Internal barrier layer capacitor, nearest neighbor hopping, and variable range hopping conduction in $ Ba_{1−x} $$ Sr_{x} $$ TiO_{3−δ} $ nanoceramics
Abstract The dielectric properties of the solid solution $ Ba_{1−x} $$ Sr_{x} $$ TiO_{3−δ} $ (0 ≤ x ≤ 1) have been investigated. The nanopowders were prepared via a coprecipitation reaction followed by a calcination treatment. Spark plasma sintering allowed to obtain dense nanocrystalline ceramics....
Ausführliche Beschreibung
Autor*in: |
Sulekar, Soumitra [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials science - Springer US, 1966, 51(2016), 16 vom: 12. Mai, Seite 7440-7450 |
---|---|
Übergeordnetes Werk: |
volume:51 ; year:2016 ; number:16 ; day:12 ; month:05 ; pages:7440-7450 |
Links: |
---|
DOI / URN: |
10.1007/s10853-016-0019-0 |
---|
Katalog-ID: |
OLC2046414500 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2046414500 | ||
003 | DE-627 | ||
005 | 20230503124634.0 | ||
007 | tu | ||
008 | 200820s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10853-016-0019-0 |2 doi | |
035 | |a (DE-627)OLC2046414500 | ||
035 | |a (DE-He213)s10853-016-0019-0-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Sulekar, Soumitra |e verfasserin |4 aut | |
245 | 1 | 0 | |a Internal barrier layer capacitor, nearest neighbor hopping, and variable range hopping conduction in $ Ba_{1−x} $$ Sr_{x} $$ TiO_{3−δ} $ nanoceramics |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2016 | ||
520 | |a Abstract The dielectric properties of the solid solution $ Ba_{1−x} $$ Sr_{x} $$ TiO_{3−δ} $ (0 ≤ x ≤ 1) have been investigated. The nanopowders were prepared via a coprecipitation reaction followed by a calcination treatment. Spark plasma sintering allowed to obtain dense nanocrystalline ceramics. Broadband impedance spectroscopy revealed colossal permittivity (ε′ = $ 10^{5} $) associated with low losses (tan δ = 0.03) in the most favorable case. The bulk conductivity data was analyzed using Jonscher’s universal dielectric response model. In the Ba-rich compound, conduction process followed variable range hopping conduction model while the Sr-rich BST compound showed the nearest neighbor hopping conduction mechanism associated with displacements of space charges. These two different conduction mechanisms might be able to explain superior temperature–frequency-independent dielectric properties in Sr-rich BST compound compared to Ba-rich BST compound. | ||
650 | 4 | |a BaTiO3 | |
650 | 4 | |a Spark Plasma Sinter | |
650 | 4 | |a Barium Titanate | |
650 | 4 | |a Strontium Titanate | |
650 | 4 | |a Barium Strontium Titanate | |
700 | 1 | |a Kim, Ji Hyun |4 aut | |
700 | 1 | |a Han, Hyuksu |4 aut | |
700 | 1 | |a Dufour, Pascal |4 aut | |
700 | 1 | |a Tenailleau, Christophe |4 aut | |
700 | 1 | |a Nino, Juan Claudio |4 aut | |
700 | 1 | |a Cordoncillo, Eloisa |4 aut | |
700 | 1 | |a Beltran-Mir, Hector |4 aut | |
700 | 1 | |a Dupuis, Sébastien |4 aut | |
700 | 1 | |a Guillemet-Fritsch, Sophie |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials science |d Springer US, 1966 |g 51(2016), 16 vom: 12. Mai, Seite 7440-7450 |w (DE-627)129546372 |w (DE-600)218324-9 |w (DE-576)014996774 |x 0022-2461 |7 nnns |
773 | 1 | 8 | |g volume:51 |g year:2016 |g number:16 |g day:12 |g month:05 |g pages:7440-7450 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10853-016-0019-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 51 |j 2016 |e 16 |b 12 |c 05 |h 7440-7450 |
author_variant |
s s ss j h k jh jhk h h hh p d pd c t ct j c n jc jcn e c ec h b m hbm s d sd s g f sgf |
---|---|
matchkey_str |
article:00222461:2016----::nenlarelyraaionaetegbropnadaibeaghpigodcin |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1007/s10853-016-0019-0 doi (DE-627)OLC2046414500 (DE-He213)s10853-016-0019-0-p DE-627 ger DE-627 rakwb eng 670 VZ Sulekar, Soumitra verfasserin aut Internal barrier layer capacitor, nearest neighbor hopping, and variable range hopping conduction in $ Ba_{1−x} $$ Sr_{x} $$ TiO_{3−δ} $ nanoceramics 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract The dielectric properties of the solid solution $ Ba_{1−x} $$ Sr_{x} $$ TiO_{3−δ} $ (0 ≤ x ≤ 1) have been investigated. The nanopowders were prepared via a coprecipitation reaction followed by a calcination treatment. Spark plasma sintering allowed to obtain dense nanocrystalline ceramics. Broadband impedance spectroscopy revealed colossal permittivity (ε′ = $ 10^{5} $) associated with low losses (tan δ = 0.03) in the most favorable case. The bulk conductivity data was analyzed using Jonscher’s universal dielectric response