Ag$ Fe_{3} $$ O_{4} $@cellulose nanocrystals nanocomposites: microwave-assisted hydrothermal synthesis, antimicrobial properties, and good adsorption of dye solution
Abstract In this paper, Ag@$ Fe_{3} $$ O_{4} $@cellulose nanocrystals (CNC) nanocomposites were synthesized by a facile and green microwave-assisted hydrothermal method. In the procedure, CNC was used as a reducing agent for the synthesis of Ag. During the whole synthesis process, there were no addi...
Ausführliche Beschreibung
Autor*in: |
Dong, Yan-Yan [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials science - Springer US, 1966, 52(2017), 13 vom: 29. März, Seite 8219-8230 |
---|---|
Übergeordnetes Werk: |
volume:52 ; year:2017 ; number:13 ; day:29 ; month:03 ; pages:8219-8230 |
Links: |
---|
DOI / URN: |
10.1007/s10853-017-1038-1 |
---|
Katalog-ID: |
OLC2046424069 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2046424069 | ||
003 | DE-627 | ||
005 | 20230503124741.0 | ||
007 | tu | ||
008 | 200820s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10853-017-1038-1 |2 doi | |
035 | |a (DE-627)OLC2046424069 | ||
035 | |a (DE-He213)s10853-017-1038-1-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Dong, Yan-Yan |e verfasserin |4 aut | |
245 | 1 | 2 | |a Ag$ Fe_{3} $$ O_{4} $@cellulose nanocrystals nanocomposites: microwave-assisted hydrothermal synthesis, antimicrobial properties, and good adsorption of dye solution |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2017 | ||
520 | |a Abstract In this paper, Ag@$ Fe_{3} $$ O_{4} $@cellulose nanocrystals (CNC) nanocomposites were synthesized by a facile and green microwave-assisted hydrothermal method. In the procedure, CNC was used as a reducing agent for the synthesis of Ag. During the whole synthesis process, there were no additional reducing agents or toxic solvents used. The nanocomposites were characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray spectrum, transmission electron microscopy, thermogravimetric analysis, and differential thermal analysis. In addition, Ag@$ Fe_{3} $$ O_{4} $@CNC nanocomposites were also synthesized by microwave-assisted method and hydrothermal method. Both the effects of reaction time and synthetic procedures on the reduction process of $ Ag^{+} $ by CNC were explored. The results showed that $ Fe_{3} $$ O_{4} $ was formed with sphere-like structure and dispersed uniformly. Ag@$ Fe_{3} $$ O_{4} $@CNC nanocomposites exhibited good adsorption of dye solution, which showed potential applications in water treatment. The antibacterial results showed that Ag$ Fe_{3} $$ O_{4} $@CNC nanocomposites had good antibacterial activities toward both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The green and facile strategy reported in this paper may be broadly used in synthesizing other metal nanoparticles, as well as organic–inorganic nanocomposites. | ||
650 | 4 | |a Fe3O4 | |
650 | 4 | |a Methylene Blue | |
650 | 4 | |a Hydrothermal Method | |
650 | 4 | |a ZnFe2O4 | |
650 | 4 | |a CuFe2O4 | |
700 | 1 | |a Liu, Shan |4 aut | |
700 | 1 | |a Liu, Yan-Jun |4 aut | |
700 | 1 | |a Meng, Ling-Yan |4 aut | |
700 | 1 | |a Ma, Ming-Guo |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials science |d Springer US, 1966 |g 52(2017), 13 vom: 29. März, Seite 8219-8230 |w (DE-627)129546372 |w (DE-600)218324-9 |w (DE-576)014996774 |x 0022-2461 |7 nnns |
773 | 1 | 8 | |g volume:52 |g year:2017 |g number:13 |g day:29 |g month:03 |g pages:8219-8230 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10853-017-1038-1 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 52 |j 2017 |e 13 |b 29 |c 03 |h 8219-8230 |
author_variant |
y y d yyd s l sl y j l yjl l y m lym m g m mgm |
---|---|
matchkey_str |
