Functions of amorphous carbon in catalyst fabrication for carbon nanofiber growth in the poly(ethylene glycol) thermal decomposition method
Abstract To investigate the growth mechanism of carbon nanofibers (CNF) through a process using the thermal decomposition of poly(ethylene glycol) (PEG), we researched the phenomena that occurred from PEG decomposition to CNF growth during a temperature elevation process of CNF synthesis. In the PEG...
Ausführliche Beschreibung
Autor*in: |
Takahashi, Yusuke [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2014 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials science - Springer US, 1966, 49(2014), 15 vom: 26. Apr., Seite 5289-5298 |
---|---|
Übergeordnetes Werk: |
volume:49 ; year:2014 ; number:15 ; day:26 ; month:04 ; pages:5289-5298 |
Links: |
---|
DOI / URN: |
10.1007/s10853-014-8231-2 |
---|
Katalog-ID: |
OLC2046396545 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2046396545 | ||
003 | DE-627 | ||
005 | 20230503124436.0 | ||
007 | tu | ||
008 | 200820s2014 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10853-014-8231-2 |2 doi | |
035 | |a (DE-627)OLC2046396545 | ||
035 | |a (DE-He213)s10853-014-8231-2-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Takahashi, Yusuke |e verfasserin |4 aut | |
245 | 1 | 0 | |a Functions of amorphous carbon in catalyst fabrication for carbon nanofiber growth in the poly(ethylene glycol) thermal decomposition method |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2014 | ||
520 | |a Abstract To investigate the growth mechanism of carbon nanofibers (CNF) through a process using the thermal decomposition of poly(ethylene glycol) (PEG), we researched the phenomena that occurred from PEG decomposition to CNF growth during a temperature elevation process of CNF synthesis. In the PEG thermal decomposition method, the selective synthesis of platelet CNF (PCNF) and cup-stacked CNF was accomplished by changing only the ramp rate (without any other difference in experimental conditions). As a result, it was confirmed that carbon-containing gases generated by PEG thermal decomposition were converted to amorphous carbon and deposited on the substrate. There was a clear correlation between the amount of deposited amorphous carbon and the size of the nickel catalyst particle for CNF growth. Therefore, in the PEG thermal decomposition method, amorphous carbon deposition was found to be important to control the dispersity and morphology of the catalyst particle, and it was probably crucial to the determination of the type of CNF. In addition, the PCNF prepared in this study showed multidirectional growth from polyhedral catalyst particles, and this could be why the PEG thermal decomposition was able to create PCNF with small diameters compared to PCNF synthesized by conventional methods. | ||
650 | 4 | |a Amorphous Carbon | |
650 | 4 | |a Ramp Rate | |
650 | 4 | |a Selective Synthesis | |
650 | 4 | |a Amorphous Carbon Film | |
650 | 4 | |a Catalyst Particle Size | |
700 | 1 | |a Fujita, Hirotaka |4 aut | |
700 | 1 | |a Sakoda, Akiyoshi |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials science |d Springer US, 1966 |g 49(2014), 15 vom: 26. Apr., Seite 5289-5298 |w (DE-627)129546372 |w (DE-600)218324-9 |w (DE-576)014996774 |x 0022-2461 |7 nnns |
773 | 1 | 8 | |g volume:49 |g year:2014 |g number:15 |g day:26 |g month:04 |g pages:5289-5298 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10853-014-8231-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 49 |j 2014 |e 15 |b 26 |c 04 |h 5289-5298 |
author_variant |
y t yt h f hf a s as |
---|---|
matchkey_str |
article:00222461:2014----::ucinoaoposabnnaaytarctofrabnaoiegotiteoytyeel |
hierarchy_sort_str |
2014 |
publishDate |
2014 |
allfields |
10.1007/s10853-014-8231-2 doi (DE-627)OLC2046396545 (DE-He213)s10853-014-8231-2-p DE-627 ger DE-627 rakwb eng 670 VZ Takahashi, Yusuke verfasserin aut Functions of amorphous carbon in catalyst fabrication for carbon nanofiber growth in the poly(ethylene glycol) thermal decomposition method 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 Abstract To investigate the growth mechanism of carbon nanofibers (CNF) through a process using the thermal decomposition of poly(ethylene glycol) (PEG), we researched the phenomena that occurred from PEG decomposition to CNF growth during a temperature elevation process of CNF synthesis. In the PEG thermal decomposition method, the selective synthesis of platelet CNF (PCNF) and cup-stacked CNF was accomplished by changing only the ramp rate (without any other difference in experimental conditions). As a result, it was confirmed that carbon-containing gases generated by PEG thermal decomposition were converted to amorphous carbon and deposited on the substrate. There was a clear