Phase transformation, oxidation stability, and electrical conductivity of $ TiO_{2} $-polysiloxane derived ceramics
Abstract There have been increasing needs for high-thermal stability and high-electrical conductivity materials. In this study, we in situ synthesized silicon oxycarbide (SiOC)–$ TiC_{x} $$ O_{y} $ composites based on the pyrolysis of polysiloxane and carbothermal reaction between $ TiO_{2} $ nanopa...
Ausführliche Beschreibung
Autor*in: |
Lu, Kathy [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials science - Springer US, 1966, 51(2016), 22 vom: 27. Juli, Seite 10166-10177 |
---|---|
Übergeordnetes Werk: |
volume:51 ; year:2016 ; number:22 ; day:27 ; month:07 ; pages:10166-10177 |
Links: |
---|
DOI / URN: |
10.1007/s10853-016-0244-6 |
---|
Katalog-ID: |
OLC2046416430 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2046416430 | ||
003 | DE-627 | ||
005 | 20230503124653.0 | ||
007 | tu | ||
008 | 200820s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10853-016-0244-6 |2 doi | |
035 | |a (DE-627)OLC2046416430 | ||
035 | |a (DE-He213)s10853-016-0244-6-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Lu, Kathy |e verfasserin |4 aut | |
245 | 1 | 0 | |a Phase transformation, oxidation stability, and electrical conductivity of $ TiO_{2} $-polysiloxane derived ceramics |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2016 | ||
520 | |a Abstract There have been increasing needs for high-thermal stability and high-electrical conductivity materials. In this study, we in situ synthesized silicon oxycarbide (SiOC)–$ TiC_{x} $$ O_{y} $ composites based on the pyrolysis of polysiloxane and carbothermal reaction between $ TiO_{2} $ nanoparticles and free carbon in SiOC. The $ TiO_{2} $ to $ TiC_{x} $$ O_{y} $ conversion is dependent on the pyrolysis temperature. Higher pyrolysis temperature leads to more TiC formation but lower thermal stability. With more homogeneous distribution of $ TiO_{2} $, the thermal stability of the SiOC–$ TiC_{x} $$ O_{y} $ composite increases. This family of SiOC composite also demonstrates high electrical conductivity. The highest electrical conductivity is 5.03 S $ cm^{−1} $ at 400 °C measurement temperature, the highest for air atmosphere condition. The key issue for tuning the SiOC–$ TiC_{x} $$ O_{y} $ system for both thermal stability and electrical conductivity is to avoid the destabilization of the SiOC system. | ||
650 | 4 | |a TiO2 | |
650 | 4 | |a TiO2 Nanoparticles | |
650 | 4 | |a Pyrolysis Temperature | |
650 | 4 | |a Free Carbon | |
650 | 4 | |a TiO2 Content | |
700 | 1 | |a Erb, Donald |4 aut | |
700 | 1 | |a Liu, Mengying |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials science |d Springer US, 1966 |g 51(2016), 22 vom: 27. Juli, Seite 10166-10177 |w (DE-627)129546372 |w (DE-600)218324-9 |w (DE-576)014996774 |x 0022-2461 |7 nnns |
773 | 1 | 8 | |g volume:51 |g year:2016 |g number:22 |g day:27 |g month:07 |g pages:10166-10177 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10853-016-0244-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 51 |j 2016 |e 22 |b 27 |c 07 |h 10166-10177 |
author_variant |
k l kl d e de m l ml |
---|---|
matchkey_str |
article:00222461:2016----::hstasomtooiaintbltadlcrclodciiyfi_pl |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1007/s10853-016-0244-6 doi (DE-627)OLC2046416430 (DE-He213)s10853-016-0244-6-p DE-627 ger DE-627 rakwb eng 670 VZ Lu, Kathy verfasserin aut Phase transformation, oxidation stability, and electrical conductivity of $ TiO_{2} $-polysiloxane derived ceramics 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract There have been increasing needs for high-thermal stability and high-electrical conductivity materials. In this study, we in situ synthesized silicon oxycarbide (SiOC)–$ TiC_{x} $$ O_{y} $ composites based on the pyrolysis of polysiloxane and carbothermal reaction between $ TiO_{2} $ nanoparticles and free carbon in SiOC. The $ TiO_{2} $ to $ TiC_{x} $$ O_{y} $ conversion is dependent on the pyrolysis temperature. Higher pyrolysis temperature leads to more TiC formation