 doi (DE-627)OLC2046366522 (DE-He213)s10853-011-5271-8-p DE-627 ger DE-627 rakwb eng 670 VZ Saba, A. E. verfasserin aut Structure and magnetic properties of $ Ni_{x} $$ Zn_{1−x} $$ Fe_{2} $$ O_{4} $ thin films prepared through electrodeposition method 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract Nanocrystalline nickel–zinc ferrites $ Ni_{x} $$ Zn_{1−x} $$ Fe_{2} $$ O_{4} $ thin films have been studied and synthesized via electrodeposition–anodization process. Electrodeposited (NiZn)$ Fe_{2} $ alloys were obtained from non-aqueous ethylene glycol sulphate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (NiZn)$ Fe_{2} $ alloys such as the bath composition and the current density were studied and optimized. The anodized (NiZn)$ Fe_{2} $ alloy films were annealed in air at different temperatures ranging from 850 to 1000 °C for different times from 1 to 4 h. The change in the crystal structure, crystallite size, microstructure, and magnetic properties of the produced ferrites were investigated using X-ray diffraction patterns (XRD), scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). The results revealed the formation of Ni–Zn ferrites thin films were formed. The crystallite sizes of the produced films were in the range between 32 and 81 nm. High saturation magnetization of 48.81 emu/g was achieved for $ Ni_{0.5} $$ Zn_{0.5} $$ Fe_{2} $$ O_{4} $ thin film produced after annealing the alloy at 850 °C for 4 h. The annealing process of the oxidized alloy anodization process was found to be first order reaction. The activation energy of the crystallization of Ni–Zn ferrite was found to be 62 KJ/mol. Ferrite Current Efficiency NiZn Zinc Ferrite Nickel Ferrite Elsayed, E. M. aut Moharam, M. M. aut Rashad, M. M. aut Abou-Shahba, R. M. aut Enthalten in Journal of materials science Springer US, 1966 46(2011), 10 vom: 26. Jan., Seite 3574-3582 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:46 year:2011 number:10 day:26 month:01 pages:3574-3582 https://doi.org/10.1007/s10853-011-5271-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 46 2011 10 26 01 3574-3582 |
allfieldsSound |
10.1007/s10853-011-5271-8 doi (DE-627)OLC2046366522 (DE-He213)s10853-011-5271-8-p DE-627 ger DE-627 rakwb eng 670 VZ Saba, A. E. verfasserin aut Structure and magnetic properties of $ Ni_{x} $$ Zn_{1−x} $$ Fe_{2} $$ O_{4} $ thin films prepared through electrodeposition method 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract Nanocrystalline nickel–zinc ferrites $ Ni_{x} $$ Zn_{1−x} $$ Fe_{2} $$ O_{4} $ thin films have been studied and synthesized via electrodeposition–anodization process. Electrodeposited (NiZn)$ Fe_{2} $ alloys were obtained from non-aqueous ethylene glycol sulphate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (NiZn)$ Fe_{2} $ alloys such as the bath composition and the current density were studied and optimized. The anodized (NiZn)$ Fe_{2} $ alloy films were annealed in air at different temperatures ranging from 850 to 1000 °C for different times from 1 to 4 h. The change in the crystal structure, crystallite size, microstructure, and magnetic properties of the produced ferrites were investigated using X-ray diffraction patterns (XRD), scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). The results revealed the formation of Ni–Zn ferrites thin films were formed. The crystallite sizes of the produced films were in the range between 32 and 81 nm. High saturation magnetization of 48.81 emu/g was achieved for $ Ni_{0.5} $$ Zn_{0.5} $$ Fe_{2} $$ O_{4} $ thin film produced after annealing the alloy at 850 °C for 4 h. The annealing process of the oxidized alloy anodization process was found to be first order reaction. The activation energy of the crystallization of Ni–Zn ferrite was found to be 62 KJ/mol. Ferrite Current Efficiency NiZn Zinc Ferrite Nickel Ferrite Elsayed, E. M. aut Moharam, M. M. aut Rashad, M. M. aut Abou-Shahba, R. M. aut Enthalten in Journal of materials science Springer US, 1966 46(2011), 10 vom: 26. Jan., Seite 3574-3582 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:46 year:2011 number:10 day:26 month:01 pages:3574-3582 https://doi.org/10.1007/s10853-011-5271-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 46 2011 10 26 01 3574-3582 |
language |
English |
source |
Enthalten in Journal of materials science 46(2011), 10 vom: 26. Jan., Seite 3574-3582 volume:46 year:2011 number:10 day:26 month:01 pages:3574-3582 |
sourceStr |