correlation between the amount of deposited amorphous carbon and the size of the nickel catalyst particle for CNF growth. Therefore, in the PEG thermal decomposition method, amorphous carbon deposition was found to be important to control the dispersity and morphology of the catalyst particle, and it was probably crucial to the determination of the type of CNF. In addition, the PCNF prepared in this study showed multidirectional growth from polyhedral catalyst particles, and this could be why the PEG thermal decomposition was able to create PCNF with small diameters compared to PCNF synthesized by conventional methods. Amorphous Carbon Ramp Rate Selective Synthesis Amorphous Carbon Film Catalyst Particle Size Fujita, Hirotaka aut Sakoda, Akiyoshi aut Enthalten in Journal of materials science Springer US, 1966 49(2014), 15 vom: 26. Apr., Seite 5289-5298 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:49 year:2014 number:15 day:26 month:04 pages:5289-5298 https://doi.org/10.1007/s10853-014-8231-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 49 2014 15 26 04 5289-5298 |
spelling |
10.1007/s10853-014-8231-2 doi (DE-627)OLC2046396545 (DE-He213)s10853-014-8231-2-p DE-627 ger DE-627 rakwb eng 670 VZ Takahashi, Yusuke verfasserin aut Functions of amorphous carbon in catalyst fabrication for carbon nanofiber growth in the poly(ethylene glycol) thermal decomposition method 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 Abstract To investigate the growth mechanism of carbon nanofibers (CNF) through a process using the thermal decomposition of poly(ethylene glycol) (PEG), we researched the phenomena that occurred from PEG decomposition to CNF growth during a temperature elevation process of CNF synthesis. In the PEG thermal decomposition method, the selective synthesis of platelet CNF (PCNF) and cup-stacked CNF was accomplished by changing only the ramp rate (without any other difference in experimental conditions). As a result, it was confirmed that carbon-containing gases generated by PEG thermal decomposition were converted to amorphous carbon and deposited on the substrate. There was a clear correlation between the amount of deposited amorphous carbon and the size of the nickel catalyst particle for CNF growth. Therefore, in the PEG thermal decomposition method, amorphous carbon deposition was found to be important to control the dispersity and morphology of the catalyst particle, and it was probably crucial to the determination of the type of CNF. In addition, the PCNF prepared in this study showed multidirectional growth from polyhedral catalyst particles, and this could be why the PEG thermal decomposition was able to create PCNF with small diameters compared to PCNF synthesized by conventional methods. Amorphous Carbon Ramp Rate Selective Synthesis Amorphous Carbon Film Catalyst Particle Size Fujita, Hirotaka aut Sakoda, Akiyoshi aut Enthalten in Journal of materials science Springer US, 1966 49(2014), 15 vom: 26. Apr., Seite 5289-5298 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:49 year:2014 number:15 day:26 month:04 pages:5289-5298 https://doi.org/10.1007/s10853-014-8231-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 49 2014 15 26 04 5289-5298 |
allfields_unstemmed |
10.1007/s10853-014-8231-2 doi (DE-627)OLC2046396545 (DE-He213)s10853-014-8231-2-p DE-627 ger DE-627 rakwb eng 670 VZ Takahashi, Yusuke verfasserin aut Functions of amorphous carbon in catalyst fabrication for carbon nanofiber growth in the poly(ethylene glycol) thermal decomposition method 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 Abstract To investigate the growth mechanism of carbon nanofibers (CNF) through a process using the thermal decomposition of poly(ethylene glycol) (PEG), we researched the phenomena that occurred from PEG decomposition to CNF growth during a temperature elevation process of CNF synthesis. In the PEG thermal decomposition method, the selective synthesis of platelet CNF (PCNF) and cup-stacked CNF was accomplished by changing only the ramp rate (without any other difference in experimental conditions). As a result, it was confirmed that carbon-containing gases generated by PEG thermal decomposition were converted to amorphous carbon and deposited on the substrate. There was a clear correlation between the amount of deposited amorphous carbon and the size of the nickel catalyst particle for CNF growth. Therefore, in the PEG thermal decomposition method, amorphous carbon deposition was found to be important to control the dispersity and morphology of the catalyst particle, and it was probably crucial to the determination of the type of CNF. In addition, the PCNF prepared in this study showed multidirectional growth from polyhedral catalyst particles, and this could be why the PEG thermal decomposition was able to create PCNF with small diameters compared to PCNF synthesized by conventional methods. Amorphous Carbon Ramp Rate Selective Synthesis Amorphous Carbon Film Catalyst Particle Size Fujita, Hirotaka aut Sakoda, Akiyoshi aut Enthalten in Journal of materials science Springer US, 1966 49(2014), 15 vom: 26. Apr., Seite 5289-5298 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:49 year:2014 number:15 day:26 month:04 pages:5289-5298 https://doi.org/10.1007/s10853-014-8231-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 49 2014 15 26 04 5289-5298 |