but lower thermal stability. With more homogeneous distribution of $ TiO_{2} $, the thermal stability of the SiOC–$ TiC_{x} $$ O_{y} $ composite increases. This family of SiOC composite also demonstrates high electrical conductivity. The highest electrical conductivity is 5.03 S $ cm^{−1} $ at 400 °C measurement temperature, the highest for air atmosphere condition. The key issue for tuning the SiOC–$ TiC_{x} $$ O_{y} $ system for both thermal stability and electrical conductivity is to avoid the destabilization of the SiOC system. TiO2 TiO2 Nanoparticles Pyrolysis Temperature Free Carbon TiO2 Content Erb, Donald aut Liu, Mengying aut Enthalten in Journal of materials science Springer US, 1966 51(2016), 22 vom: 27. Juli, Seite 10166-10177 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:51 year:2016 number:22 day:27 month:07 pages:10166-10177 https://doi.org/10.1007/s10853-016-0244-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 51 2016 22 27 07 10166-10177 |
spelling |
10.1007/s10853-016-0244-6 doi (DE-627)OLC2046416430 (DE-He213)s10853-016-0244-6-p DE-627 ger DE-627 rakwb eng 670 VZ Lu, Kathy verfasserin aut Phase transformation, oxidation stability, and electrical conductivity of $ TiO_{2} $-polysiloxane derived ceramics 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract There have been increasing needs for high-thermal stability and high-electrical conductivity materials. In this study, we in situ synthesized silicon oxycarbide (SiOC)–$ TiC_{x} $$ O_{y} $ composites based on the pyrolysis of polysiloxane and carbothermal reaction between $ TiO_{2} $ nanoparticles and free carbon in SiOC. The $ TiO_{2} $ to $ TiC_{x} $$ O_{y} $ conversion is dependent on the pyrolysis temperature. Higher pyrolysis temperature leads to more TiC formation but lower thermal stability. With more homogeneous distribution of $ TiO_{2} $, the thermal stability of the SiOC–$ TiC_{x} $$ O_{y} $ composite increases. This family of SiOC composite also demonstrates high electrical conductivity. The highest electrical conductivity is 5.03 S $ cm^{−1} $ at 400 °C measurement temperature, the highest for air atmosphere condition. The key issue for tuning the SiOC–$ TiC_{x} $$ O_{y} $ system for both thermal stability and electrical conductivity is to avoid the destabilization of the SiOC system. TiO2 TiO2 Nanoparticles Pyrolysis Temperature Free Carbon TiO2 Content Erb, Donald aut Liu, Mengying aut Enthalten in Journal of materials science Springer US, 1966 51(2016), 22 vom: 27. Juli, Seite 10166-10177 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:51 year:2016 number:22 day:27 month:07 pages:10166-10177 https://doi.org/10.1007/s10853-016-0244-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 51 2016 22 27 07 10166-10177 |
allfields_unstemmed |
10.1007/s10853-016-0244-6 doi (DE-627)OLC2046416430 (DE-He213)s10853-016-0244-6-p DE-627 ger DE-627 rakwb eng 670 VZ Lu, Kathy verfasserin aut Phase transformation, oxidation stability, and electrical conductivity of $ TiO_{2} $-polysiloxane derived ceramics 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract There have been increasing needs for high-thermal stability and high-electrical conductivity materials. In this study, we in situ synthesized silicon oxycarbide (SiOC)–$ TiC_{x} $$ O_{y} $ composites based on the pyrolysis of polysiloxane and carbothermal reaction between $ TiO_{2} $ nanoparticles and free carbon in SiOC. The $ TiO_{2} $ to $ TiC_{x} $$ O_{y} $ conversion is dependent on the pyrolysis temperature. Higher pyrolysis temperature leads to more TiC formation but lower thermal stability. With more homogeneous distribution of $ TiO_{2} $, the thermal stability of the SiOC–$ TiC_{x} $$ O_{y} $ composite increases. This family of SiOC composite also demonstrates high electrical conductivity. The highest electrical conductivity is 5.03 S $ cm^{−1} $ at 400 °C measurement temperature, the highest for air atmosphere condition. The key issue for tuning the SiOC–$ TiC_{x} $$ O_{y} $ system for both thermal stability and electrical conductivity is to avoid the destabilization of the SiOC system. TiO2 TiO2 Nanoparticles Pyrolysis Temperature Free Carbon TiO2 Content Erb, Donald aut Liu, Mengying aut Enthalten in Journal of materials science Springer US, 1966 51(2016), 22 vom: 27. Juli, Seite 10166-10177 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:51 year:2016 number:22 day:27 month:07 pages:10166-10177 https://doi.org/10.1007/s10853-016-0244-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 51 2016 22 27 07 10166-10177 |
