CNT/SiC composites produced by direct matrix infiltration of self-assembled CNT sponges
Abstract Carbon nanotube-reinforced silicon carbide composites (CNT/SiC) produced by direct infiltration of matrix into a porous CNT arrays have been demonstrated to possess a unique microstructure and excellent micromechanical properties. However, the thickness of the array preforms is usually very...
Ausführliche Beschreibung
Autor*in: |
Han, Daoyang [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials science - Springer US, 1966, 52(2017), 14 vom: 21. Apr., Seite 8401-8411 |
---|---|
Übergeordnetes Werk: |
volume:52 ; year:2017 ; number:14 ; day:21 ; month:04 ; pages:8401-8411 |
Links: |
---|
DOI / URN: |
10.1007/s10853-017-1096-4 |
---|
Katalog-ID: |
OLC2046424484 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2046424484 | ||
003 | DE-627 | ||
005 | 20230508184115.0 | ||
007 | tu | ||
008 | 200820s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10853-017-1096-4 |2 doi | |
035 | |a (DE-627)OLC2046424484 | ||
035 | |a (DE-He213)s10853-017-1096-4-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Han, Daoyang |e verfasserin |4 aut | |
245 | 1 | 0 | |a CNT/SiC composites produced by direct matrix infiltration of self-assembled CNT sponges |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2017 | ||
520 | |a Abstract Carbon nanotube-reinforced silicon carbide composites (CNT/SiC) produced by direct infiltration of matrix into a porous CNT arrays have been demonstrated to possess a unique microstructure and excellent micromechanical properties. However, the thickness of the array preforms is usually very small, typically less than 2 mm. Therefore, fabrication of macroscopic centimeter-scale CNT/SiC composites by chemical vapor infiltration (CVI) process requires that the nanoscale fillers could form macroscopic architectures with an open pore network. Direct infiltration of matrix into porous CNT sponges consisting of a three-dimensional nanotube scaffold may provide a possible solution to this challenge. Here, the study reports on the fabrication of CNT/SiC composites by CVI of SiC matrix into the open pore network of CNT sponges while maintaining the original CNT network. The unique microstructure, mechanical properties, electrical conductivity, and electromagnetic shielding effectiveness of the resultant composites were systematically investigated. Energy dissipation toughening mechanism at the nanoscale such as CNT pullout is observed, and the phase composition of the fabricated materials includes β-SiC and CNTs. | ||
650 | 4 | |a Sponge | |
650 | 4 | |a Flexural Strength | |
650 | 4 | |a Chemical Vapor Infiltration | |
650 | 4 | |a Chemical Vapor Infiltration Process | |
650 | 4 | |a Catalyst Chemical Vapor Deposition | |
700 | 1 | |a Mei, Hui |4 aut | |
700 | 1 | |a Xiao, Shanshan |4 aut | |
700 | 1 | |a Xue, Wangqi |4 aut | |
700 | 1 | |a Bai, Qianglai |4 aut | |
700 | 1 | |a Cheng, Laifei |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials science |d Springer US, 1966 |g 52(2017), 14 vom: 21. Apr., Seite 8401-8411 |w (DE-627)129546372 |w (DE-600)218324-9 |w (DE-576)014996774 |x 0022-2461 |7 nnns |
773 | 1 | 8 | |g volume:52 |g year:2017 |g number:14 |g day:21 |g month:04 |g pages:8401-8411 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10853-017-1096-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 52 |j 2017 |e 14 |b 21 |c 04 |h 8401-8411 |
author_variant |
d h dh h m hm s x sx w x wx q b qb l c lc |
---|---|
matchkey_str |
article:00222461:2017----::nscopstsrdcdyietarxnitainfe |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1007/s10853-017-1096-4 doi (DE-627)OLC2046424484 (DE-He213)s10853-017-1096-4-p DE-627 ger DE-627 rakwb eng 670 VZ Han, Daoyang verfasserin aut CNT/SiC composites produced by direct matrix infiltration of self-assembled CNT sponges 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2017 Abstract Carbon nanotube-reinforced silicon carbide composites (CNT/SiC) produced by direct infiltration of matrix into a porous CNT arrays have been demonstrated to possess a unique microstructure and excellent micromechanical properties. However, the thickness of the array preforms is usually very small, typically less than 2 mm. Therefore, fabrication of macroscopic centimeter-scale CNT/SiC composites by chemical vapor infiltration (CVI) process requires that the nanoscale fillers could form macroscopic architectures with an open pore network. Direct infiltration of matrix into porous CNT sponges consisting of a three-dimensional nanotube scaffold may provide a possible solution to this challenge. Here, the study reports on the fabrication of