article:00222461:2017----::ge3_cluoeaorsasaoopstsirwvassehdohrasnhssniirbapo |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1007/s10853-017-1038-1 doi (DE-627)OLC2046424069 (DE-He213)s10853-017-1038-1-p DE-627 ger DE-627 rakwb eng 670 VZ Dong, Yan-Yan verfasserin aut Ag$ Fe_{3} $$ O_{4} $@cellulose nanocrystals nanocomposites: microwave-assisted hydrothermal synthesis, antimicrobial properties, and good adsorption of dye solution 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2017 Abstract In this paper, Ag@$ Fe_{3} $$ O_{4} $@cellulose nanocrystals (CNC) nanocomposites were synthesized by a facile and green microwave-assisted hydrothermal method. In the procedure, CNC was used as a reducing agent for the synthesis of Ag. During the whole synthesis process, there were no additional reducing agents or toxic solvents used. The nanocomposites were characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray spectrum, transmission electron microscopy, thermogravimetric analysis, and differential thermal analysis. In addition, Ag@$ Fe_{3} $$ O_{4} $@CNC nanocomposites were also synthesized by microwave-assisted method and hydrothermal method. Both the effects of reaction time and synthetic procedures on the reduction process of $ Ag^{+} $ by CNC were explored. The results showed that $ Fe_{3} $$ O_{4} $ was formed with sphere-like structure and dispersed uniformly. Ag@$ Fe_{3} $$ O_{4} $@CNC nanocomposites exhibited good adsorption of dye solution, which showed potential applications in water treatment. The antibacterial results showed that Ag$ Fe_{3} $$ O_{4} $@CNC nanocomposites had good antibacterial activities toward both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The green and facile strategy reported in this paper may be broadly used in synthesizing other metal nanoparticles, as well as organic–inorganic nanocomposites. Fe3O4 Methylene Blue Hydrothermal Method ZnFe2O4 CuFe2O4 Liu, Shan aut Liu, Yan-Jun aut Meng, Ling-Yan aut Ma, Ming-Guo aut Enthalten in Journal of materials science Springer US, 1966 52(2017), 13 vom: 29. März, Seite 8219-8230 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:52 year:2017 number:13 day:29 month:03 pages:8219-8230 https://doi.org/10.1007/s10853-017-1038-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 52 2017 13 29 03 8219-8230 |
spelling |
10.1007/s10853-017-1038-1 doi (DE-627)OLC2046424069 (DE-He213)s10853-017-1038-1-p DE-627 ger DE-627 rakwb eng 670 VZ Dong, Yan-Yan verfasserin aut Ag$ Fe_{3} $$ O_{4} $@cellulose nanocrystals nanocomposites: microwave-assisted hydrothermal synthesis, antimicrobial properties, and good adsorption of dye solution 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2017 Abstract In this paper, Ag@$ Fe_{3} $$ O_{4} $@cellulose nanocrystals (CNC) nanocomposites were synthesized by a facile and green microwave-assisted hydrothermal method. In the procedure, CNC was used as a reducing agent for the synthesis of Ag. During the whole synthesis process, there were no additional reducing agents or toxic solvents used. The nanocomposites were characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray spectrum, transmission electron microscopy, thermogravimetric analysis, and differential thermal analysis. In addition, Ag@$ Fe_{3} $$ O_{4} $@CNC nanocomposites were also synthesized by microwave-assisted method and hydrothermal method. Both the effects of reaction time and synthetic procedures on the reduction process of $ Ag^{+} $ by CNC were explored. The results showed that $ Fe_{3} $$ O_{4} $ was formed with sphere-like structure and dispersed uniformly. Ag@$ Fe_{3} $$ O_{4} $@CNC nanocomposites exhibited good adsorption of dye solution, which showed potential applications in water treatment. The antibacterial results showed that Ag$ Fe_{3} $$ O_{4} $@CNC nanocomposites had good antibacterial activities toward both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The green and facile strategy reported in this paper may be broadly used in synthesizing other metal nanoparticles, as well as organic–inorganic nanocomposites. Fe3O4 Methylene Blue Hydrothermal Method ZnFe2O4 CuFe2O4 Liu, Shan aut Liu, Yan-Jun aut Meng, Ling-Yan aut Ma, Ming-Guo aut Enthalten in Journal of materials science Springer US, 1966 52(2017), 13 vom: 29. März, Seite 8219-8230 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:52 year:2017 number:13 day:29 month:03 pages:8219-8230 https://doi.org/10.1007/s10853-017-1038-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 52 2017 13 29 03 8219-8230 |
allfields_unstemmed |