model. In the Ba-rich compound, conduction process followed variable range hopping conduction model while the Sr-rich BST compound showed the nearest neighbor hopping conduction mechanism associated with displacements of space charges. These two different conduction mechanisms might be able to explain superior temperature–frequency-independent dielectric properties in Sr-rich BST compound compared to Ba-rich BST compound. BaTiO3 Spark Plasma Sinter Barium Titanate Strontium Titanate Barium Strontium Titanate Kim, Ji Hyun aut Han, Hyuksu aut Dufour, Pascal aut Tenailleau, Christophe aut Nino, Juan Claudio aut Cordoncillo, Eloisa aut Beltran-Mir, Hector aut Dupuis, Sébastien aut Guillemet-Fritsch, Sophie aut Enthalten in Journal of materials science Springer US, 1966 51(2016), 16 vom: 12. Mai, Seite 7440-7450 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:51 year:2016 number:16 day:12 month:05 pages:7440-7450 https://doi.org/10.1007/s10853-016-0019-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 51 2016 16 12 05 7440-7450 |
spelling |
10.1007/s10853-016-0019-0 doi (DE-627)OLC2046414500 (DE-He213)s10853-016-0019-0-p DE-627 ger DE-627 rakwb eng 670 VZ Sulekar, Soumitra verfasserin aut Internal barrier layer capacitor, nearest neighbor hopping, and variable range hopping conduction in $ Ba_{1−x} $$ Sr_{x} $$ TiO_{3−δ} $ nanoceramics 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract The dielectric properties of the solid solution $ Ba_{1−x} $$ Sr_{x} $$ TiO_{3−δ} $ (0 ≤ x ≤ 1) have been investigated. The nanopowders were prepared via a coprecipitation reaction followed by a calcination treatment. Spark plasma sintering allowed to obtain dense nanocrystalline ceramics. Broadband impedance spectroscopy revealed colossal permittivity (ε′ = $ 10^{5} $) associated with low losses (tan δ = 0.03) in the most favorable case. The bulk conductivity data was analyzed using Jonscher’s universal dielectric response model. In the Ba-rich compound, conduction process followed variable range hopping conduction model while the Sr-rich BST compound showed the nearest neighbor hopping conduction mechanism associated with displacements of space charges. These two different conduction mechanisms might be able to explain superior temperature–frequency-independent dielectric properties in Sr-rich BST compound compared to Ba-rich BST compound. BaTiO3 Spark Plasma Sinter Barium Titanate Strontium Titanate Barium Strontium Titanate Kim, Ji Hyun aut Han, Hyuksu aut Dufour, Pascal aut Tenailleau, Christophe aut Nino, Juan Claudio aut Cordoncillo, Eloisa aut Beltran-Mir, Hector aut Dupuis, Sébastien aut Guillemet-Fritsch, Sophie aut Enthalten in Journal of materials science Springer US, 1966 51(2016), 16 vom: 12. Mai, Seite 7440-7450 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:51 year:2016 number:16 day:12 month:05 pages:7440-7450 https://doi.org/10.1007/s10853-016-0019-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 51 2016 16 12 05 7440-7450 |
allfields_unstemmed |
10.1007/s10853-016-0019-0 doi (DE-627)OLC2046414500 (DE-He213)s10853-016-0019-0-p DE-627 ger DE-627 rakwb eng 670 VZ Sulekar, Soumitra verfasserin aut Internal barrier layer capacitor, nearest neighbor hopping, and variable range hopping conduction in $ Ba_{1−x} $$ Sr_{x} $$ TiO_{3−δ} $ nanoceramics 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract The dielectric properties of the solid solution $ Ba_{1−x} $$ Sr_{x} $$ TiO_{3−δ} $ (0 ≤ x ≤ 1) have been investigated. The nanopowders were prepared via a coprecipitation reaction followed by a calcination treatment. Spark plasma sintering allowed to obtain dense nanocrystalline ceramics. Broadband impedance spectroscopy revealed colossal permittivity (ε′ = $ 10^{5} $) associated with low losses (tan δ = 0.03) in the most favorable case. The bulk conductivity data was analyzed using Jonscher’s universal dielectric response model. In the Ba-rich compound, conduction process followed variable range hopping conduction model while the Sr-rich BST compound showed the nearest neighbor hopping conduction mechanism associated with displacements of space charges. These two different conduction mechanisms might be able to explain superior temperature–frequency-independent dielectric properties in Sr-rich BST compound compared to Ba-rich BST compound. BaTiO3 Spark Plasma Sinter Barium Titanate Strontium Titanate Barium Strontium Titanate Kim, Ji Hyun aut Han, Hyuksu aut Dufour, Pascal aut Tenailleau, Christophe aut Nino, Juan Claudio aut Cordoncillo, Eloisa aut Beltran-Mir, Hector aut Dupuis, Sébastien aut Guillemet-Fritsch, Sophie aut Enthalten in Journal of materials science Springer US, 1966 51(2016), 16 vom: 12. Mai, Seite 7440-7450 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:51 year:2016 number:16 day:12 month:05 pages:7440-7450 https://doi.org/10.1007/s10853-016-0019-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 51 2016 16 12 05 7440-7450 |