allfieldsGer |
10.1007/s10853-014-8231-2 doi (DE-627)OLC2046396545 (DE-He213)s10853-014-8231-2-p DE-627 ger DE-627 rakwb eng 670 VZ Takahashi, Yusuke verfasserin aut Functions of amorphous carbon in catalyst fabrication for carbon nanofiber growth in the poly(ethylene glycol) thermal decomposition method 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 Abstract To investigate the growth mechanism of carbon nanofibers (CNF) through a process using the thermal decomposition of poly(ethylene glycol) (PEG), we researched the phenomena that occurred from PEG decomposition to CNF growth during a temperature elevation process of CNF synthesis. In the PEG thermal decomposition method, the selective synthesis of platelet CNF (PCNF) and cup-stacked CNF was accomplished by changing only the ramp rate (without any other difference in experimental conditions). As a result, it was confirmed that carbon-containing gases generated by PEG thermal decomposition were converted to amorphous carbon and deposited on the substrate. There was a clear correlation between the amount of deposited amorphous carbon and the size of the nickel catalyst particle for CNF growth. Therefore, in the PEG thermal decomposition method, amorphous carbon deposition was found to be important to control the dispersity and morphology of the catalyst particle, and it was probably crucial to the determination of the type of CNF. In addition, the PCNF prepared in this study showed multidirectional growth from polyhedral catalyst particles, and this could be why the PEG thermal decomposition was able to create PCNF with small diameters compared to PCNF synthesized by conventional methods. Amorphous Carbon Ramp Rate Selective Synthesis Amorphous Carbon Film Catalyst Particle Size Fujita, Hirotaka aut Sakoda, Akiyoshi aut Enthalten in Journal of materials science Springer US, 1966 49(2014), 15 vom: 26. Apr., Seite 5289-5298 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:49 year:2014 number:15 day:26 month:04 pages:5289-5298 https://doi.org/10.1007/s10853-014-8231-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 49 2014 15 26 04 5289-5298 |
allfieldsSound |
10.1007/s10853-014-8231-2 doi (DE-627)OLC2046396545 (DE-He213)s10853-014-8231-2-p DE-627 ger DE-627 rakwb eng 670 VZ Takahashi, Yusuke verfasserin aut Functions of amorphous carbon in catalyst fabrication for carbon nanofiber growth in the poly(ethylene glycol) thermal decomposition method 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 Abstract To investigate the growth mechanism of carbon nanofibers (CNF) through a process using the thermal decomposition of poly(ethylene glycol) (PEG), we researched the phenomena that occurred from PEG decomposition to CNF growth during a temperature elevation process of CNF synthesis. In the PEG thermal decomposition method, the selective synthesis of platelet CNF (PCNF) and cup-stacked CNF was accomplished by changing only the ramp rate (without any other difference in experimental conditions). As a result, it was confirmed that carbon-containing gases generated by PEG thermal decomposition were converted to amorphous carbon and deposited on the substrate. There was a clear correlation between the amount of deposited amorphous carbon and the size of the nickel catalyst particle for CNF growth. Therefore, in the PEG thermal decomposition method, amorphous carbon deposition was found to be important to control the dispersity and morphology of the catalyst particle, and it was probably crucial to the determination of the type of CNF. In addition, the PCNF prepared in this study showed multidirectional growth from polyhedral catalyst particles, and this could be why the PEG thermal decomposition was able to create PCNF with small diameters compared to PCNF synthesized by conventional methods. Amorphous Carbon Ramp Rate Selective Synthesis Amorphous Carbon Film Catalyst Particle Size Fujita, Hirotaka aut Sakoda, Akiyoshi aut Enthalten in Journal of materials science Springer US, 1966 49(2014), 15 vom: 26. Apr., Seite 5289-5298 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:49 year:2014 number:15 day:26 month:04 pages:5289-5298 https://doi.org/10.1007/s10853-014-8231-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 49 2014 15 26 04 5289-5298 |