Enthalten in Journal of materials science 46(2011), 10 vom: 26. Jan., Seite 3574-3582 volume:46 year:2011 number:10 day:26 month:01 pages:3574-3582 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Ferrite Current Efficiency NiZn Zinc Ferrite Nickel Ferrite |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of materials science |
authorswithroles_txt_mv |
Saba, A. E. @@aut@@ Elsayed, E. M. @@aut@@ Moharam, M. M. @@aut@@ Rashad, M. M. @@aut@@ Abou-Shahba, R. M. @@aut@@ |
publishDateDaySort_date |
2011-01-26T00:00:00Z |
hierarchy_top_id |
129546372 |
dewey-sort |
3670 |
id |
OLC2046366522 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046366522</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503124052.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10853-011-5271-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046366522</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10853-011-5271-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Saba, A. E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Structure and magnetic properties of $ Ni_{x} $$ Zn_{1−x} $$ Fe_{2} $$ O_{4} $ thin films prepared through electrodeposition method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Nanocrystalline nickel–zinc ferrites $ Ni_{x} $$ Zn_{1−x} $$ Fe_{2} $$ O_{4} $ thin films have been studied and synthesized via electrodeposition–anodization process. Electrodeposited (NiZn)$ Fe_{2} $ alloys were obtained from non-aqueous ethylene glycol sulphate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (NiZn)$ Fe_{2} $ alloys such as the bath composition and the current density were studied and optimized. The anodized (NiZn)$ Fe_{2} $ alloy films were annealed in air at different temperatures ranging from 850 to 1000 °C for different times from 1 to 4 h. The change in the crystal structure, crystallite size, microstructure, and magnetic properties of the produced ferrites were investigated using X-ray diffraction patterns (XRD), scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). The results revealed the formation of Ni–Zn ferrites thin films were formed. The crystallite sizes of the produced films were in the range between 32 and 81 nm. High saturation magnetization of 48.81 emu/g was achieved for $ Ni_{0.5} $$ Zn_{0.5} $$ Fe_{2} $$ O_{4} $ thin film produced after annealing the alloy at 850 °C for 4 h. The annealing process of the oxidized alloy anodization process was found to be first order reaction. The activation energy of the crystallization of Ni–Zn ferrite was found to be 62 KJ/mol.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ferrite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Current Efficiency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NiZn</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zinc Ferrite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nickel Ferrite</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Elsayed, E. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moharam, M. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rashad, M. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abou-Shahba, R. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Springer US, 1966</subfield><subfield code="g">46(2011), 10 vom: 26. Jan., Seite 3574-3582</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:10</subfield><subfield code="g">day:26</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:3574-3582</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10853-011-5271-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2011</subfield><subfield code="e">10</subfield><subfield code="b">26</subfield><subfield code="c">01</subfield><subfield code="h">3574-3582</subfield></datafield></record></collection>
|
author |
Saba, A. E. |
spellingShingle |
Saba, A. E. ddc 670 misc Ferrite misc Current Efficiency misc NiZn misc Zinc Ferrite misc Nickel Ferrite Structure and magnetic properties of $ Ni_{x} $$ Zn_{1−x} $$ Fe_{2} $$ O_{4} $ thin films prepared through electrodeposition method |
authorStr |
Saba, A. E. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129546372 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-2461 |
topic_title |
670 VZ Structure and magnetic properties of $ Ni_{x} $$ Zn_{1−x} $$ Fe_{2} $$ O_{4} $ thin films prepared through electrodeposition method Ferrite Current Efficiency NiZn Zinc Ferrite Nickel Ferrite |
topic |
ddc 670 misc Ferrite misc Current Efficiency misc NiZn misc Zinc Ferrite misc Nickel Ferrite |
topic_unstemmed |
ddc 670 misc Ferrite misc Current Efficiency misc NiZn misc Zinc Ferrite misc Nickel Ferrite |
topic_browse |
ddc 670 misc Ferrite misc Current Efficiency misc NiZn misc Zinc Ferrite misc Nickel Ferrite |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials science |
