Controllable synthesis of α-$ Fe_{2} $$ O_{3} $ nanotubes with high surface area: preparation, growth mechanism, and its catalytic performance for the selective catalytic reduction of NO with $ NH_{3} $
Abstract Uniform FeOOH nanotubes with different thicknesses have been synthesized on a large scale by a facile template method with $ MoO_{3} $ nanorod as the hard template. The hydrolysis kinetics of $ Fe^{3+} $ has a comprehensive and crucial influence on the formation of FeOOH nanotube. The contr...
Ausführliche Beschreibung
Autor*in: |
Ma, Lingjuan [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials science - Springer US, 1966, 51(2015), 4 vom: 20. Okt., Seite 1959-1965 |
---|---|
Übergeordnetes Werk: |
volume:51 ; year:2015 ; number:4 ; day:20 ; month:10 ; pages:1959-1965 |
Links: |
---|
DOI / URN: |
10.1007/s10853-015-9505-z |
---|
Katalog-ID: |
OLC2046409051 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2046409051 | ||
003 | DE-627 | ||
005 | 20230503124703.0 | ||
007 | tu | ||
008 | 200820s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10853-015-9505-z |2 doi | |
035 | |a (DE-627)OLC2046409051 | ||
035 | |a (DE-He213)s10853-015-9505-z-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Ma, Lingjuan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Controllable synthesis of α-$ Fe_{2} $$ O_{3} $ nanotubes with high surface area: preparation, growth mechanism, and its catalytic performance for the selective catalytic reduction of NO with $ NH_{3} $ |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2015 | ||
520 | |a Abstract Uniform FeOOH nanotubes with different thicknesses have been synthesized on a large scale by a facile template method with $ MoO_{3} $ nanorod as the hard template. The hydrolysis kinetics of $ Fe^{3+} $ has a comprehensive and crucial influence on the formation of FeOOH nanotube. The controllable synthesis of nanotubes with different thickness and inner diameter can be achieved by tuning the molar ratio of $ Fe^{3+} $/$ MoO_{3} $ and hydrolysis temperature of $ Fe^{3+} $ at the same time. After calcination, FeOOH nanotubes transformed to corresponding α-$ Fe_{2} $$ O_{3} $ nanotubes in which wall thicknesses vary from 50 to 128 nm. It was also found that when the molar ratio of $ Fe^{3+} $/$ MoO_{3} $ and the hydrolysis temperature of $ Fe^{3+} $ were fixed to 2:1 and 70 °C, respectively, the BET surface area of the obtained α-$ Fe_{2} $$ O_{3} $ nanotube is as high as 149 $ m^{2} $/g. The activity on the selective catalytic reduction of NO with $ NH_{3} $ is shape-dependent with nanotube showing a higher activity than nanoplate and nanoparticle. | ||
650 | 4 | |a MoO3 | |
650 | 4 | |a Selective Catalytic Reduction | |
650 | 4 | |a Selective Catalytic Reduction Reaction | |
650 | 4 | |a Hydrolysis Temperature | |
650 | 4 | |a Selective Catalytic Reduction Activity | |
700 | 1 | |a Ma, Hongbin |4 aut | |
700 | 1 | |a Gao, Nanxing |4 aut | |
700 | 1 | |a Wang, Jiaomei |4 aut | |
700 | 1 | |a Zhang, Xuqin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials science |d Springer US, 1966 |g 51(2015), 4 vom: 20. Okt., Seite 1959-1965 |w (DE-627)129546372 |w (DE-600)218324-9 |w (DE-576)014996774 |x 0022-2461 |7 nnns |
773 | 1 | 8 | |g volume:51 |g year:2015 |g number:4 |g day:20 |g month:10 |g pages:1959-1965 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10853-015-9505-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 51 |j 2015 |e 4 |b 20 |c 10 |h 1959-1965 |
author_variant |
l m lm h m hm n g ng j w jw x z xz |
---|---|
matchkey_str |