language |
English |
source |
Enthalten in Journal of materials science 49(2014), 15 vom: 26. Apr., Seite 5289-5298 volume:49 year:2014 number:15 day:26 month:04 pages:5289-5298 |
sourceStr |
Enthalten in Journal of materials science 49(2014), 15 vom: 26. Apr., Seite 5289-5298 volume:49 year:2014 number:15 day:26 month:04 pages:5289-5298 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Amorphous Carbon Ramp Rate Selective Synthesis Amorphous Carbon Film Catalyst Particle Size |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of materials science |
authorswithroles_txt_mv |
Takahashi, Yusuke @@aut@@ Fujita, Hirotaka @@aut@@ Sakoda, Akiyoshi @@aut@@ |
publishDateDaySort_date |
2014-04-26T00:00:00Z |
hierarchy_top_id |
129546372 |
dewey-sort |
3670 |
id |
OLC2046396545 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046396545</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503124436.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10853-014-8231-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046396545</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10853-014-8231-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Takahashi, Yusuke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Functions of amorphous carbon in catalyst fabrication for carbon nanofiber growth in the poly(ethylene glycol) thermal decomposition method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract To investigate the growth mechanism of carbon nanofibers (CNF) through a process using the thermal decomposition of poly(ethylene glycol) (PEG), we researched the phenomena that occurred from PEG decomposition to CNF growth during a temperature elevation process of CNF synthesis. In the PEG thermal decomposition method, the selective synthesis of platelet CNF (PCNF) and cup-stacked CNF was accomplished by changing only the ramp rate (without any other difference in experimental conditions). As a result, it was confirmed that carbon-containing gases generated by PEG thermal decomposition were converted to amorphous carbon and deposited on the substrate. There was a clear correlation between the amount of deposited amorphous carbon and the size of the nickel catalyst particle for CNF growth. Therefore, in the PEG thermal decomposition method, amorphous carbon deposition was found to be important to control the dispersity and morphology of the catalyst particle, and it was probably crucial to the determination of the type of CNF. In addition, the PCNF prepared in this study showed multidirectional growth from polyhedral catalyst particles, and this could be why the PEG thermal decomposition was able to create PCNF with small diameters compared to PCNF synthesized by conventional methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amorphous Carbon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ramp Rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Selective Synthesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amorphous Carbon Film</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Catalyst Particle Size</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fujita, Hirotaka</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sakoda, Akiyoshi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Springer US, 1966</subfield><subfield code="g">49(2014), 15 vom: 26. Apr., Seite 5289-5298</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:49</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:15</subfield><subfield code="g">day:26</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:5289-5298</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10853-014-8231-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">49</subfield><subfield code="j">2014</subfield><subfield code="e">15</subfield><subfield code="b">26</subfield><subfield code="c">04</subfield><subfield code="h">5289-5298</subfield></datafield></record></collection>
|
author |
Takahashi, Yusuke |
spellingShingle |
Takahashi, Yusuke ddc 670 misc Amorphous Carbon misc Ramp Rate misc Selective Synthesis misc Amorphous Carbon Film misc Catalyst Particle Size Functions of amorphous carbon in catalyst fabrication for carbon nanofiber growth in the poly(ethylene glycol) thermal decomposition method |
authorStr |
Takahashi, Yusuke |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129546372 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-2461 |
topic_title |
670 VZ Functions of amorphous carbon in catalyst fabrication for carbon nanofiber growth in the poly(ethylene glycol) thermal decomposition method Amorphous Carbon Ramp Rate Selective Synthesis Amorphous Carbon Film Catalyst Particle Size |
topic |