10.1007/s10853-017-1038-1 doi (DE-627)OLC2046424069 (DE-He213)s10853-017-1038-1-p DE-627 ger DE-627 rakwb eng 670 VZ Dong, Yan-Yan verfasserin aut Ag$ Fe_{3} $$ O_{4} $@cellulose nanocrystals nanocomposites: microwave-assisted hydrothermal synthesis, antimicrobial properties, and good adsorption of dye solution 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2017 Abstract In this paper, Ag@$ Fe_{3} $$ O_{4} $@cellulose nanocrystals (CNC) nanocomposites were synthesized by a facile and green microwave-assisted hydrothermal method. In the procedure, CNC was used as a reducing agent for the synthesis of Ag. During the whole synthesis process, there were no additional reducing agents or toxic solvents used. The nanocomposites were characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray spectrum, transmission electron microscopy, thermogravimetric analysis, and differential thermal analysis. In addition, Ag@$ Fe_{3} $$ O_{4} $@CNC nanocomposites were also synthesized by microwave-assisted method and hydrothermal method. Both the effects of reaction time and synthetic procedures on the reduction process of $ Ag^{+} $ by CNC were explored. The results showed that $ Fe_{3} $$ O_{4} $ was formed with sphere-like structure and dispersed uniformly. Ag@$ Fe_{3} $$ O_{4} $@CNC nanocomposites exhibited good adsorption of dye solution, which showed potential applications in water treatment. The antibacterial results showed that Ag$ Fe_{3} $$ O_{4} $@CNC nanocomposites had good antibacterial activities toward both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The green and facile strategy reported in this paper may be broadly used in synthesizing other metal nanoparticles, as well as organic–inorganic nanocomposites. Fe3O4 Methylene Blue Hydrothermal Method ZnFe2O4 CuFe2O4 Liu, Shan aut Liu, Yan-Jun aut Meng, Ling-Yan aut Ma, Ming-Guo aut Enthalten in Journal of materials science Springer US, 1966 52(2017), 13 vom: 29. März, Seite 8219-8230 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:52 year:2017 number:13 day:29 month:03 pages:8219-8230 https://doi.org/10.1007/s10853-017-1038-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 52 2017 13 29 03 8219-8230 |
allfieldsGer |
10.1007/s10853-017-1038-1 doi (DE-627)OLC2046424069 (DE-He213)s10853-017-1038-1-p DE-627 ger DE-627 rakwb eng 670 VZ Dong, Yan-Yan verfasserin aut Ag$ Fe_{3} $$ O_{4} $@cellulose nanocrystals nanocomposites: microwave-assisted hydrothermal synthesis, antimicrobial properties, and good adsorption of dye solution 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2017 Abstract In this paper, Ag@$ Fe_{3} $$ O_{4} $@cellulose nanocrystals (CNC) nanocomposites were synthesized by a facile and green microwave-assisted hydrothermal method. In the procedure, CNC was used as a reducing agent for the synthesis of Ag. During the whole synthesis process, there were no additional reducing agents or toxic solvents used. The nanocomposites were characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray spectrum, transmission electron microscopy, thermogravimetric analysis, and differential thermal analysis. In addition, Ag@$ Fe_{3} $$ O_{4} $@CNC nanocomposites were also synthesized by microwave-assisted method and hydrothermal method. Both the effects of reaction time and synthetic procedures on the reduction process of $ Ag^{+} $ by CNC were explored. The results showed that $ Fe_{3} $$ O_{4} $ was formed with sphere-like structure and dispersed uniformly. Ag@$ Fe_{3} $$ O_{4} $@CNC nanocomposites exhibited good adsorption of dye solution, which showed potential applications in water treatment. The antibacterial results showed that Ag$ Fe_{3} $$ O_{4} $@CNC nanocomposites had good antibacterial activities toward both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The green and facile strategy reported in this paper may be broadly used in synthesizing other metal nanoparticles, as well as organic–inorganic nanocomposites. Fe3O4 Methylene Blue Hydrothermal Method ZnFe2O4 CuFe2O4 Liu, Shan aut Liu, Yan-Jun aut Meng, Ling-Yan aut Ma, Ming-Guo aut Enthalten in Journal of materials science Springer US, 1966 52(2017), 13 vom: 29. März, Seite 8219-8230 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:52 year:2017 number:13 day:29 month:03 pages:8219-8230 https://doi.org/10.1007/s10853-017-1038-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 52 2017 13 29 03 8219-8230 |
allfieldsSound |