article:00222461:2015----::otolbeyteiof_o3aouewthgsraerarprtogotmcaimnisaayipromneot |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s10853-015-9505-z doi (DE-627)OLC2046409051 (DE-He213)s10853-015-9505-z-p DE-627 ger DE-627 rakwb eng 670 VZ Ma, Lingjuan verfasserin aut Controllable synthesis of α-$ Fe_{2} $$ O_{3} $ nanotubes with high surface area: preparation, growth mechanism, and its catalytic performance for the selective catalytic reduction of NO with $ NH_{3} $ 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract Uniform FeOOH nanotubes with different thicknesses have been synthesized on a large scale by a facile template method with $ MoO_{3} $ nanorod as the hard template. The hydrolysis kinetics of $ Fe^{3+} $ has a comprehensive and crucial influence on the formation of FeOOH nanotube. The controllable synthesis of nanotubes with different thickness and inner diameter can be achieved by tuning the molar ratio of $ Fe^{3+} $/$ MoO_{3} $ and hydrolysis temperature of $ Fe^{3+} $ at the same time. After calcination, FeOOH nanotubes transformed to corresponding α-$ Fe_{2} $$ O_{3} $ nanotubes in which wall thicknesses vary from 50 to 128 nm. It was also found that when the molar ratio of $ Fe^{3+} $/$ MoO_{3} $ and the hydrolysis temperature of $ Fe^{3+} $ were fixed to 2:1 and 70 °C, respectively, the BET surface area of the obtained α-$ Fe_{2} $$ O_{3} $ nanotube is as high as 149 $ m^{2} $/g. The activity on the selective catalytic reduction of NO with $ NH_{3} $ is shape-dependent with nanotube showing a higher activity than nanoplate and nanoparticle. MoO3 Selective Catalytic Reduction Selective Catalytic Reduction Reaction Hydrolysis Temperature Selective Catalytic Reduction Activity Ma, Hongbin aut Gao, Nanxing aut Wang, Jiaomei aut Zhang, Xuqin aut Enthalten in Journal of materials science Springer US, 1966 51(2015), 4 vom: 20. Okt., Seite 1959-1965 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:51 year:2015 number:4 day:20 month:10 pages:1959-1965 https://doi.org/10.1007/s10853-015-9505-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 51 2015 4 20 10 1959-1965 |
spelling |
10.1007/s10853-015-9505-z doi (DE-627)OLC2046409051 (DE-He213)s10853-015-9505-z-p DE-627 ger DE-627 rakwb eng 670 VZ Ma, Lingjuan verfasserin aut Controllable synthesis of α-$ Fe_{2} $$ O_{3} $ nanotubes with high surface area: preparation, growth mechanism, and its catalytic performance for the selective catalytic reduction of NO with $ NH_{3} $ 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract Uniform FeOOH nanotubes with different thicknesses have been synthesized on a large scale by a facile template method with $ MoO_{3} $ nanorod as the hard template. The hydrolysis kinetics of $ Fe^{3+} $ has a comprehensive and crucial influence on the formation of FeOOH nanotube. The controllable synthesis of nanotubes with different thickness and inner diameter can be achieved by tuning the molar ratio of $ Fe^{3+} $/$ MoO_{3} $ and hydrolysis temperature of $ Fe^{3+} $ at the same time. After calcination, FeOOH nanotubes transformed to corresponding α-$ Fe_{2} $$ O_{3} $ nanotubes in which wall thicknesses vary from 50 to 128 nm. It was also found that when the molar ratio of $ Fe^{3+} $/$ MoO_{3} $ and the hydrolysis temperature of $ Fe^{3+} $ were fixed to 2:1 and 70 °C, respectively, the BET surface area of the obtained α-$ Fe_{2} $$ O_{3} $ nanotube is as high as 149 $ m^{2} $/g. The activity on the selective catalytic reduction of NO with $ NH_{3} $ is shape-dependent with nanotube showing a higher activity than nanoplate and nanoparticle. MoO3 Selective Catalytic Reduction Selective Catalytic Reduction Reaction Hydrolysis Temperature Selective Catalytic Reduction Activity Ma, Hongbin aut Gao, Nanxing aut Wang, Jiaomei aut Zhang, Xuqin aut Enthalten in Journal of materials science Springer US, 1966 51(2015), 4 vom: 20. Okt., Seite 1959-1965 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:51 year:2015 number:4 day:20 month:10 pages:1959-1965 https://doi.org/10.1007/s10853-015-9505-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 51 2015 4 20 10 1959-1965 |
allfields_unstemmed |
