The migration and formation energies of N-interstitials near [001] Fe surfaces: an ab initio study
Abstract Using density functional theory, the mechanism of surface segregation of N to the [001] Fe surface was studied. The formation and migration energies were decomposed into chemical bonding and strain energy components. While the segregation energy was determined to be −1.1 eV, the bonding and...
Ausführliche Beschreibung
Autor*in: |
Autry, L. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2013 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials science - Springer US, 1966, 48(2013), 19 vom: 25. Juni, Seite 6542-6548 |
---|---|
Übergeordnetes Werk: |
volume:48 ; year:2013 ; number:19 ; day:25 ; month:06 ; pages:6542-6548 |
Links: |
---|
DOI / URN: |
10.1007/s10853-013-7450-2 |
---|
Katalog-ID: |
OLC2046388925 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2046388925 | ||
003 | DE-627 | ||
005 | 20230503124344.0 | ||
007 | tu | ||
008 | 200820s2013 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10853-013-7450-2 |2 doi | |
035 | |a (DE-627)OLC2046388925 | ||
035 | |a (DE-He213)s10853-013-7450-2-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Autry, L. |e verfasserin |4 aut | |
245 | 1 | 0 | |a The migration and formation energies of N-interstitials near [001] Fe surfaces: an ab initio study |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2013 | ||
520 | |a Abstract Using density functional theory, the mechanism of surface segregation of N to the [001] Fe surface was studied. The formation and migration energies were decomposed into chemical bonding and strain energy components. While the segregation energy was determined to be −1.1 eV, the bonding and strain energy components for segregation were −0.5 and −0.6 eV, respectively. The results indicate that strain energy relaxation plays a major role in surface segregation, and that there is approximately a 7-layer transient region, which separates bulk and surface environments. The role of the strain energy on interstitial migration barriers was also critically evaluated. | ||
650 | 4 | |a Bonding Energy | |
650 | 4 | |a Formation Energy | |
650 | 4 | |a Octahedral Site | |
650 | 4 | |a Activation Barrier | |
650 | 4 | |a Tetrahedral Site | |
700 | 1 | |a Ramprasad, R. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials science |d Springer US, 1966 |g 48(2013), 19 vom: 25. Juni, Seite 6542-6548 |w (DE-627)129546372 |w (DE-600)218324-9 |w (DE-576)014996774 |x 0022-2461 |7 nnns |
773 | 1 | 8 | |g volume:48 |g year:2013 |g number:19 |g day:25 |g month:06 |g pages:6542-6548 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10853-013-7450-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 48 |j 2013 |e 19 |b 25 |c 06 |h 6542-6548 |
author_variant |
l a la r r rr |
---|---|
matchkey_str |
article:00222461:2013----::hmgainnfrainnrisfitrttaser0fsr |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.1007/s10853-013-7450-2 doi (DE-627)OLC2046388925 (DE-He213)s10853-013-7450-2-p DE-627 ger DE-627 rakwb eng 670 VZ Autry, L. verfasserin aut The migration and formation energies of N-interstitials near [001] Fe surfaces: an ab initio study 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 Abstract Using density functional theory, the mechanism of surface segregation of N to the [001] Fe surface was studied. The formation and migration energies were decomposed into chemical bonding and strain energy components. While the segregation energy was determined to be −1.1 eV, the bonding and strain energy components for segregation were −0.5 and −0.6 eV, respectively. The results indicate that strain energy relaxation plays a major role in surface segregation, and that there is approximately a 7-layer transient region, which separates bulk and surface environments. The role of the strain energy on interstitial migration barriers was also critically evaluated. Bonding Energy Formation Energy Octahedral Site Activation Barrier Tetrahedral Site Ramprasad, R. aut Enthalten in Journal of materials science Springer US, 1966 48(2013), 19 vom: 25. Juni, Seite 6542-6548 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:48 year:2013 number:19 day:25 month:06 pages:6542-6548 https://doi.org/10.1007/s10853-013-7450-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 48 2013 19 25 06 6542-6548 |
spelling |
10.1007/s10853-013-7450-2 doi (DE-627)OLC2046388925 (DE-He213)s10853-013-7450-2-p DE-627 ger DE-627 rakwb eng 670 VZ Autry, L. verfasserin aut The migration and formation energies of N-interstitials near [001] Fe surfaces: an ab initio study 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 Abstract Using density functional theory, the mechanism of surface segregation of N to the [001] Fe surface was studied. The formation and migration energies were decomposed into chemical bonding and strain energy components. While the segregation energy was determined to be −1.1 eV, the bonding and strain energy components for segregation were −0.5 and −0.6 eV, respectively. The results indicate that strain energy relaxation plays a major role in surface segregation, and that there is approximately a 7-layer transient region, which separates bulk and surface environments. The role of the strain energy on interstitial migration barriers was also critically evaluated. Bonding Energy Formation Energy Octahedral Site Activation Barrier Tetrahedral Site Ramprasad, R. aut Enthalten in Journal of materials science Springer US, 1966 48(2013), 19 vom: 25. Juni, Seite 6542-6548 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:48 year:2013 number:19 day:25 month:06 pages:6542-6548 https://doi.org/10.1007/s10853-013-7450-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 48 2013 19 25 06 6542-6548 |