allfieldsGer |
10.1007/s10853-016-0244-6 doi (DE-627)OLC2046416430 (DE-He213)s10853-016-0244-6-p DE-627 ger DE-627 rakwb eng 670 VZ Lu, Kathy verfasserin aut Phase transformation, oxidation stability, and electrical conductivity of $ TiO_{2} $-polysiloxane derived ceramics 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract There have been increasing needs for high-thermal stability and high-electrical conductivity materials. In this study, we in situ synthesized silicon oxycarbide (SiOC)–$ TiC_{x} $$ O_{y} $ composites based on the pyrolysis of polysiloxane and carbothermal reaction between $ TiO_{2} $ nanoparticles and free carbon in SiOC. The $ TiO_{2} $ to $ TiC_{x} $$ O_{y} $ conversion is dependent on the pyrolysis temperature. Higher pyrolysis temperature leads to more TiC formation but lower thermal stability. With more homogeneous distribution of $ TiO_{2} $, the thermal stability of the SiOC–$ TiC_{x} $$ O_{y} $ composite increases. This family of SiOC composite also demonstrates high electrical conductivity. The highest electrical conductivity is 5.03 S $ cm^{−1} $ at 400 °C measurement temperature, the highest for air atmosphere condition. The key issue for tuning the SiOC–$ TiC_{x} $$ O_{y} $ system for both thermal stability and electrical conductivity is to avoid the destabilization of the SiOC system. TiO2 TiO2 Nanoparticles Pyrolysis Temperature Free Carbon TiO2 Content Erb, Donald aut Liu, Mengying aut Enthalten in Journal of materials science Springer US, 1966 51(2016), 22 vom: 27. Juli, Seite 10166-10177 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:51 year:2016 number:22 day:27 month:07 pages:10166-10177 https://doi.org/10.1007/s10853-016-0244-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 51 2016 22 27 07 10166-10177 |
allfieldsSound |
10.1007/s10853-016-0244-6 doi (DE-627)OLC2046416430 (DE-He213)s10853-016-0244-6-p DE-627 ger DE-627 rakwb eng 670 VZ Lu, Kathy verfasserin aut Phase transformation, oxidation stability, and electrical conductivity of $ TiO_{2} $-polysiloxane derived ceramics 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract There have been increasing needs for high-thermal stability and high-electrical conductivity materials. In this study, we in situ synthesized silicon oxycarbide (SiOC)–$ TiC_{x} $$ O_{y} $ composites based on the pyrolysis of polysiloxane and carbothermal reaction between $ TiO_{2} $ nanoparticles and free carbon in SiOC. The $ TiO_{2} $ to $ TiC_{x} $$ O_{y} $ conversion is dependent on the pyrolysis temperature. Higher pyrolysis temperature leads to more TiC formation but lower thermal stability. With more homogeneous distribution of $ TiO_{2} $, the thermal stability of the SiOC–$ TiC_{x} $$ O_{y} $ composite increases. This family of SiOC composite also demonstrates high electrical conductivity. The highest electrical conductivity is 5.03 S $ cm^{−1} $ at 400 °C measurement temperature, the highest for air atmosphere condition. The key issue for tuning the SiOC–$ TiC_{x} $$ O_{y} $ system for both thermal stability and electrical conductivity is to avoid the destabilization of the SiOC system. TiO2 TiO2 Nanoparticles Pyrolysis Temperature Free Carbon TiO2 Content Erb, Donald aut Liu, Mengying aut Enthalten in Journal of materials science Springer US, 1966 51(2016), 22 vom: 27. Juli, Seite 10166-10177 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:51 year:2016 number:22 day:27 month:07 pages:10166-10177 https://doi.org/10.1007/s10853-016-0244-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 51 2016 22 27 07 10166-10177 |
language |
English |
source |