hierarchy_parent_id |
129546372 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of materials science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 |
title |
Structure and magnetic properties of $ Ni_{x} $$ Zn_{1−x} $$ Fe_{2} $$ O_{4} $ thin films prepared through electrodeposition method |
ctrlnum |
(DE-627)OLC2046366522 (DE-He213)s10853-011-5271-8-p |
title_full |
Structure and magnetic properties of $ Ni_{x} $$ Zn_{1−x} $$ Fe_{2} $$ O_{4} $ thin films prepared through electrodeposition method |
author_sort |
Saba, A. E. |
journal |
Journal of materials science |
journalStr |
Journal of materials science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
container_start_page |
3574 |
author_browse |
Saba, A. E. Elsayed, E. M. Moharam, M. M. Rashad, M. M. Abou-Shahba, R. M. |
container_volume |
46 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Saba, A. E. |
doi_str_mv |
10.1007/s10853-011-5271-8 |
dewey-full |
670 |
title_sort |
structure and magnetic properties of $ ni_{x} $$ zn_{1−x} $$ fe_{2} $$ o_{4} $ thin films prepared through electrodeposition method |
title_auth |
Structure and magnetic properties of $ Ni_{x} $$ Zn_{1−x} $$ Fe_{2} $$ O_{4} $ thin films prepared through electrodeposition method |
abstract |
Abstract Nanocrystalline nickel–zinc ferrites $ Ni_{x} $$ Zn_{1−x} $$ Fe_{2} $$ O_{4} $ thin films have been studied and synthesized via electrodeposition–anodization process. Electrodeposited (NiZn)$ Fe_{2} $ alloys were obtained from non-aqueous ethylene glycol sulphate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (NiZn)$ Fe_{2} $ alloys such as the bath composition and the current density were studied and optimized. The anodized (NiZn)$ Fe_{2} $ alloy films were annealed in air at different temperatures ranging from 850 to 1000 °C for different times from 1 to 4 h. The change in the crystal structure, crystallite size, microstructure, and magnetic properties of the produced ferrites were investigated using X-ray diffraction patterns (XRD), scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). The results revealed the formation of Ni–Zn ferrites thin films were formed. The crystallite sizes of the produced films were in the range between 32 and 81 nm. High saturation magnetization of 48.81 emu/g was achieved for $ Ni_{0.5} $$ Zn_{0.5} $$ Fe_{2} $$ O_{4} $ thin film produced after annealing the alloy at 850 °C for 4 h. The annealing process of the oxidized alloy anodization process was found to be first order reaction. The activation energy of the crystallization of Ni–Zn ferrite was found to be 62 KJ/mol. © Springer Science+Business Media, LLC 2011 |
abstractGer |
Abstract Nanocrystalline nickel–zinc ferrites $ Ni_{x} $$ Zn_{1−x} $$ Fe_{2} $$ O_{4} $ thin films have been studied and synthesized via electrodeposition–anodization process. Electrodeposited (NiZn)$ Fe_{2} $ alloys were obtained from non-aqueous ethylene glycol sulphate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (NiZn)$ Fe_{2} $ alloys such as the bath composition and the current density were studied and optimized. The anodized (NiZn)$ Fe_{2} $ alloy films were annealed in air at different temperatures ranging from 850 to 1000 °C for different times from 1 to 4 h. The change in the crystal structure, crystallite size, microstructure, and magnetic properties of the produced ferrites were investigated using X-ray diffraction patterns (XRD), scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). The results revealed the formation of Ni–Zn ferrites thin films were formed. The crystallite sizes of the produced films were in the range between 32 and 81 nm. High saturation magnetization of 48.81 emu/g was achieved for $ Ni_{0.5} $$ Zn_{0.5} $$ Fe_{2} $$ O_{4} $ thin film produced after annealing the alloy at 850 °C for 4 h. The annealing process of the oxidized alloy anodization process was found to be first order reaction. The activation energy of the crystallization of Ni–Zn ferrite was found to be 62 KJ/mol. © Springer Science+Business Media, LLC 2011 |
abstract_unstemmed |