CNT/SiC composites by CVI of SiC matrix into the open pore network of CNT sponges while maintaining the original CNT network. The unique microstructure, mechanical properties, electrical conductivity, and electromagnetic shielding effectiveness of the resultant composites were systematically investigated. Energy dissipation toughening mechanism at the nanoscale such as CNT pullout is observed, and the phase composition of the fabricated materials includes β-SiC and CNTs. Sponge Flexural Strength Chemical Vapor Infiltration Chemical Vapor Infiltration Process Catalyst Chemical Vapor Deposition Mei, Hui aut Xiao, Shanshan aut Xue, Wangqi aut Bai, Qianglai aut Cheng, Laifei aut Enthalten in Journal of materials science Springer US, 1966 52(2017), 14 vom: 21. Apr., Seite 8401-8411 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:52 year:2017 number:14 day:21 month:04 pages:8401-8411 https://doi.org/10.1007/s10853-017-1096-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 52 2017 14 21 04 8401-8411 |
spelling |
10.1007/s10853-017-1096-4 doi (DE-627)OLC2046424484 (DE-He213)s10853-017-1096-4-p DE-627 ger DE-627 rakwb eng 670 VZ Han, Daoyang verfasserin aut CNT/SiC composites produced by direct matrix infiltration of self-assembled CNT sponges 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2017 Abstract Carbon nanotube-reinforced silicon carbide composites (CNT/SiC) produced by direct infiltration of matrix into a porous CNT arrays have been demonstrated to possess a unique microstructure and excellent micromechanical properties. However, the thickness of the array preforms is usually very small, typically less than 2 mm. Therefore, fabrication of macroscopic centimeter-scale CNT/SiC composites by chemical vapor infiltration (CVI) process requires that the nanoscale fillers could form macroscopic architectures with an open pore network. Direct infiltration of matrix into porous CNT sponges consisting of a three-dimensional nanotube scaffold may provide a possible solution to this challenge. Here, the study reports on the fabrication of CNT/SiC composites by CVI of SiC matrix into the open pore network of CNT sponges while maintaining the original CNT network. The unique microstructure, mechanical properties, electrical conductivity, and electromagnetic shielding effectiveness of the resultant composites were systematically investigated. Energy dissipation toughening mechanism at the nanoscale such as CNT pullout is observed, and the phase composition of the fabricated materials includes β-SiC and CNTs. Sponge Flexural Strength Chemical Vapor Infiltration Chemical Vapor Infiltration Process Catalyst Chemical Vapor Deposition Mei, Hui aut Xiao, Shanshan aut Xue, Wangqi aut Bai, Qianglai aut Cheng, Laifei aut Enthalten in Journal of materials science Springer US, 1966 52(2017), 14 vom: 21. Apr., Seite 8401-8411 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:52 year:2017 number:14 day:21 month:04 pages:8401-8411 https://doi.org/10.1007/s10853-017-1096-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 52 2017 14 21 04 8401-8411 |
allfields_unstemmed |
10.1007/s10853-017-1096-4 doi (DE-627)OLC2046424484 (DE-He213)s10853-017-1096-4-p DE-627 ger DE-627 rakwb eng 670 VZ Han, Daoyang verfasserin aut CNT/SiC composites produced by direct matrix infiltration of self-assembled CNT sponges 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2017 Abstract Carbon nanotube-reinforced silicon carbide composites (CNT/SiC) produced by direct infiltration of matrix into a porous CNT arrays have been demonstrated to possess a unique microstructure and excellent micromechanical properties. However, the thickness of the array preforms is usually very small, typically less than 2 mm. Therefore, fabrication of macroscopic centimeter-scale CNT/SiC composites by chemical vapor infiltration (CVI) process requires that the nanoscale fillers could form macroscopic architectures with an open pore network. Direct infiltration of matrix into porous CNT sponges consisting of a three-dimensional nanotube scaffold may provide a possible solution to this challenge. Here, the study reports on the fabrication of CNT/SiC composites by CVI of SiC matrix into the open pore network of CNT sponges while maintaining the original CNT network. The unique microstructure, mechanical properties, electrical conductivity, and electromagnetic shielding effectiveness of the resultant composites were systematically investigated. Energy dissipation toughening mechanism at the nanoscale such as CNT pullout is observed, and the phase composition of the fabricated materials includes β-SiC and CNTs. Sponge Flexural Strength Chemical Vapor Infiltration Chemical Vapor Infiltration Process Catalyst Chemical Vapor Deposition Mei, Hui aut Xiao, Shanshan aut Xue, Wangqi aut Bai, Qianglai aut Cheng, Laifei aut Enthalten in Journal of materials science Springer US, 1966 52(2017), 14 vom: 21. Apr., Seite 8401-8411 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:52 year:2017 number:14 day:21 month:04 pages:8401-8411 https://doi.org/10.1007/s10853-017-1096-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 52 2017 14 21 04 8401-8411 |