allfieldsGer |
10.1007/s10853-016-0019-0 doi (DE-627)OLC2046414500 (DE-He213)s10853-016-0019-0-p DE-627 ger DE-627 rakwb eng 670 VZ Sulekar, Soumitra verfasserin aut Internal barrier layer capacitor, nearest neighbor hopping, and variable range hopping conduction in $ Ba_{1−x} $$ Sr_{x} $$ TiO_{3−δ} $ nanoceramics 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract The dielectric properties of the solid solution $ Ba_{1−x} $$ Sr_{x} $$ TiO_{3−δ} $ (0 ≤ x ≤ 1) have been investigated. The nanopowders were prepared via a coprecipitation reaction followed by a calcination treatment. Spark plasma sintering allowed to obtain dense nanocrystalline ceramics. Broadband impedance spectroscopy revealed colossal permittivity (ε′ = $ 10^{5} $) associated with low losses (tan δ = 0.03) in the most favorable case. The bulk conductivity data was analyzed using Jonscher’s universal dielectric response model. In the Ba-rich compound, conduction process followed variable range hopping conduction model while the Sr-rich BST compound showed the nearest neighbor hopping conduction mechanism associated with displacements of space charges. These two different conduction mechanisms might be able to explain superior temperature–frequency-independent dielectric properties in Sr-rich BST compound compared to Ba-rich BST compound. BaTiO3 Spark Plasma Sinter Barium Titanate Strontium Titanate Barium Strontium Titanate Kim, Ji Hyun aut Han, Hyuksu aut Dufour, Pascal aut Tenailleau, Christophe aut Nino, Juan Claudio aut Cordoncillo, Eloisa aut Beltran-Mir, Hector aut Dupuis, Sébastien aut Guillemet-Fritsch, Sophie aut Enthalten in Journal of materials science Springer US, 1966 51(2016), 16 vom: 12. Mai, Seite 7440-7450 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:51 year:2016 number:16 day:12 month:05 pages:7440-7450 https://doi.org/10.1007/s10853-016-0019-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 51 2016 16 12 05 7440-7450 |
allfieldsSound |
10.1007/s10853-016-0019-0 doi (DE-627)OLC2046414500 (DE-He213)s10853-016-0019-0-p DE-627 ger DE-627 rakwb eng 670 VZ Sulekar, Soumitra verfasserin aut Internal barrier layer capacitor, nearest neighbor hopping, and variable range hopping conduction in $ Ba_{1−x} $$ Sr_{x} $$ TiO_{3−δ} $ nanoceramics 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract The dielectric properties of the solid solution $ Ba_{1−x} $$ Sr_{x} $$ TiO_{3−δ} $ (0 ≤ x ≤ 1) have been investigated. The nanopowders were prepared via a coprecipitation reaction followed by a calcination treatment. Spark plasma sintering allowed to obtain dense nanocrystalline ceramics. Broadband impedance spectroscopy revealed colossal permittivity (ε′ = $ 10^{5} $) associated with low losses (tan δ = 0.03) in the most favorable case. The bulk conductivity data was analyzed using Jonscher’s universal dielectric response model. In the Ba-rich compound, conduction process followed variable range hopping conduction model while the Sr-rich BST compound showed the nearest neighbor hopping conduction mechanism associated with displacements of space charges. These two different conduction mechanisms might be able to explain superior temperature–frequency-independent dielectric properties in Sr-rich BST compound compared to Ba-rich BST compound. BaTiO3 Spark Plasma Sinter Barium Titanate Strontium Titanate Barium Strontium Titanate Kim, Ji Hyun aut Han, Hyuksu aut Dufour, Pascal aut Tenailleau, Christophe aut Nino, Juan Claudio aut Cordoncillo, Eloisa aut Beltran-Mir, Hector aut Dupuis, Sébastien aut Guillemet-Fritsch, Sophie aut Enthalten in Journal of materials science Springer US, 1966 51(2016), 16 vom: 12. Mai, Seite 7440-7450 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:51 year:2016 number:16 day:12 month:05 pages:7440-7450 https://doi.org/10.1007/s10853-016-0019-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 51 2016 16 12 05 7440-7450 |
language |
English |
source |
Enthalten in Journal of materials science 51(2016), 16 vom: 12. Mai, Seite 7440-7450 volume:51 year:2016 number:16 day:12 month:05 pages:7440-7450 |
sourceStr |
Enthalten in Journal of materials science 51(2016), 16 vom: 12. Mai, Seite 7440-7450 volume:51 year:2016 number:16 day:12 month:05 pages:7440-7450 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