10.1007/s10853-015-9505-z doi (DE-627)OLC2046409051 (DE-He213)s10853-015-9505-z-p DE-627 ger DE-627 rakwb eng 670 VZ Ma, Lingjuan verfasserin aut Controllable synthesis of α-$ Fe_{2} $$ O_{3} $ nanotubes with high surface area: preparation, growth mechanism, and its catalytic performance for the selective catalytic reduction of NO with $ NH_{3} $ 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract Uniform FeOOH nanotubes with different thicknesses have been synthesized on a large scale by a facile template method with $ MoO_{3} $ nanorod as the hard template. The hydrolysis kinetics of $ Fe^{3+} $ has a comprehensive and crucial influence on the formation of FeOOH nanotube. The controllable synthesis of nanotubes with different thickness and inner diameter can be achieved by tuning the molar ratio of $ Fe^{3+} $/$ MoO_{3} $ and hydrolysis temperature of $ Fe^{3+} $ at the same time. After calcination, FeOOH nanotubes transformed to corresponding α-$ Fe_{2} $$ O_{3} $ nanotubes in which wall thicknesses vary from 50 to 128 nm. It was also found that when the molar ratio of $ Fe^{3+} $/$ MoO_{3} $ and the hydrolysis temperature of $ Fe^{3+} $ were fixed to 2:1 and 70 °C, respectively, the BET surface area of the obtained α-$ Fe_{2} $$ O_{3} $ nanotube is as high as 149 $ m^{2} $/g. The activity on the selective catalytic reduction of NO with $ NH_{3} $ is shape-dependent with nanotube showing a higher activity than nanoplate and nanoparticle. MoO3 Selective Catalytic Reduction Selective Catalytic Reduction Reaction Hydrolysis Temperature Selective Catalytic Reduction Activity Ma, Hongbin aut Gao, Nanxing aut Wang, Jiaomei aut Zhang, Xuqin aut Enthalten in Journal of materials science Springer US, 1966 51(2015), 4 vom: 20. Okt., Seite 1959-1965 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:51 year:2015 number:4 day:20 month:10 pages:1959-1965 https://doi.org/10.1007/s10853-015-9505-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 51 2015 4 20 10 1959-1965 |
allfieldsGer |
10.1007/s10853-015-9505-z doi (DE-627)OLC2046409051 (DE-He213)s10853-015-9505-z-p DE-627 ger DE-627 rakwb eng 670 VZ Ma, Lingjuan verfasserin aut Controllable synthesis of α-$ Fe_{2} $$ O_{3} $ nanotubes with high surface area: preparation, growth mechanism, and its catalytic performance for the selective catalytic reduction of NO with $ NH_{3} $ 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract Uniform FeOOH nanotubes with different thicknesses have been synthesized on a large scale by a facile template method with $ MoO_{3} $ nanorod as the hard template. The hydrolysis kinetics of $ Fe^{3+} $ has a comprehensive and crucial influence on the formation of FeOOH nanotube. The controllable synthesis of nanotubes with different thickness and inner diameter can be achieved by tuning the molar ratio of $ Fe^{3+} $/$ MoO_{3} $ and hydrolysis temperature of $ Fe^{3+} $ at the same time. After calcination, FeOOH nanotubes transformed to corresponding α-$ Fe_{2} $$ O_{3} $ nanotubes in which wall thicknesses vary from 50 to 128 nm. It was also found that when the molar ratio of $ Fe^{3+} $/$ MoO_{3} $ and the hydrolysis temperature of $ Fe^{3+} $ were fixed to 2:1 and 70 °C, respectively, the BET surface area of the obtained α-$ Fe_{2} $$ O_{3} $ nanotube is as high as 149 $ m^{2} $/g. The activity on the selective catalytic reduction of NO with $ NH_{3} $ is shape-dependent with nanotube showing a higher activity than nanoplate and nanoparticle. MoO3 Selective Catalytic Reduction Selective Catalytic Reduction Reaction Hydrolysis Temperature Selective Catalytic Reduction Activity Ma, Hongbin aut Gao, Nanxing aut Wang, Jiaomei aut Zhang, Xuqin aut Enthalten in Journal of materials science Springer US, 1966 51(2015), 4 vom: 20. Okt., Seite 1959-1965 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:51 year:2015 number:4 day:20 month:10 pages:1959-1965 https://doi.org/10.1007/s10853-015-9505-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 51 2015 4 20 10 1959-1965 |
allfieldsSound |