ddc 670 misc Amorphous Carbon misc Ramp Rate misc Selective Synthesis misc Amorphous Carbon Film misc Catalyst Particle Size |
topic_unstemmed |
ddc 670 misc Amorphous Carbon misc Ramp Rate misc Selective Synthesis misc Amorphous Carbon Film misc Catalyst Particle Size |
topic_browse |
ddc 670 misc Amorphous Carbon misc Ramp Rate misc Selective Synthesis misc Amorphous Carbon Film misc Catalyst Particle Size |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials science |
hierarchy_parent_id |
129546372 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of materials science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 |
title |
Functions of amorphous carbon in catalyst fabrication for carbon nanofiber growth in the poly(ethylene glycol) thermal decomposition method |
ctrlnum |
(DE-627)OLC2046396545 (DE-He213)s10853-014-8231-2-p |
title_full |
Functions of amorphous carbon in catalyst fabrication for carbon nanofiber growth in the poly(ethylene glycol) thermal decomposition method |
author_sort |
Takahashi, Yusuke |
journal |
Journal of materials science |
journalStr |
Journal of materials science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
container_start_page |
5289 |
author_browse |
Takahashi, Yusuke Fujita, Hirotaka Sakoda, Akiyoshi |
container_volume |
49 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Takahashi, Yusuke |
doi_str_mv |
10.1007/s10853-014-8231-2 |
dewey-full |
670 |
title_sort |
functions of amorphous carbon in catalyst fabrication for carbon nanofiber growth in the poly(ethylene glycol) thermal decomposition method |
title_auth |
Functions of amorphous carbon in catalyst fabrication for carbon nanofiber growth in the poly(ethylene glycol) thermal decomposition method |
abstract |
Abstract To investigate the growth mechanism of carbon nanofibers (CNF) through a process using the thermal decomposition of poly(ethylene glycol) (PEG), we researched the phenomena that occurred from PEG decomposition to CNF growth during a temperature elevation process of CNF synthesis. In the PEG thermal decomposition method, the selective synthesis of platelet CNF (PCNF) and cup-stacked CNF was accomplished by changing only the ramp rate (without any other difference in experimental conditions). As a result, it was confirmed that carbon-containing gases generated by PEG thermal decomposition were converted to amorphous carbon and deposited on the substrate. There was a clear correlation between the amount of deposited amorphous carbon and the size of the nickel catalyst particle for CNF growth. Therefore, in the PEG thermal decomposition method, amorphous carbon deposition was found to be important to control the dispersity and morphology of the catalyst particle, and it was probably crucial to the determination of the type of CNF. In addition, the PCNF prepared in this study showed multidirectional growth from polyhedral catalyst particles, and this could be why the PEG thermal decomposition was able to create PCNF with small diameters compared to PCNF synthesized by conventional methods. © Springer Science+Business Media New York 2014 |
abstractGer |
Abstract To investigate the growth mechanism of carbon nanofibers (CNF) through a process using the thermal decomposition of poly(ethylene glycol) (PEG), we researched the phenomena that occurred from PEG decomposition to CNF growth during a temperature elevation process of CNF synthesis. In the PEG thermal decomposition method, the selective synthesis of platelet CNF (PCNF) and cup-stacked CNF was accomplished by changing only the ramp rate (without any other difference in experimental conditions). As a result, it was confirmed that carbon-containing gases generated by PEG thermal decomposition were converted to amorphous carbon and deposited on the substrate. There was a clear correlation between the amount of deposited amorphous carbon and the size of the nickel catalyst particle for CNF growth. Therefore, in the PEG thermal decomposition method, amorphous carbon deposition was found to be important to control the dispersity and morphology of the catalyst particle, and it was probably crucial to the determination of the type of CNF. In addition, the PCNF prepared in this study showed multidirectional growth from polyhedral catalyst particles, and this could be why the PEG thermal decomposition was able to create PCNF with small diameters compared to PCNF synthesized by conventional methods. © Springer Science+Business Media New York 2014 |
abstract_unstemmed |