allfieldsGer |
10.1007/s10853-017-1096-4 doi (DE-627)OLC2046424484 (DE-He213)s10853-017-1096-4-p DE-627 ger DE-627 rakwb eng 670 VZ Han, Daoyang verfasserin aut CNT/SiC composites produced by direct matrix infiltration of self-assembled CNT sponges 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2017 Abstract Carbon nanotube-reinforced silicon carbide composites (CNT/SiC) produced by direct infiltration of matrix into a porous CNT arrays have been demonstrated to possess a unique microstructure and excellent micromechanical properties. However, the thickness of the array preforms is usually very small, typically less than 2 mm. Therefore, fabrication of macroscopic centimeter-scale CNT/SiC composites by chemical vapor infiltration (CVI) process requires that the nanoscale fillers could form macroscopic architectures with an open pore network. Direct infiltration of matrix into porous CNT sponges consisting of a three-dimensional nanotube scaffold may provide a possible solution to this challenge. Here, the study reports on the fabrication of CNT/SiC composites by CVI of SiC matrix into the open pore network of CNT sponges while maintaining the original CNT network. The unique microstructure, mechanical properties, electrical conductivity, and electromagnetic shielding effectiveness of the resultant composites were systematically investigated. Energy dissipation toughening mechanism at the nanoscale such as CNT pullout is observed, and the phase composition of the fabricated materials includes β-SiC and CNTs. Sponge Flexural Strength Chemical Vapor Infiltration Chemical Vapor Infiltration Process Catalyst Chemical Vapor Deposition Mei, Hui aut Xiao, Shanshan aut Xue, Wangqi aut Bai, Qianglai aut Cheng, Laifei aut Enthalten in Journal of materials science Springer US, 1966 52(2017), 14 vom: 21. Apr., Seite 8401-8411 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:52 year:2017 number:14 day:21 month:04 pages:8401-8411 https://doi.org/10.1007/s10853-017-1096-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 52 2017 14 21 04 8401-8411 |
allfieldsSound |
10.1007/s10853-017-1096-4 doi (DE-627)OLC2046424484 (DE-He213)s10853-017-1096-4-p DE-627 ger DE-627 rakwb eng 670 VZ Han, Daoyang verfasserin aut CNT/SiC composites produced by direct matrix infiltration of self-assembled CNT sponges 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2017 Abstract Carbon nanotube-reinforced silicon carbide composites (CNT/SiC) produced by direct infiltration of matrix into a porous CNT arrays have been demonstrated to possess a unique microstructure and excellent micromechanical properties. However, the thickness of the array preforms is usually very small, typically less than 2 mm. Therefore, fabrication of macroscopic centimeter-scale CNT/SiC composites by chemical vapor infiltration (CVI) process requires that the nanoscale fillers could form macroscopic architectures with an open pore network. Direct infiltration of matrix into porous CNT sponges consisting of a three-dimensional nanotube scaffold may provide a possible solution to this challenge. Here, the study reports on the fabrication of CNT/SiC composites by CVI of SiC matrix into the open pore network of CNT sponges while maintaining the original CNT network. The unique microstructure, mechanical properties, electrical conductivity, and electromagnetic shielding effectiveness of the resultant composites were systematically investigated. Energy dissipation toughening mechanism at the nanoscale such as CNT pullout is observed, and the phase composition of the fabricated materials includes β-SiC and CNTs. Sponge Flexural Strength Chemical Vapor Infiltration Chemical Vapor Infiltration Process Catalyst Chemical Vapor Deposition Mei, Hui aut Xiao, Shanshan aut Xue, Wangqi aut Bai, Qianglai aut Cheng, Laifei aut Enthalten in Journal of materials science Springer US, 1966 52(2017), 14 vom: 21. Apr., Seite 8401-8411 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:52 year:2017 number:14 day:21 month:04 pages:8401-8411 https://doi.org/10.1007/s10853-017-1096-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 52 2017 14 21 04 8401-8411 |