10.1007/s10853-015-9505-z doi (DE-627)OLC2046409051 (DE-He213)s10853-015-9505-z-p DE-627 ger DE-627 rakwb eng 670 VZ Ma, Lingjuan verfasserin aut Controllable synthesis of α-$ Fe_{2} $$ O_{3} $ nanotubes with high surface area: preparation, growth mechanism, and its catalytic performance for the selective catalytic reduction of NO with $ NH_{3} $ 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract Uniform FeOOH nanotubes with different thicknesses have been synthesized on a large scale by a facile template method with $ MoO_{3} $ nanorod as the hard template. The hydrolysis kinetics of $ Fe^{3+} $ has a comprehensive and crucial influence on the formation of FeOOH nanotube. The controllable synthesis of nanotubes with different thickness and inner diameter can be achieved by tuning the molar ratio of $ Fe^{3+} $/$ MoO_{3} $ and hydrolysis temperature of $ Fe^{3+} $ at the same time. After calcination, FeOOH nanotubes transformed to corresponding α-$ Fe_{2} $$ O_{3} $ nanotubes in which wall thicknesses vary from 50 to 128 nm. It was also found that when the molar ratio of $ Fe^{3+} $/$ MoO_{3} $ and the hydrolysis temperature of $ Fe^{3+} $ were fixed to 2:1 and 70 °C, respectively, the BET surface area of the obtained α-$ Fe_{2} $$ O_{3} $ nanotube is as high as 149 $ m^{2} $/g. The activity on the selective catalytic reduction of NO with $ NH_{3} $ is shape-dependent with nanotube showing a higher activity than nanoplate and nanoparticle. MoO3 Selective Catalytic Reduction Selective Catalytic Reduction Reaction Hydrolysis Temperature Selective Catalytic Reduction Activity Ma, Hongbin aut Gao, Nanxing aut Wang, Jiaomei aut Zhang, Xuqin aut Enthalten in Journal of materials science Springer US, 1966 51(2015), 4 vom: 20. Okt., Seite 1959-1965 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:51 year:2015 number:4 day:20 month:10 pages:1959-1965 https://doi.org/10.1007/s10853-015-9505-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 51 2015 4 20 10 1959-1965 |
language |
English |
source |
Enthalten in Journal of materials science 51(2015), 4 vom: 20. Okt., Seite 1959-1965 volume:51 year:2015 number:4 day:20 month:10 pages:1959-1965 |
sourceStr |
Enthalten in Journal of materials science 51(2015), 4 vom: 20. Okt., Seite 1959-1965 volume:51 year:2015 number:4 day:20 month:10 pages:1959-1965 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
MoO3 Selective Catalytic Reduction Selective Catalytic Reduction Reaction Hydrolysis Temperature Selective Catalytic Reduction Activity |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of materials science |
authorswithroles_txt_mv |
Ma, Lingjuan @@aut@@ Ma, Hongbin @@aut@@ Gao, Nanxing @@aut@@ Wang, Jiaomei @@aut@@ Zhang, Xuqin @@aut@@ |
publishDateDaySort_date |
2015-10-20T00:00:00Z |
hierarchy_top_id |
129546372 |
dewey-sort |
3670 |
id |
OLC2046409051 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046409051</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503124703.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10853-015-9505-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046409051</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10853-015-9505-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ma, Lingjuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Controllable synthesis of α-$ Fe_{2} $$ O_{3} $ nanotubes with high surface area: preparation, growth mechanism, and its catalytic performance for the selective catalytic reduction of NO with $ NH_{3} $</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Uniform FeOOH nanotubes with different thicknesses have been synthesized on a large scale by a facile template method with $ MoO_{3} $ nanorod as the hard template. The hydrolysis kinetics of $ Fe^{3+} $ has a comprehensive and crucial influence on the formation of FeOOH nanotube. The controllable synthesis of nanotubes with different thickness and inner diameter can be achieved by tuning the molar ratio of $ Fe^{3+} $/$ MoO_{3} $ and hydrolysis temperature of $ Fe^{3+} $ at the same time. After calcination, FeOOH nanotubes transformed to corresponding α-$ Fe_{2} $$ O_{3} $ nanotubes in which wall thicknesses vary from 50 to 128 nm. It was also found that when the molar ratio of $ Fe^{3+} $/$ MoO_{3} $ and the hydrolysis temperature of $ Fe^{3+} $ were fixed to 2:1 and 70 °C, respectively, the BET surface area of the obtained α-$ Fe_{2} $$ O_{3} $ nanotube is as high as 149 $ m^{2} $/g. The activity on the selective catalytic reduction of NO with $ NH_{3} $ is shape-dependent with nanotube showing a higher activity than nanoplate and nanoparticle.