allfields_unstemmed |
10.1007/s10853-013-7450-2 doi (DE-627)OLC2046388925 (DE-He213)s10853-013-7450-2-p DE-627 ger DE-627 rakwb eng 670 VZ Autry, L. verfasserin aut The migration and formation energies of N-interstitials near [001] Fe surfaces: an ab initio study 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 Abstract Using density functional theory, the mechanism of surface segregation of N to the [001] Fe surface was studied. The formation and migration energies were decomposed into chemical bonding and strain energy components. While the segregation energy was determined to be −1.1 eV, the bonding and strain energy components for segregation were −0.5 and −0.6 eV, respectively. The results indicate that strain energy relaxation plays a major role in surface segregation, and that there is approximately a 7-layer transient region, which separates bulk and surface environments. The role of the strain energy on interstitial migration barriers was also critically evaluated. Bonding Energy Formation Energy Octahedral Site Activation Barrier Tetrahedral Site Ramprasad, R. aut Enthalten in Journal of materials science Springer US, 1966 48(2013), 19 vom: 25. Juni, Seite 6542-6548 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:48 year:2013 number:19 day:25 month:06 pages:6542-6548 https://doi.org/10.1007/s10853-013-7450-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 48 2013 19 25 06 6542-6548 |
allfieldsGer |
10.1007/s10853-013-7450-2 doi (DE-627)OLC2046388925 (DE-He213)s10853-013-7450-2-p DE-627 ger DE-627 rakwb eng 670 VZ Autry, L. verfasserin aut The migration and formation energies of N-interstitials near [001] Fe surfaces: an ab initio study 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 Abstract Using density functional theory, the mechanism of surface segregation of N to the [001] Fe surface was studied. The formation and migration energies were decomposed into chemical bonding and strain energy components. While the segregation energy was determined to be −1.1 eV, the bonding and strain energy components for segregation were −0.5 and −0.6 eV, respectively. The results indicate that strain energy relaxation plays a major role in surface segregation, and that there is approximately a 7-layer transient region, which separates bulk and surface environments. The role of the strain energy on interstitial migration barriers was also critically evaluated. Bonding Energy Formation Energy Octahedral Site Activation Barrier Tetrahedral Site Ramprasad, R. aut Enthalten in Journal of materials science Springer US, 1966 48(2013), 19 vom: 25. Juni, Seite 6542-6548 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:48 year:2013 number:19 day:25 month:06 pages:6542-6548 https://doi.org/10.1007/s10853-013-7450-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 48 2013 19 25 06 6542-6548 |
allfieldsSound |
10.1007/s10853-013-7450-2 doi (DE-627)OLC2046388925 (DE-He213)s10853-013-7450-2-p DE-627 ger DE-627 rakwb eng 670 VZ Autry, L. verfasserin aut The migration and formation energies of N-interstitials near [001] Fe surfaces: an ab initio study 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 Abstract Using density functional theory, the mechanism of surface segregation of N to the [001] Fe surface was studied. The formation and migration energies were decomposed into chemical bonding and strain energy components. While the segregation energy was determined to be −1.1 eV, the bonding and strain energy components for segregation were −0.5 and −0.6 eV, respectively. The results indicate that strain energy relaxation plays a major role in surface segregation, and that there is approximately a 7-layer transient region, which separates bulk and surface environments. The role of the strain energy on interstitial migration barriers was also critically evaluated. Bonding Energy Formation Energy Octahedral Site Activation Barrier Tetrahedral Site Ramprasad, R. aut Enthalten in Journal of materials science Springer US, 1966 48(2013), 19 vom: 25. Juni, Seite 6542-6548 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:48 year:2013 number:19 day:25 month:06 pages:6542-6548 https://doi.org/10.1007/s10853-013-7450-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 48 2013 19 25 06 6542-6548 |
language |
English |
source |
Enthalten in Journal of materials science 48(2013), 19 vom: 25. Juni, Seite 6542-6548 volume:48 year:2013 number:19 day:25 month:06 pages:6542-6548 |