Abstract To investigate the growth mechanism of carbon nanofibers (CNF) through a process using the thermal decomposition of poly(ethylene glycol) (PEG), we researched the phenomena that occurred from PEG decomposition to CNF growth during a temperature elevation process of CNF synthesis. In the PEG thermal decomposition method, the selective synthesis of platelet CNF (PCNF) and cup-stacked CNF was accomplished by changing only the ramp rate (without any other difference in experimental conditions). As a result, it was confirmed that carbon-containing gases generated by PEG thermal decomposition were converted to amorphous carbon and deposited on the substrate. There was a clear correlation between the amount of deposited amorphous carbon and the size of the nickel catalyst particle for CNF growth. Therefore, in the PEG thermal decomposition method, amorphous carbon deposition was found to be important to control the dispersity and morphology of the catalyst particle, and it was probably crucial to the determination of the type of CNF. In addition, the PCNF prepared in this study showed multidirectional growth from polyhedral catalyst particles, and this could be why the PEG thermal decomposition was able to create PCNF with small diameters compared to PCNF synthesized by conventional methods. © Springer Science+Business Media New York 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 |
container_issue |
15 |
title_short |
Functions of amorphous carbon in catalyst fabrication for carbon nanofiber growth in the poly(ethylene glycol) thermal decomposition method |
url |
https://doi.org/10.1007/s10853-014-8231-2 |
remote_bool |
false |
author2 |
Fujita, Hirotaka Sakoda, Akiyoshi |
author2Str |
Fujita, Hirotaka Sakoda, Akiyoshi |
ppnlink |
129546372 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10853-014-8231-2 |
up_date |
2024-07-04T04:59:07.988Z |
_version_ |
1803623226918567936 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046396545</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503124436.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10853-014-8231-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046396545</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10853-014-8231-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Takahashi, Yusuke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Functions of amorphous carbon in catalyst fabrication for carbon nanofiber growth in the poly(ethylene glycol) thermal decomposition method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract To investigate the growth mechanism of carbon nanofibers (CNF) through a process using the thermal decomposition of poly(ethylene glycol) (PEG), we researched the phenomena that occurred from PEG decomposition to CNF growth during a temperature elevation process of CNF synthesis. In the PEG thermal decomposition method, the selective synthesis of platelet CNF (PCNF) and cup-stacked CNF was accomplished by changing only the ramp rate (without any other difference in experimental conditions). As a result, it was confirmed that carbon-containing gases generated by PEG thermal decomposition were converted to amorphous carbon and deposited on the substrate. There was a clear correlation between the amount of deposited amorphous carbon and the size of the nickel catalyst particle for CNF growth. Therefore, in the PEG thermal decomposition method, amorphous carbon deposition was found to be important to control the dispersity and morphology of the catalyst particle, and it was probably crucial to the determination of the type of CNF. In addition, the PCNF prepared in this study showed multidirectional growth from polyhedral catalyst particles, and this could be why the PEG thermal decomposition was able to create PCNF with small diameters compared to PCNF synthesized by conventional methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amorphous Carbon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ramp Rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Selective Synthesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amorphous Carbon Film</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Catalyst Particle Size</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fujita, Hirotaka</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sakoda, Akiyoshi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Springer US, 1966</subfield><subfield code="g">49(2014), 15 vom: 26. Apr., Seite 5289-5298</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:49</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:15</subfield><subfield code="g">day:26</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:5289-5298</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10853-014-8231-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">49</subfield><subfield code="j">2014</subfield><subfield code="e">15</subfield><subfield code="b">26</subfield><subfield code="c">04</subfield><subfield code="h">5289-5298</subfield></datafield></record></collection>
|
score |
7.4025126 |