10.1007/s10853-017-1038-1 doi (DE-627)OLC2046424069 (DE-He213)s10853-017-1038-1-p DE-627 ger DE-627 rakwb eng 670 VZ Dong, Yan-Yan verfasserin aut Ag$ Fe_{3} $$ O_{4} $@cellulose nanocrystals nanocomposites: microwave-assisted hydrothermal synthesis, antimicrobial properties, and good adsorption of dye solution 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2017 Abstract In this paper, Ag@$ Fe_{3} $$ O_{4} $@cellulose nanocrystals (CNC) nanocomposites were synthesized by a facile and green microwave-assisted hydrothermal method. In the procedure, CNC was used as a reducing agent for the synthesis of Ag. During the whole synthesis process, there were no additional reducing agents or toxic solvents used. The nanocomposites were characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray spectrum, transmission electron microscopy, thermogravimetric analysis, and differential thermal analysis. In addition, Ag@$ Fe_{3} $$ O_{4} $@CNC nanocomposites were also synthesized by microwave-assisted method and hydrothermal method. Both the effects of reaction time and synthetic procedures on the reduction process of $ Ag^{+} $ by CNC were explored. The results showed that $ Fe_{3} $$ O_{4} $ was formed with sphere-like structure and dispersed uniformly. Ag@$ Fe_{3} $$ O_{4} $@CNC nanocomposites exhibited good adsorption of dye solution, which showed potential applications in water treatment. The antibacterial results showed that Ag$ Fe_{3} $$ O_{4} $@CNC nanocomposites had good antibacterial activities toward both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The green and facile strategy reported in this paper may be broadly used in synthesizing other metal nanoparticles, as well as organic–inorganic nanocomposites. Fe3O4 Methylene Blue Hydrothermal Method ZnFe2O4 CuFe2O4 Liu, Shan aut Liu, Yan-Jun aut Meng, Ling-Yan aut Ma, Ming-Guo aut Enthalten in Journal of materials science Springer US, 1966 52(2017), 13 vom: 29. März, Seite 8219-8230 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:52 year:2017 number:13 day:29 month:03 pages:8219-8230 https://doi.org/10.1007/s10853-017-1038-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 52 2017 13 29 03 8219-8230 |
language |
English |
source |
Enthalten in Journal of materials science 52(2017), 13 vom: 29. März, Seite 8219-8230 volume:52 year:2017 number:13 day:29 month:03 pages:8219-8230 |
sourceStr |
Enthalten in Journal of materials science 52(2017), 13 vom: 29. März, Seite 8219-8230 volume:52 year:2017 number:13 day:29 month:03 pages:8219-8230 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Fe3O4 Methylene Blue Hydrothermal Method ZnFe2O4 CuFe2O4 |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of materials science |
authorswithroles_txt_mv |
Dong, Yan-Yan @@aut@@ Liu, Shan @@aut@@ Liu, Yan-Jun @@aut@@ Meng, Ling-Yan @@aut@@ Ma, Ming-Guo @@aut@@ |
publishDateDaySort_date |
2017-03-29T00:00:00Z |
hierarchy_top_id |
129546372 |
dewey-sort |
3670 |
id |
OLC2046424069 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046424069</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503124741.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10853-017-1038-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046424069</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10853-017-1038-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dong, Yan-Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">Ag$ Fe_{3} $$ O_{4} $@cellulose nanocrystals nanocomposites: microwave-assisted hydrothermal synthesis, antimicrobial properties, and good adsorption of dye solution</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, Ag@$ Fe_{3} $$ O_{4} $@cellulose nanocrystals (CNC) nanocomposites were synthesized by a facile and green microwave-assisted hydrothermal method. In the procedure, CNC was used as a reducing agent for the synthesis of Ag. During the whole synthesis process, there were no additional reducing agents or toxic solvents used. The nanocomposites were characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray spectrum, transmission electron microscopy, thermogravimetric analysis, and differential thermal analysis. In addition, Ag@$ Fe_{3} $$ O_{4} $@CNC nanocomposites were also synthesized by microwave-assisted