sourceStr |
Enthalten in Journal of materials science 48(2013), 19 vom: 25. Juni, Seite 6542-6548 volume:48 year:2013 number:19 day:25 month:06 pages:6542-6548 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Bonding Energy Formation Energy Octahedral Site Activation Barrier Tetrahedral Site |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of materials science |
authorswithroles_txt_mv |
Autry, L. @@aut@@ Ramprasad, R. @@aut@@ |
publishDateDaySort_date |
2013-06-25T00:00:00Z |
hierarchy_top_id |
129546372 |
dewey-sort |
3670 |
id |
OLC2046388925 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046388925</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503124344.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10853-013-7450-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046388925</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10853-013-7450-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Autry, L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The migration and formation energies of N-interstitials near [001] Fe surfaces: an ab initio study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Using density functional theory, the mechanism of surface segregation of N to the [001] Fe surface was studied. The formation and migration energies were decomposed into chemical bonding and strain energy components. While the segregation energy was determined to be −1.1 eV, the bonding and strain energy components for segregation were −0.5 and −0.6 eV, respectively. The results indicate that strain energy relaxation plays a major role in surface segregation, and that there is approximately a 7-layer transient region, which separates bulk and surface environments. The role of the strain energy on interstitial migration barriers was also critically evaluated.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bonding Energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Formation Energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Octahedral Site</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Activation Barrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tetrahedral Site</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ramprasad, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Springer US, 1966</subfield><subfield code="g">48(2013), 19 vom: 25. Juni, Seite 6542-6548</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:48</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:19</subfield><subfield code="g">day:25</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:6542-6548</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10853-013-7450-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">48</subfield><subfield code="j">2013</subfield><subfield code="e">19</subfield><subfield code="b">25</subfield><subfield code="c">06</subfield><subfield code="h">6542-6548</subfield></datafield></record></collection>
|
author |
Autry, L. |
spellingShingle |
Autry, L. ddc 670 misc Bonding Energy misc Formation Energy misc Octahedral Site misc Activation Barrier misc Tetrahedral Site The migration and formation energies of N-interstitials near [001] Fe surfaces: an ab initio study |
authorStr |
Autry, L. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129546372 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-2461 |
topic_title |
670 VZ The migration and formation energies of N-interstitials near [001] Fe surfaces: an ab initio study Bonding Energy Formation Energy Octahedral Site Activation Barrier Tetrahedral Site |
topic |
ddc 670 misc Bonding Energy misc Formation Energy misc Octahedral Site misc Activation Barrier misc Tetrahedral Site |
topic_unstemmed |
ddc 670 misc Bonding Energy misc Formation Energy misc Octahedral Site misc Activation Barrier misc Tetrahedral Site |
topic_browse |
ddc 670 misc Bonding Energy misc Formation Energy misc Octahedral Site misc Activation Barrier misc Tetrahedral Site |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials science |
hierarchy_parent_id |
129546372 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of materials science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 |
title |
The migration and formation energies of N-interstitials near [001] Fe surfaces: an ab initio study |
ctrlnum |
(DE-627)OLC2046388925 (DE-He213)s10853-013-7450-2-p |
title_full |
The migration and formation energies of N-interstitials near [001] Fe surfaces: an ab initio study |
author_sort |
Autry, L. |
journal |
Journal of materials science |
journalStr |
Journal of materials science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
container_start_page |
6542 |
author_browse |
Autry, L. Ramprasad, R. |
container_volume |
48 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Autry, L. |
doi_str_mv |
10.1007/s10853-013-7450-2 |
dewey-full |
670 |
title_sort |
the migration and formation energies of n-interstitials near [001] fe surfaces: an ab initio study |
title_auth |
The migration and formation energies of N-interstitials near [001] Fe surfaces: an ab initio study |