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MoO3</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Selective Catalytic Reduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Selective Catalytic Reduction Reaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrolysis Temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Selective Catalytic Reduction Activity</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Hongbin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Nanxing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jiaomei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xuqin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Springer US, 1966</subfield><subfield code="g">51(2015), 4 vom: 20. Okt., Seite 1959-1965</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:51</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:4</subfield><subfield code="g">day:20</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:1959-1965</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10853-015-9505-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">51</subfield><subfield code="j">2015</subfield><subfield code="e">4</subfield><subfield code="b">20</subfield><subfield code="c">10</subfield><subfield code="h">1959-1965</subfield></datafield></record></collection>
|
author |
Ma, Lingjuan |
spellingShingle |
Ma, Lingjuan ddc 670 misc MoO3 misc Selective Catalytic Reduction misc Selective Catalytic Reduction Reaction misc Hydrolysis Temperature misc Selective Catalytic Reduction Activity Controllable synthesis of α-$ Fe_{2} $$ O_{3} $ nanotubes with high surface area: preparation, growth mechanism, and its catalytic performance for the selective catalytic reduction of NO with $ NH_{3} $ |
authorStr |
Ma, Lingjuan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129546372 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-2461 |
topic_title |
670 VZ Controllable synthesis of α-$ Fe_{2} $$ O_{3} $ nanotubes with high surface area: preparation, growth mechanism, and its catalytic performance for the selective catalytic reduction of NO with $ NH_{3} $ MoO3 Selective Catalytic Reduction Selective Catalytic Reduction Reaction Hydrolysis Temperature Selective Catalytic Reduction Activity |
topic |
ddc 670 misc MoO3 misc Selective Catalytic Reduction misc Selective Catalytic Reduction Reaction misc Hydrolysis Temperature misc Selective Catalytic Reduction Activity |
topic_unstemmed |
ddc 670 misc MoO3 misc Selective Catalytic Reduction misc Selective Catalytic Reduction Reaction misc Hydrolysis Temperature misc Selective Catalytic Reduction Activity |
topic_browse |
ddc 670 misc MoO3 misc Selective Catalytic Reduction misc Selective Catalytic Reduction Reaction misc Hydrolysis Temperature misc Selective Catalytic Reduction Activity |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials science |
hierarchy_parent_id |
129546372 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of materials science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 |
title |
Controllable synthesis of α-$ Fe_{2} $$ O_{3} $ nanotubes with high surface area: preparation, growth mechanism, and its catalytic performance for the selective catalytic reduction of NO with $ NH_{3} $ |
ctrlnum |
(DE-627)OLC2046409051 (DE-He213)s10853-015-9505-z-p |
title_full |
Controllable synthesis of α-$ Fe_{2} $$ O_{3} $ nanotubes with high surface area: preparation, growth mechanism, and its catalytic performance for the selective catalytic reduction of NO with $ NH_{3} $ |
author_sort |