Abstract Nanocrystalline nickel–zinc ferrites $ Ni_{x} $$ Zn_{1−x} $$ Fe_{2} $$ O_{4} $ thin films have been studied and synthesized via electrodeposition–anodization process. Electrodeposited (NiZn)$ Fe_{2} $ alloys were obtained from non-aqueous ethylene glycol sulphate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (NiZn)$ Fe_{2} $ alloys such as the bath composition and the current density were studied and optimized. The anodized (NiZn)$ Fe_{2} $ alloy films were annealed in air at different temperatures ranging from 850 to 1000 °C for different times from 1 to 4 h. The change in the crystal structure, crystallite size, microstructure, and magnetic properties of the produced ferrites were investigated using X-ray diffraction patterns (XRD), scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). The results revealed the formation of Ni–Zn ferrites thin films were formed. The crystallite sizes of the produced films were in the range between 32 and 81 nm. High saturation magnetization of 48.81 emu/g was achieved for $ Ni_{0.5} $$ Zn_{0.5} $$ Fe_{2} $$ O_{4} $ thin film produced after annealing the alloy at 850 °C for 4 h. The annealing process of the oxidized alloy anodization process was found to be first order reaction. The activation energy of the crystallization of Ni–Zn ferrite was found to be 62 KJ/mol. © Springer Science+Business Media, LLC 2011 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 |
container_issue |
10 |
title_short |
Structure and magnetic properties of $ Ni_{x} $$ Zn_{1−x} $$ Fe_{2} $$ O_{4} $ thin films prepared through electrodeposition method |
url |
https://doi.org/10.1007/s10853-011-5271-8 |
remote_bool |
false |
author2 |
Elsayed, E. M. Moharam, M. M. Rashad, M. M. Abou-Shahba, R. M. |
author2Str |
Elsayed, E. M. Moharam, M. M. Rashad, M. M. Abou-Shahba, R. M. |
ppnlink |
129546372 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10853-011-5271-8 |
up_date |
2024-07-04T04:54:17.803Z |
_version_ |
1803622922639638528 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046366522</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503124052.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10853-011-5271-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046366522</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10853-011-5271-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Saba, A. E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Structure and magnetic properties of $ Ni_{x} $$ Zn_{1−x} $$ Fe_{2} $$ O_{4} $ thin films prepared through electrodeposition method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Nanocrystalline nickel–zinc ferrites $ Ni_{x} $$ Zn_{1−x} $$ Fe_{2} $$ O_{4} $ thin films have been studied and synthesized via electrodeposition–anodization process. Electrodeposited (NiZn)$ Fe_{2} $ alloys were obtained from non-aqueous ethylene glycol sulphate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (NiZn)$ Fe_{2} $ alloys such as the bath composition and the current density were studied and optimized. The anodized (NiZn)$ Fe_{2} $ alloy films were annealed in air at different temperatures ranging from 850 to 1000 °C for different times from 1 to 4 h. The change in the crystal structure, crystallite size, microstructure, and magnetic properties of the produced ferrites were investigated using X-ray diffraction patterns (XRD), scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). The results revealed the formation of Ni–Zn ferrites thin films were formed. The crystallite sizes of the produced films were in the range between 32 and 81 nm. High saturation magnetization of 48.81 emu/g was achieved for $ Ni_{0.5} $$ Zn_{0.5} $$ Fe_{2} $$ O_{4} $ thin film produced after annealing the alloy at 850 °C for 4 h. The annealing process of the oxidized alloy anodization process was found to be first order reaction. The activation energy of the crystallization of Ni–Zn ferrite was found to be 62 KJ/mol.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ferrite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Current Efficiency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NiZn</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zinc Ferrite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nickel Ferrite</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Elsayed, E. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moharam, M. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rashad, M. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abou-Shahba, R. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Springer US, 1966</subfield><subfield code="g">46(2011), 10 vom: 26. Jan., Seite 3574-3582</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:10</subfield><subfield code="g">day:26</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:3574-3582</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10853-011-5271-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2011</subfield><subfield code="e">10</subfield><subfield code="b">26</subfield><subfield code="c">01</subfield><subfield code="h">3574-3582</subfield></datafield></record></collection>
|
score |
7.4000044 |