Enthalten in Journal of materials science 51(2016), 22 vom: 27. Juli, Seite 10166-10177 volume:51 year:2016 number:22 day:27 month:07 pages:10166-10177 |
sourceStr |
Enthalten in Journal of materials science 51(2016), 22 vom: 27. Juli, Seite 10166-10177 volume:51 year:2016 number:22 day:27 month:07 pages:10166-10177 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
TiO2 TiO2 Nanoparticles Pyrolysis Temperature Free Carbon TiO2 Content |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of materials science |
authorswithroles_txt_mv |
Lu, Kathy @@aut@@ Erb, Donald @@aut@@ Liu, Mengying @@aut@@ |
publishDateDaySort_date |
2016-07-27T00:00:00Z |
hierarchy_top_id |
129546372 |
dewey-sort |
3670 |
id |
OLC2046416430 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046416430</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503124653.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10853-016-0244-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046416430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10853-016-0244-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lu, Kathy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phase transformation, oxidation stability, and electrical conductivity of $ TiO_{2} $-polysiloxane derived ceramics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract There have been increasing needs for high-thermal stability and high-electrical conductivity materials. In this study, we in situ synthesized silicon oxycarbide (SiOC)–$ TiC_{x} $$ O_{y} $ composites based on the pyrolysis of polysiloxane and carbothermal reaction between $ TiO_{2} $ nanoparticles and free carbon in SiOC. The $ TiO_{2} $ to $ TiC_{x} $$ O_{y} $ conversion is dependent on the pyrolysis temperature. Higher pyrolysis temperature leads to more TiC formation but lower thermal stability. With more homogeneous distribution of $ TiO_{2} $, the thermal stability of the SiOC–$ TiC_{x} $$ O_{y} $ composite increases. This family of SiOC composite also demonstrates high electrical conductivity. The highest electrical conductivity is 5.03 S $ cm^{−1} $ at 400 °C measurement temperature, the highest for air atmosphere condition. The key issue for tuning the SiOC–$ TiC_{x} $$ O_{y} $ system for both thermal stability and electrical conductivity is to avoid the destabilization of the SiOC system.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TiO2</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TiO2 Nanoparticles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pyrolysis Temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Free Carbon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TiO2 Content</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Erb, Donald</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Mengying</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Springer US, 1966</subfield><subfield code="g">51(2016), 22 vom: 27. Juli, Seite 10166-10177</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:51</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:22</subfield><subfield code="g">day:27</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:10166-10177</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10853-016-0244-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">51</subfield><subfield code="j">2016</subfield><subfield code="e">22</subfield><subfield code="b">27</subfield><subfield code="c">07</subfield><subfield code="h">10166-10177</subfield></datafield></record></collection>
|
author |
Lu, Kathy |
spellingShingle |
Lu, Kathy ddc 670 misc TiO2 misc TiO2 Nanoparticles misc Pyrolysis Temperature misc Free Carbon misc TiO2 Content Phase transformation, oxidation stability, and electrical conductivity of $ TiO_{2} $-polysiloxane derived ceramics |
authorStr |
Lu, Kathy |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129546372 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-2461 |
topic_title |
670 VZ Phase transformation, oxidation stability, and electrical conductivity of $ TiO_{2} $-polysiloxane derived ceramics TiO2 TiO2 Nanoparticles Pyrolysis Temperature Free Carbon TiO2 Content |