Ma, Lingjuan |
journal |
Journal of materials science |
journalStr |
Journal of materials science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
1959 |
author_browse |
Ma, Lingjuan Ma, Hongbin Gao, Nanxing Wang, Jiaomei Zhang, Xuqin |
container_volume |
51 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Ma, Lingjuan |
doi_str_mv |
10.1007/s10853-015-9505-z |
dewey-full |
670 |
title_sort |
controllable synthesis of α-$ fe_{2} $$ o_{3} $ nanotubes with high surface area: preparation, growth mechanism, and its catalytic performance for the selective catalytic reduction of no with $ nh_{3} $ |
title_auth |
Controllable synthesis of α-$ Fe_{2} $$ O_{3} $ nanotubes with high surface area: preparation, growth mechanism, and its catalytic performance for the selective catalytic reduction of NO with $ NH_{3} $ |
abstract |
Abstract Uniform FeOOH nanotubes with different thicknesses have been synthesized on a large scale by a facile template method with $ MoO_{3} $ nanorod as the hard template. The hydrolysis kinetics of $ Fe^{3+} $ has a comprehensive and crucial influence on the formation of FeOOH nanotube. The controllable synthesis of nanotubes with different thickness and inner diameter can be achieved by tuning the molar ratio of $ Fe^{3+} $/$ MoO_{3} $ and hydrolysis temperature of $ Fe^{3+} $ at the same time. After calcination, FeOOH nanotubes transformed to corresponding α-$ Fe_{2} $$ O_{3} $ nanotubes in which wall thicknesses vary from 50 to 128 nm. It was also found that when the molar ratio of $ Fe^{3+} $/$ MoO_{3} $ and the hydrolysis temperature of $ Fe^{3+} $ were fixed to 2:1 and 70 °C, respectively, the BET surface area of the obtained α-$ Fe_{2} $$ O_{3} $ nanotube is as high as 149 $ m^{2} $/g. The activity on the selective catalytic reduction of NO with $ NH_{3} $ is shape-dependent with nanotube showing a higher activity than nanoplate and nanoparticle. © Springer Science+Business Media New York 2015 |
abstractGer |
Abstract Uniform FeOOH nanotubes with different thicknesses have been synthesized on a large scale by a facile template method with $ MoO_{3} $ nanorod as the hard template. The hydrolysis kinetics of $ Fe^{3+} $ has a comprehensive and crucial influence on the formation of FeOOH nanotube. The controllable synthesis of nanotubes with different thickness and inner diameter can be achieved by tuning the molar ratio of $ Fe^{3+} $/$ MoO_{3} $ and hydrolysis temperature of $ Fe^{3+} $ at the same time. After calcination, FeOOH nanotubes transformed to corresponding α-$ Fe_{2} $$ O_{3} $ nanotubes in which wall thicknesses vary from 50 to 128 nm. It was also found that when the molar ratio of $ Fe^{3+} $/$ MoO_{3} $ and the hydrolysis temperature of $ Fe^{3+} $ were fixed to 2:1 and 70 °C, respectively, the BET surface area of the obtained α-$ Fe_{2} $$ O_{3} $ nanotube is as high as 149 $ m^{2} $/g. The activity on the selective catalytic reduction of NO with $ NH_{3} $ is shape-dependent with nanotube showing a higher activity than nanoplate and nanoparticle. © Springer Science+Business Media New York 2015 |
abstract_unstemmed |
Abstract Uniform FeOOH nanotubes with different thicknesses have been synthesized on a large scale by a facile template method with $ MoO_{3} $ nanorod as the hard template. The hydrolysis kinetics of $ Fe^{3+} $ has a comprehensive and crucial influence on the formation of FeOOH nanotube. The controllable synthesis of nanotubes with different thickness and inner diameter can be achieved by tuning the molar ratio of $ Fe^{3+} $/$ MoO_{3} $ and hydrolysis temperature of $ Fe^{3+} $ at the same time. After calcination, FeOOH nanotubes transformed to corresponding α-$ Fe_{2} $$ O_{3} $ nanotubes in which wall thicknesses vary from 50 to 128 nm. It was also found that when the molar ratio of $ Fe^{3+} $/$ MoO_{3} $ and the hydrolysis temperature of $ Fe^{3+} $ were fixed to 2:1 and 70 °C, respectively, the BET surface area of the obtained α-$ Fe_{2} $$ O_{3} $ nanotube is as high as 149 $ m^{2} $/g. The activity on the selective catalytic reduction of NO with $ NH_{3} $ is shape-dependent with nanotube showing a higher activity than nanoplate and nanoparticle. © Springer Science+Business Media New York 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 |