BaTiO3 Spark Plasma Sinter Barium Titanate Strontium Titanate Barium Strontium Titanate |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of materials science |
authorswithroles_txt_mv |
Sulekar, Soumitra @@aut@@ Kim, Ji Hyun @@aut@@ Han, Hyuksu @@aut@@ Dufour, Pascal @@aut@@ Tenailleau, Christophe @@aut@@ Nino, Juan Claudio @@aut@@ Cordoncillo, Eloisa @@aut@@ Beltran-Mir, Hector @@aut@@ Dupuis, Sébastien @@aut@@ Guillemet-Fritsch, Sophie @@aut@@ |
publishDateDaySort_date |
2016-05-12T00:00:00Z |
hierarchy_top_id |
129546372 |
dewey-sort |
3670 |
id |
OLC2046414500 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046414500</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503124634.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10853-016-0019-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046414500</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10853-016-0019-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sulekar, Soumitra</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Internal barrier layer capacitor, nearest neighbor hopping, and variable range hopping conduction in $ Ba_{1−x} $$ Sr_{x} $$ TiO_{3−δ} $ nanoceramics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The dielectric properties of the solid solution $ Ba_{1−x} $$ Sr_{x} $$ TiO_{3−δ} $ (0 ≤ x ≤ 1) have been investigated. The nanopowders were prepared via a coprecipitation reaction followed by a calcination treatment. Spark plasma sintering allowed to obtain dense nanocrystalline ceramics. Broadband impedance spectroscopy revealed colossal permittivity (ε′ = $ 10^{5} $) associated with low losses (tan δ = 0.03) in the most favorable case. The bulk conductivity data was analyzed using Jonscher’s universal dielectric response model. In the Ba-rich compound, conduction process followed variable range hopping conduction model while the Sr-rich BST compound showed the nearest neighbor hopping conduction mechanism associated with displacements of space charges. These two different conduction mechanisms might be able to explain superior temperature–frequency-independent dielectric properties in Sr-rich BST compound compared to Ba-rich BST compound.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BaTiO3</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spark Plasma Sinter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Barium Titanate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strontium Titanate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Barium Strontium Titanate</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Ji Hyun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Hyuksu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dufour, Pascal</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tenailleau, Christophe</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nino, Juan Claudio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cordoncillo, Eloisa</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Beltran-Mir, Hector</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dupuis, Sébastien</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guillemet-Fritsch, Sophie</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Springer US, 1966</subfield><subfield code="g">51(2016), 16 vom: 12. Mai, Seite 7440-7450</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:51</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:16</subfield><subfield code="g">day:12</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:7440-7450</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10853-016-0019-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">51</subfield><subfield code="j">2016</subfield><subfield code="e">16</subfield><subfield code="b">12</subfield><subfield code="c">05</subfield><subfield code="h">7440-7450</subfield></datafield></record></collection>
|
author |
Sulekar, Soumitra |
spellingShingle |
Sulekar, Soumitra ddc 670 misc BaTiO3 misc Spark Plasma Sinter misc Barium Titanate misc Strontium Titanate misc Barium Strontium Titanate Internal barrier layer capacitor, nearest neighbor hopping, and variable range hopping conduction in $ Ba_{1−x} $$ Sr_{x} $$ TiO_{3−δ} $ nanoceramics |
authorStr |
Sulekar, Soumitra |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129546372 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-2461 |
topic_title |
670 VZ Internal barrier layer capacitor, nearest neighbor hopping, and variable range hopping conduction in $ Ba_{1−x} $$ Sr_{x} $$ TiO_{3−δ} $ nanoceramics BaTiO3 Spark Plasma Sinter Barium Titanate Strontium Titanate Barium Strontium Titanate |