abstract |
Abstract Using density functional theory, the mechanism of surface segregation of N to the [001] Fe surface was studied. The formation and migration energies were decomposed into chemical bonding and strain energy components. While the segregation energy was determined to be −1.1 eV, the bonding and strain energy components for segregation were −0.5 and −0.6 eV, respectively. The results indicate that strain energy relaxation plays a major role in surface segregation, and that there is approximately a 7-layer transient region, which separates bulk and surface environments. The role of the strain energy on interstitial migration barriers was also critically evaluated. © Springer Science+Business Media New York 2013 |
abstractGer |
Abstract Using density functional theory, the mechanism of surface segregation of N to the [001] Fe surface was studied. The formation and migration energies were decomposed into chemical bonding and strain energy components. While the segregation energy was determined to be −1.1 eV, the bonding and strain energy components for segregation were −0.5 and −0.6 eV, respectively. The results indicate that strain energy relaxation plays a major role in surface segregation, and that there is approximately a 7-layer transient region, which separates bulk and surface environments. The role of the strain energy on interstitial migration barriers was also critically evaluated. © Springer Science+Business Media New York 2013 |
abstract_unstemmed |
Abstract Using density functional theory, the mechanism of surface segregation of N to the [001] Fe surface was studied. The formation and migration energies were decomposed into chemical bonding and strain energy components. While the segregation energy was determined to be −1.1 eV, the bonding and strain energy components for segregation were −0.5 and −0.6 eV, respectively. The results indicate that strain energy relaxation plays a major role in surface segregation, and that there is approximately a 7-layer transient region, which separates bulk and surface environments. The role of the strain energy on interstitial migration barriers was also critically evaluated. © Springer Science+Business Media New York 2013 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 |
container_issue |
19 |
title_short |
The migration and formation energies of N-interstitials near [001] Fe surfaces: an ab initio study |
url |
https://doi.org/10.1007/s10853-013-7450-2 |
remote_bool |
false |
author2 |
Ramprasad, R. |
author2Str |
Ramprasad, R. |
ppnlink |
129546372 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10853-013-7450-2 |
up_date |
2024-07-04T04:57:54.442Z |
_version_ |
1803623149801046016 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046388925</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503124344.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10853-013-7450-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046388925</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10853-013-7450-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Autry, L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The migration and formation energies of N-interstitials near [001] Fe surfaces: an ab initio study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Using density functional theory, the mechanism of surface segregation of N to the [001] Fe surface was studied. The formation and migration energies were decomposed into chemical bonding and strain energy components. While the segregation energy was determined to be −1.1 eV, the bonding and strain energy components for segregation were −0.5 and −0.6 eV, respectively. The results indicate that strain energy relaxation plays a major role in surface segregation, and that there is approximately a 7-layer transient region, which separates bulk and surface environments. The role of the strain energy on interstitial migration barriers was also critically evaluated.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bonding Energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Formation Energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Octahedral Site</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Activation Barrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tetrahedral Site</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ramprasad, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Springer US, 1966</subfield><subfield code="g">48(2013), 19 vom: 25. Juni, Seite 6542-6548</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:48</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:19</subfield><subfield code="g">day:25</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:6542-6548</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10853-013-7450-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">48</subfield><subfield code="j">2013</subfield><subfield code="e">19</subfield><subfield code="b">25</subfield><subfield code="c">06</subfield><subfield code="h">6542-6548</subfield></datafield></record></collection>
|
score |
7.4013014 |