method and hydrothermal method. Both the effects of reaction time and synthetic procedures on the reduction process of $ Ag^{+} $ by CNC were explored. The results showed that $ Fe_{3} $$ O_{4} $ was formed with sphere-like structure and dispersed uniformly. Ag@$ Fe_{3} $$ O_{4} $@CNC nanocomposites exhibited good adsorption of dye solution, which showed potential applications in water treatment. The antibacterial results showed that Ag$ Fe_{3} $$ O_{4} $@CNC nanocomposites had good antibacterial activities toward both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The green and facile strategy reported in this paper may be broadly used in synthesizing other metal nanoparticles, as well as organic–inorganic nanocomposites.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fe3O4</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Methylene Blue</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrothermal Method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ZnFe2O4</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CuFe2O4</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Shan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yan-Jun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meng, Ling-Yan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Ming-Guo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Springer US, 1966</subfield><subfield code="g">52(2017), 13 vom: 29. März, Seite 8219-8230</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:52</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:13</subfield><subfield code="g">day:29</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:8219-8230</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10853-017-1038-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">52</subfield><subfield code="j">2017</subfield><subfield code="e">13</subfield><subfield code="b">29</subfield><subfield code="c">03</subfield><subfield code="h">8219-8230</subfield></datafield></record></collection>
|
author |
Dong, Yan-Yan |
spellingShingle |
Dong, Yan-Yan ddc 670 misc Fe3O4 misc Methylene Blue misc Hydrothermal Method misc ZnFe2O4 misc CuFe2O4 Ag$ Fe_{3} $$ O_{4} $@cellulose nanocrystals nanocomposites: microwave-assisted hydrothermal synthesis, antimicrobial properties, and good adsorption of dye solution |
authorStr |
Dong, Yan-Yan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129546372 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-2461 |
topic_title |
670 VZ Ag$ Fe_{3} $$ O_{4} $@cellulose nanocrystals nanocomposites: microwave-assisted hydrothermal synthesis, antimicrobial properties, and good adsorption of dye solution Fe3O4 Methylene Blue Hydrothermal Method ZnFe2O4 CuFe2O4 |
topic |
ddc 670 misc Fe3O4 misc Methylene Blue misc Hydrothermal Method misc ZnFe2O4 misc CuFe2O4 |
topic_unstemmed |
ddc 670 misc Fe3O4 misc Methylene Blue misc Hydrothermal Method misc ZnFe2O4 misc CuFe2O4 |
topic_browse |
ddc 670 misc Fe3O4 misc Methylene Blue misc Hydrothermal Method misc ZnFe2O4 misc CuFe2O4 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials science |
hierarchy_parent_id |
129546372 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of materials science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 |
title |
Ag$ Fe_{3} $$ O_{4} $@cellulose nanocrystals nanocomposites: microwave-assisted hydrothermal synthesis, antimicrobial properties, and good adsorption of dye solution |
ctrlnum |
(DE-627)OLC2046424069 (DE-He213)s10853-017-1038-1-p |
title_full |
Ag$ Fe_{3} $$ O_{4} $@cellulose nanocrystals nanocomposites: microwave-assisted hydrothermal synthesis, antimicrobial properties, and good adsorption of dye solution |
author_sort |
Dong, Yan-Yan |
journal |
Journal of materials science |
journalStr |
Journal of materials science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
8219 |
author_browse |
Dong, Yan-Yan Liu, Shan Liu, Yan-Jun Meng, Ling-Yan Ma, Ming-Guo |
container_volume |
52 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Dong, Yan-Yan |
doi_str_mv |
10.1007/s10853-017-1038-1 |
dewey-full |
670 |
title_sort |
$ fe_{3} $$ o_{4} $@cellulose nanocrystals nanocomposites: microwave-assisted hydrothermal synthesis, antimicrobial properties, and good adsorption of dye solution |