topic |
ddc 670 misc BaTiO3 misc Spark Plasma Sinter misc Barium Titanate misc Strontium Titanate misc Barium Strontium Titanate |
topic_unstemmed |
ddc 670 misc BaTiO3 misc Spark Plasma Sinter misc Barium Titanate misc Strontium Titanate misc Barium Strontium Titanate |
topic_browse |
ddc 670 misc BaTiO3 misc Spark Plasma Sinter misc Barium Titanate misc Strontium Titanate misc Barium Strontium Titanate |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials science |
hierarchy_parent_id |
129546372 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of materials science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 |
title |
Internal barrier layer capacitor, nearest neighbor hopping, and variable range hopping conduction in $ Ba_{1−x} $$ Sr_{x} $$ TiO_{3−δ} $ nanoceramics |
ctrlnum |
(DE-627)OLC2046414500 (DE-He213)s10853-016-0019-0-p |
title_full |
Internal barrier layer capacitor, nearest neighbor hopping, and variable range hopping conduction in $ Ba_{1−x} $$ Sr_{x} $$ TiO_{3−δ} $ nanoceramics |
author_sort |
Sulekar, Soumitra |
journal |
Journal of materials science |
journalStr |
Journal of materials science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
7440 |
author_browse |
Sulekar, Soumitra Kim, Ji Hyun Han, Hyuksu Dufour, Pascal Tenailleau, Christophe Nino, Juan Claudio Cordoncillo, Eloisa Beltran-Mir, Hector Dupuis, Sébastien Guillemet-Fritsch, Sophie |
container_volume |
51 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Sulekar, Soumitra |
doi_str_mv |
10.1007/s10853-016-0019-0 |
dewey-full |
670 |
title_sort |
internal barrier layer capacitor, nearest neighbor hopping, and variable range hopping conduction in $ ba_{1−x} $$ sr_{x} $$ tio_{3−δ} $ nanoceramics |
title_auth |
Internal barrier layer capacitor, nearest neighbor hopping, and variable range hopping conduction in $ Ba_{1−x} $$ Sr_{x} $$ TiO_{3−δ} $ nanoceramics |
abstract |
Abstract The dielectric properties of the solid solution $ Ba_{1−x} $$ Sr_{x} $$ TiO_{3−δ} $ (0 ≤ x ≤ 1) have been investigated. The nanopowders were prepared via a coprecipitation reaction followed by a calcination treatment. Spark plasma sintering allowed to obtain dense nanocrystalline ceramics. Broadband impedance spectroscopy revealed colossal permittivity (ε′ = $ 10^{5} $) associated with low losses (tan δ = 0.03) in the most favorable case. The bulk conductivity data was analyzed using Jonscher’s universal dielectric response model. In the Ba-rich compound, conduction process followed variable range hopping conduction model while the Sr-rich BST compound showed the nearest neighbor hopping conduction mechanism associated with displacements of space charges. These two different conduction mechanisms might be able to explain superior temperature–frequency-independent dielectric properties in Sr-rich BST compound compared to Ba-rich BST compound. © Springer Science+Business Media New York 2016 |
abstractGer |
Abstract The dielectric properties of the solid solution $ Ba_{1−x} $$ Sr_{x} $$ TiO_{3−δ} $ (0 ≤ x ≤ 1) have been investigated. The nanopowders were prepared via a coprecipitation reaction followed by a calcination treatment. Spark plasma sintering allowed to obtain dense nanocrystalline ceramics. Broadband impedance spectroscopy revealed colossal permittivity (ε′ = $ 10^{5} $) associated with low losses (tan δ = 0.03) in the most favorable case. The bulk conductivity data was analyzed using Jonscher’s universal dielectric response model. In the Ba-rich compound, conduction process followed variable range hopping conduction model while the Sr-rich BST compound showed the nearest neighbor hopping conduction mechanism associated with displacements of space charges. These two different conduction mechanisms might be able to explain superior temperature–frequency-independent dielectric properties in Sr-rich BST compound compared to Ba-rich BST compound. © Springer Science+Business Media New York 2016 |
abstract_unstemmed |
Abstract The dielectric properties of the solid solution $ Ba_{1−x} $$ Sr_{x} $$ TiO_{3−δ} $ (0 ≤ x ≤ 1) have been investigated. The nanopowders were prepared via a coprecipitation reaction followed by a calcination treatment. Spark plasma sintering allowed to obtain dense nanocrystalline ceramics. Broadband impedance spectroscopy revealed colossal permittivity (ε′ = $ 10^{5} $) associated with low losses (tan δ = 0.03) in the most favorable case. The bulk conductivity data was analyzed using Jonscher’s universal dielectric response model. In the Ba-rich compound, conduction process followed variable range hopping conduction model while the Sr-rich BST compound showed the nearest neighbor hopping conduction mechanism associated with displacements of space charges. These two different conduction mechanisms might be able to explain superior temperature–frequency-independent dielectric properties in Sr-rich BST compound compared to Ba-rich BST compound. © Springer Science+Business Media New York 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 |