topic |
ddc 670 misc TiO2 misc TiO2 Nanoparticles misc Pyrolysis Temperature misc Free Carbon misc TiO2 Content |
topic_unstemmed |
ddc 670 misc TiO2 misc TiO2 Nanoparticles misc Pyrolysis Temperature misc Free Carbon misc TiO2 Content |
topic_browse |
ddc 670 misc TiO2 misc TiO2 Nanoparticles misc Pyrolysis Temperature misc Free Carbon misc TiO2 Content |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials science |
hierarchy_parent_id |
129546372 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of materials science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 |
title |
Phase transformation, oxidation stability, and electrical conductivity of $ TiO_{2} $-polysiloxane derived ceramics |
ctrlnum |
(DE-627)OLC2046416430 (DE-He213)s10853-016-0244-6-p |
title_full |
Phase transformation, oxidation stability, and electrical conductivity of $ TiO_{2} $-polysiloxane derived ceramics |
author_sort |
Lu, Kathy |
journal |
Journal of materials science |
journalStr |
Journal of materials science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
10166 |
author_browse |
Lu, Kathy Erb, Donald Liu, Mengying |
container_volume |
51 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Lu, Kathy |
doi_str_mv |
10.1007/s10853-016-0244-6 |
dewey-full |
670 |
title_sort |
phase transformation, oxidation stability, and electrical conductivity of $ tio_{2} $-polysiloxane derived ceramics |
title_auth |
Phase transformation, oxidation stability, and electrical conductivity of $ TiO_{2} $-polysiloxane derived ceramics |
abstract |
Abstract There have been increasing needs for high-thermal stability and high-electrical conductivity materials. In this study, we in situ synthesized silicon oxycarbide (SiOC)–$ TiC_{x} $$ O_{y} $ composites based on the pyrolysis of polysiloxane and carbothermal reaction between $ TiO_{2} $ nanoparticles and free carbon in SiOC. The $ TiO_{2} $ to $ TiC_{x} $$ O_{y} $ conversion is dependent on the pyrolysis temperature. Higher pyrolysis temperature leads to more TiC formation but lower thermal stability. With more homogeneous distribution of $ TiO_{2} $, the thermal stability of the SiOC–$ TiC_{x} $$ O_{y} $ composite increases. This family of SiOC composite also demonstrates high electrical conductivity. The highest electrical conductivity is 5.03 S $ cm^{−1} $ at 400 °C measurement temperature, the highest for air atmosphere condition. The key issue for tuning the SiOC–$ TiC_{x} $$ O_{y} $ system for both thermal stability and electrical conductivity is to avoid the destabilization of the SiOC system. © Springer Science+Business Media New York 2016 |
abstractGer |
Abstract There have been increasing needs for high-thermal stability and high-electrical conductivity materials. In this study, we in situ synthesized silicon oxycarbide (SiOC)–$ TiC_{x} $$ O_{y} $ composites based on the pyrolysis of polysiloxane and carbothermal reaction between $ TiO_{2} $ nanoparticles and free carbon in SiOC. The $ TiO_{2} $ to $ TiC_{x} $$ O_{y} $ conversion is dependent on the pyrolysis temperature. Higher pyrolysis temperature leads to more TiC formation but lower thermal stability. With more homogeneous distribution of $ TiO_{2} $, the thermal stability of the SiOC–$ TiC_{x} $$ O_{y} $ composite increases. This family of SiOC composite also demonstrates high electrical conductivity. The highest electrical conductivity is 5.03 S $ cm^{−1} $ at 400 °C measurement temperature, the highest for air atmosphere condition. The key issue for tuning the SiOC–$ TiC_{x} $$ O_{y} $ system for both thermal stability and electrical conductivity is to avoid the destabilization of the SiOC system. © Springer Science+Business Media New York 2016 |
abstract_unstemmed |