title_auth |
Ag$ Fe_{3} $$ O_{4} $@cellulose nanocrystals nanocomposites: microwave-assisted hydrothermal synthesis, antimicrobial properties, and good adsorption of dye solution |
abstract |
Abstract In this paper, Ag@$ Fe_{3} $$ O_{4} $@cellulose nanocrystals (CNC) nanocomposites were synthesized by a facile and green microwave-assisted hydrothermal method. In the procedure, CNC was used as a reducing agent for the synthesis of Ag. During the whole synthesis process, there were no additional reducing agents or toxic solvents used. The nanocomposites were characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray spectrum, transmission electron microscopy, thermogravimetric analysis, and differential thermal analysis. In addition, Ag@$ Fe_{3} $$ O_{4} $@CNC nanocomposites were also synthesized by microwave-assisted method and hydrothermal method. Both the effects of reaction time and synthetic procedures on the reduction process of $ Ag^{+} $ by CNC were explored. The results showed that $ Fe_{3} $$ O_{4} $ was formed with sphere-like structure and dispersed uniformly. Ag@$ Fe_{3} $$ O_{4} $@CNC nanocomposites exhibited good adsorption of dye solution, which showed potential applications in water treatment. The antibacterial results showed that Ag$ Fe_{3} $$ O_{4} $@CNC nanocomposites had good antibacterial activities toward both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The green and facile strategy reported in this paper may be broadly used in synthesizing other metal nanoparticles, as well as organic–inorganic nanocomposites. © Springer Science+Business Media New York 2017 |
abstractGer |
Abstract In this paper, Ag@$ Fe_{3} $$ O_{4} $@cellulose nanocrystals (CNC) nanocomposites were synthesized by a facile and green microwave-assisted hydrothermal method. In the procedure, CNC was used as a reducing agent for the synthesis of Ag. During the whole synthesis process, there were no additional reducing agents or toxic solvents used. The nanocomposites were characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray spectrum, transmission electron microscopy, thermogravimetric analysis, and differential thermal analysis. In addition, Ag@$ Fe_{3} $$ O_{4} $@CNC nanocomposites were also synthesized by microwave-assisted method and hydrothermal method. Both the effects of reaction time and synthetic procedures on the reduction process of $ Ag^{+} $ by CNC were explored. The results showed that $ Fe_{3} $$ O_{4} $ was formed with sphere-like structure and dispersed uniformly. Ag@$ Fe_{3} $$ O_{4} $@CNC nanocomposites exhibited good adsorption of dye solution, which showed potential applications in water treatment. The antibacterial results showed that Ag$ Fe_{3} $$ O_{4} $@CNC nanocomposites had good antibacterial activities toward both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The green and facile strategy reported in this paper may be broadly used in synthesizing other metal nanoparticles, as well as organic–inorganic nanocomposites. © Springer Science+Business Media New York 2017 |
abstract_unstemmed |
Abstract In this paper, Ag@$ Fe_{3} $$ O_{4} $@cellulose nanocrystals (CNC) nanocomposites were synthesized by a facile and green microwave-assisted hydrothermal method. In the procedure, CNC was used as a reducing agent for the synthesis of Ag. During the whole synthesis process, there were no additional reducing agents or toxic solvents used. The nanocomposites were characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray spectrum, transmission electron microscopy, thermogravimetric analysis, and differential thermal analysis. In addition, Ag@$ Fe_{3} $$ O_{4} $@CNC nanocomposites were also synthesized by microwave-assisted method and hydrothermal method. Both the effects of reaction time and synthetic procedures on the reduction process of $ Ag^{+} $ by CNC were explored. The results showed that $ Fe_{3} $$ O_{4} $ was formed with sphere-like structure and dispersed uniformly. Ag@$ Fe_{3} $$ O_{4} $@CNC nanocomposites exhibited good adsorption of dye solution, which showed potential applications in water treatment. The antibacterial results showed that Ag$ Fe_{3} $$ O_{4} $@CNC nanocomposites had good antibacterial activities toward both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The green and facile strategy reported in this paper may be broadly used in synthesizing other metal nanoparticles, as well as organic–inorganic nanocomposites. © Springer Science+Business Media New York 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_30 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 |