container_issue |
16 |
title_short |
Internal barrier layer capacitor, nearest neighbor hopping, and variable range hopping conduction in $ Ba_{1−x} $$ Sr_{x} $$ TiO_{3−δ} $ nanoceramics |
url |
https://doi.org/10.1007/s10853-016-0019-0 |
remote_bool |
false |
author2 |
Kim, Ji Hyun Han, Hyuksu Dufour, Pascal Tenailleau, Christophe Nino, Juan Claudio Cordoncillo, Eloisa Beltran-Mir, Hector Dupuis, Sébastien Guillemet-Fritsch, Sophie |
author2Str |
Kim, Ji Hyun Han, Hyuksu Dufour, Pascal Tenailleau, Christophe Nino, Juan Claudio Cordoncillo, Eloisa Beltran-Mir, Hector Dupuis, Sébastien Guillemet-Fritsch, Sophie |
ppnlink |
129546372 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10853-016-0019-0 |
up_date |
2024-07-04T05:02:09.298Z |
_version_ |
1803623417028542464 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046414500</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503124634.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10853-016-0019-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046414500</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10853-016-0019-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sulekar, Soumitra</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Internal barrier layer capacitor, nearest neighbor hopping, and variable range hopping conduction in $ Ba_{1−x} $$ Sr_{x} $$ TiO_{3−δ} $ nanoceramics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The dielectric properties of the solid solution $ Ba_{1−x} $$ Sr_{x} $$ TiO_{3−δ} $ (0 ≤ x ≤ 1) have been investigated. The nanopowders were prepared via a coprecipitation reaction followed by a calcination treatment. Spark plasma sintering allowed to obtain dense nanocrystalline ceramics. Broadband impedance spectroscopy revealed colossal permittivity (ε′ = $ 10^{5} $) associated with low losses (tan δ = 0.03) in the most favorable case. The bulk conductivity data was analyzed using Jonscher’s universal dielectric response model. In the Ba-rich compound, conduction process followed variable range hopping conduction model while the Sr-rich BST compound showed the nearest neighbor hopping conduction mechanism associated with displacements of space charges. These two different conduction mechanisms might be able to explain superior temperature–frequency-independent dielectric properties in Sr-rich BST compound compared to Ba-rich BST compound.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BaTiO3</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spark Plasma Sinter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Barium Titanate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strontium Titanate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Barium Strontium Titanate</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Ji Hyun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Hyuksu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dufour, Pascal</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tenailleau, Christophe</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nino, Juan Claudio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cordoncillo, Eloisa</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Beltran-Mir, Hector</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dupuis, Sébastien</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guillemet-Fritsch, Sophie</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Springer US, 1966</subfield><subfield code="g">51(2016), 16 vom: 12. Mai, Seite 7440-7450</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:51</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:16</subfield><subfield code="g">day:12</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:7440-7450</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10853-016-0019-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">51</subfield><subfield code="j">2016</subfield><subfield code="e">16</subfield><subfield code="b">12</subfield><subfield code="c">05</subfield><subfield code="h">7440-7450</subfield></datafield></record></collection>
|
score |
7.4006987 |