language |
English |
source |
Enthalten in Journal of materials science 52(2017), 14 vom: 21. Apr., Seite 8401-8411 volume:52 year:2017 number:14 day:21 month:04 pages:8401-8411 |
sourceStr |
Enthalten in Journal of materials science 52(2017), 14 vom: 21. Apr., Seite 8401-8411 volume:52 year:2017 number:14 day:21 month:04 pages:8401-8411 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Sponge Flexural Strength Chemical Vapor Infiltration Chemical Vapor Infiltration Process Catalyst Chemical Vapor Deposition |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of materials science |
authorswithroles_txt_mv |
Han, Daoyang @@aut@@ Mei, Hui @@aut@@ Xiao, Shanshan @@aut@@ Xue, Wangqi @@aut@@ Bai, Qianglai @@aut@@ Cheng, Laifei @@aut@@ |
publishDateDaySort_date |
2017-04-21T00:00:00Z |
hierarchy_top_id |
129546372 |
dewey-sort |
3670 |
id |
OLC2046424484 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046424484</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230508184115.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10853-017-1096-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046424484</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10853-017-1096-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Han, Daoyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">CNT/SiC composites produced by direct matrix infiltration of self-assembled CNT sponges</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Carbon nanotube-reinforced silicon carbide composites (CNT/SiC) produced by direct infiltration of matrix into a porous CNT arrays have been demonstrated to possess a unique microstructure and excellent micromechanical properties. However, the thickness of the array preforms is usually very small, typically less than 2 mm. Therefore, fabrication of macroscopic centimeter-scale CNT/SiC composites by chemical vapor infiltration (CVI) process requires that the nanoscale fillers could form macroscopic architectures with an open pore network. Direct infiltration of matrix into porous CNT sponges consisting of a three-dimensional nanotube scaffold may provide a possible solution to this challenge. Here, the study reports on the fabrication of CNT/SiC composites by CVI of SiC matrix into the open pore network of CNT sponges while maintaining the original CNT network. The unique microstructure, mechanical properties, electrical conductivity, and electromagnetic shielding effectiveness of the resultant composites were systematically investigated. Energy dissipation toughening mechanism at the nanoscale such as CNT pullout is observed, and the phase composition of the fabricated materials includes β-SiC and CNTs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sponge</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flexural Strength</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical Vapor Infiltration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical Vapor Infiltration Process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Catalyst Chemical Vapor Deposition</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mei, Hui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiao, Shanshan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xue, Wangqi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bai, Qianglai</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Laifei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Springer US, 1966</subfield><subfield code="g">52(2017), 14 vom: 21. Apr., Seite 8401-8411</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:52</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:14</subfield><subfield code="g">day:21</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:8401-8411</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10853-017-1096-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">52</subfield><subfield code="j">2017</subfield><subfield code="e">14</subfield><subfield code="b">21</subfield><subfield code="c">04</subfield><subfield code="h">8401-8411</subfield></datafield></record></collection>
|
author |
Han, Daoyang |
spellingShingle |
Han, Daoyang ddc 670 misc Sponge misc Flexural Strength misc Chemical Vapor Infiltration misc Chemical Vapor Infiltration Process misc Catalyst Chemical Vapor Deposition CNT/SiC composites produced by direct matrix infiltration of self-assembled CNT sponges |
authorStr |
Han, Daoyang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129546372 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-2461 |
topic_title |
670 VZ CNT/SiC composites produced by direct matrix infiltration of self-assembled CNT sponges Sponge Flexural Strength Chemical Vapor Infiltration Chemical Vapor Infiltration Process Catalyst Chemical Vapor Deposition |