Abstract There have been increasing needs for high-thermal stability and high-electrical conductivity materials. In this study, we in situ synthesized silicon oxycarbide (SiOC)–$ TiC_{x} $$ O_{y} $ composites based on the pyrolysis of polysiloxane and carbothermal reaction between $ TiO_{2} $ nanoparticles and free carbon in SiOC. The $ TiO_{2} $ to $ TiC_{x} $$ O_{y} $ conversion is dependent on the pyrolysis temperature. Higher pyrolysis temperature leads to more TiC formation but lower thermal stability. With more homogeneous distribution of $ TiO_{2} $, the thermal stability of the SiOC–$ TiC_{x} $$ O_{y} $ composite increases. This family of SiOC composite also demonstrates high electrical conductivity. The highest electrical conductivity is 5.03 S $ cm^{−1} $ at 400 °C measurement temperature, the highest for air atmosphere condition. The key issue for tuning the SiOC–$ TiC_{x} $$ O_{y} $ system for both thermal stability and electrical conductivity is to avoid the destabilization of the SiOC system. © Springer Science+Business Media New York 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 |
container_issue |
22 |
title_short |
Phase transformation, oxidation stability, and electrical conductivity of $ TiO_{2} $-polysiloxane derived ceramics |
url |
https://doi.org/10.1007/s10853-016-0244-6 |
remote_bool |
false |
author2 |
Erb, Donald Liu, Mengying |
author2Str |
Erb, Donald Liu, Mengying |
ppnlink |
129546372 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10853-016-0244-6 |
up_date |
2024-07-04T05:02:29.341Z |
_version_ |
1803623438045151233 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046416430</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503124653.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10853-016-0244-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046416430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10853-016-0244-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lu, Kathy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phase transformation, oxidation stability, and electrical conductivity of $ TiO_{2} $-polysiloxane derived ceramics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract There have been increasing needs for high-thermal stability and high-electrical conductivity materials. In this study, we in situ synthesized silicon oxycarbide (SiOC)–$ TiC_{x} $$ O_{y} $ composites based on the pyrolysis of polysiloxane and carbothermal reaction between $ TiO_{2} $ nanoparticles and free carbon in SiOC. The $ TiO_{2} $ to $ TiC_{x} $$ O_{y} $ conversion is dependent on the pyrolysis temperature. Higher pyrolysis temperature leads to more TiC formation but lower thermal stability. With more homogeneous distribution of $ TiO_{2} $, the thermal stability of the SiOC–$ TiC_{x} $$ O_{y} $ composite increases. This family of SiOC composite also demonstrates high electrical conductivity. The highest electrical conductivity is 5.03 S $ cm^{−1} $ at 400 °C measurement temperature, the highest for air atmosphere condition. The key issue for tuning the SiOC–$ TiC_{x} $$ O_{y} $ system for both thermal stability and electrical conductivity is to avoid the destabilization of the SiOC system.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TiO2</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TiO2 Nanoparticles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pyrolysis Temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Free Carbon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TiO2 Content</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Erb, Donald</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Mengying</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Springer US, 1966</subfield><subfield code="g">51(2016), 22 vom: 27. Juli, Seite 10166-10177</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:51</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:22</subfield><subfield code="g">day:27</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:10166-10177</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10853-016-0244-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">51</subfield><subfield code="j">2016</subfield><subfield code="e">22</subfield><subfield code="b">27</subfield><subfield code="c">07</subfield><subfield code="h">10166-10177</subfield></datafield></record></collection>
|
score |
7.401143 |