container_issue |
13 |
title_short |
Ag$ Fe_{3} $$ O_{4} $@cellulose nanocrystals nanocomposites: microwave-assisted hydrothermal synthesis, antimicrobial properties, and good adsorption of dye solution |
url |
https://doi.org/10.1007/s10853-017-1038-1 |
remote_bool |
false |
author2 |
Liu, Shan Liu, Yan-Jun Meng, Ling-Yan Ma, Ming-Guo |
author2Str |
Liu, Shan Liu, Yan-Jun Meng, Ling-Yan Ma, Ming-Guo |
ppnlink |
129546372 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10853-017-1038-1 |
up_date |
2024-07-04T05:03:45.449Z |
_version_ |
1803623517850173440 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046424069</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503124741.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10853-017-1038-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046424069</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10853-017-1038-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dong, Yan-Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">Ag$ Fe_{3} $$ O_{4} $@cellulose nanocrystals nanocomposites: microwave-assisted hydrothermal synthesis, antimicrobial properties, and good adsorption of dye solution</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, Ag@$ Fe_{3} $$ O_{4} $@cellulose nanocrystals (CNC) nanocomposites were synthesized by a facile and green microwave-assisted hydrothermal method. In the procedure, CNC was used as a reducing agent for the synthesis of Ag. During the whole synthesis process, there were no additional reducing agents or toxic solvents used. The nanocomposites were characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray spectrum, transmission electron microscopy, thermogravimetric analysis, and differential thermal analysis. In addition, Ag@$ Fe_{3} $$ O_{4} $@CNC nanocomposites were also synthesized by microwave-assisted method and hydrothermal method. Both the effects of reaction time and synthetic procedures on the reduction process of $ Ag^{+} $ by CNC were explored. The results showed that $ Fe_{3} $$ O_{4} $ was formed with sphere-like structure and dispersed uniformly. Ag@$ Fe_{3} $$ O_{4} $@CNC nanocomposites exhibited good adsorption of dye solution, which showed potential applications in water treatment. The antibacterial results showed that Ag$ Fe_{3} $$ O_{4} $@CNC nanocomposites had good antibacterial activities toward both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The green and facile strategy reported in this paper may be broadly used in synthesizing other metal nanoparticles, as well as organic–inorganic nanocomposites.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fe3O4</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Methylene Blue</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrothermal Method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ZnFe2O4</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CuFe2O4</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Shan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yan-Jun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meng, Ling-Yan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Ming-Guo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Springer US, 1966</subfield><subfield code="g">52(2017), 13 vom: 29. März, Seite 8219-8230</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:52</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:13</subfield><subfield code="g">day:29</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:8219-8230</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10853-017-1038-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">52</subfield><subfield code="j">2017</subfield><subfield code="e">13</subfield><subfield code="b">29</subfield><subfield code="c">03</subfield><subfield code="h">8219-8230</subfield></datafield></record></collection>
|
score |
7.4011555 |