container_issue |
4 |
title_short |
Controllable synthesis of α-$ Fe_{2} $$ O_{3} $ nanotubes with high surface area: preparation, growth mechanism, and its catalytic performance for the selective catalytic reduction of NO with $ NH_{3} $ |
url |
https://doi.org/10.1007/s10853-015-9505-z |
remote_bool |
false |
author2 |
Ma, Hongbin Gao, Nanxing Wang, Jiaomei Zhang, Xuqin |
author2Str |
Ma, Hongbin Gao, Nanxing Wang, Jiaomei Zhang, Xuqin |
ppnlink |
129546372 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10853-015-9505-z |
up_date |
2024-07-04T05:01:13.796Z |
_version_ |
1803623358829428736 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046409051</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503124703.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10853-015-9505-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046409051</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10853-015-9505-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ma, Lingjuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Controllable synthesis of α-$ Fe_{2} $$ O_{3} $ nanotubes with high surface area: preparation, growth mechanism, and its catalytic performance for the selective catalytic reduction of NO with $ NH_{3} $</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Uniform FeOOH nanotubes with different thicknesses have been synthesized on a large scale by a facile template method with $ MoO_{3} $ nanorod as the hard template. The hydrolysis kinetics of $ Fe^{3+} $ has a comprehensive and crucial influence on the formation of FeOOH nanotube. The controllable synthesis of nanotubes with different thickness and inner diameter can be achieved by tuning the molar ratio of $ Fe^{3+} $/$ MoO_{3} $ and hydrolysis temperature of $ Fe^{3+} $ at the same time. After calcination, FeOOH nanotubes transformed to corresponding α-$ Fe_{2} $$ O_{3} $ nanotubes in which wall thicknesses vary from 50 to 128 nm. It was also found that when the molar ratio of $ Fe^{3+} $/$ MoO_{3} $ and the hydrolysis temperature of $ Fe^{3+} $ were fixed to 2:1 and 70 °C, respectively, the BET surface area of the obtained α-$ Fe_{2} $$ O_{3} $ nanotube is as high as 149 $ m^{2} $/g. The activity on the selective catalytic reduction of NO with $ NH_{3} $ is shape-dependent with nanotube showing a higher activity than nanoplate and nanoparticle.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MoO3</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Selective Catalytic Reduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Selective Catalytic Reduction Reaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrolysis Temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Selective Catalytic Reduction Activity</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Hongbin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Nanxing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jiaomei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xuqin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Springer US, 1966</subfield><subfield code="g">51(2015), 4 vom: 20. Okt., Seite 1959-1965</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:51</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:4</subfield><subfield code="g">day:20</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:1959-1965</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10853-015-9505-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">51</subfield><subfield code="j">2015</subfield><subfield code="e">4</subfield><subfield code="b">20</subfield><subfield code="c">10</subfield><subfield code="h">1959-1965</subfield></datafield></record></collection>
|
score |
7.3993254 |