topic |
ddc 670 misc Sponge misc Flexural Strength misc Chemical Vapor Infiltration misc Chemical Vapor Infiltration Process misc Catalyst Chemical Vapor Deposition |
topic_unstemmed |
ddc 670 misc Sponge misc Flexural Strength misc Chemical Vapor Infiltration misc Chemical Vapor Infiltration Process misc Catalyst Chemical Vapor Deposition |
topic_browse |
ddc 670 misc Sponge misc Flexural Strength misc Chemical Vapor Infiltration misc Chemical Vapor Infiltration Process misc Catalyst Chemical Vapor Deposition |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials science |
hierarchy_parent_id |
129546372 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of materials science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 |
title |
CNT/SiC composites produced by direct matrix infiltration of self-assembled CNT sponges |
ctrlnum |
(DE-627)OLC2046424484 (DE-He213)s10853-017-1096-4-p |
title_full |
CNT/SiC composites produced by direct matrix infiltration of self-assembled CNT sponges |
author_sort |
Han, Daoyang |
journal |
Journal of materials science |
journalStr |
Journal of materials science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
8401 |
author_browse |
Han, Daoyang Mei, Hui Xiao, Shanshan Xue, Wangqi Bai, Qianglai Cheng, Laifei |
container_volume |
52 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Han, Daoyang |
doi_str_mv |
10.1007/s10853-017-1096-4 |
dewey-full |
670 |
title_sort |
cnt/sic composites produced by direct matrix infiltration of self-assembled cnt sponges |
title_auth |
CNT/SiC composites produced by direct matrix infiltration of self-assembled CNT sponges |
abstract |
Abstract Carbon nanotube-reinforced silicon carbide composites (CNT/SiC) produced by direct infiltration of matrix into a porous CNT arrays have been demonstrated to possess a unique microstructure and excellent micromechanical properties. However, the thickness of the array preforms is usually very small, typically less than 2 mm. Therefore, fabrication of macroscopic centimeter-scale CNT/SiC composites by chemical vapor infiltration (CVI) process requires that the nanoscale fillers could form macroscopic architectures with an open pore network. Direct infiltration of matrix into porous CNT sponges consisting of a three-dimensional nanotube scaffold may provide a possible solution to this challenge. Here, the study reports on the fabrication of CNT/SiC composites by CVI of SiC matrix into the open pore network of CNT sponges while maintaining the original CNT network. The unique microstructure, mechanical properties, electrical conductivity, and electromagnetic shielding effectiveness of the resultant composites were systematically investigated. Energy dissipation toughening mechanism at the nanoscale such as CNT pullout is observed, and the phase composition of the fabricated materials includes β-SiC and CNTs. © Springer Science+Business Media New York 2017 |
abstractGer |
Abstract Carbon nanotube-reinforced silicon carbide composites (CNT/SiC) produced by direct infiltration of matrix into a porous CNT arrays have been demonstrated to possess a unique microstructure and excellent micromechanical properties. However, the thickness of the array preforms is usually very small, typically less than 2 mm. Therefore, fabrication of macroscopic centimeter-scale CNT/SiC composites by chemical vapor infiltration (CVI) process requires that the nanoscale fillers could form macroscopic architectures with an open pore network. Direct infiltration of matrix into porous CNT sponges consisting of a three-dimensional nanotube scaffold may provide a possible solution to this challenge. Here, the study reports on the fabrication of CNT/SiC composites by CVI of SiC matrix into the open pore network of CNT sponges while maintaining the original CNT network. The unique microstructure, mechanical properties, electrical conductivity, and electromagnetic shielding effectiveness of the resultant composites were systematically investigated. Energy dissipation toughening mechanism at the nanoscale such as CNT pullout is observed, and the phase composition of the fabricated materials includes β-SiC and CNTs. © Springer Science+Business Media New York 2017 |
abstract_unstemmed |
Abstract Carbon nanotube-reinforced silicon carbide composites (CNT/SiC) produced by direct infiltration of matrix into a porous CNT arrays have been demonstrated to possess a unique microstructure and excellent micromechanical properties. However, the thickness of the array preforms is usually very small, typically less than 2 mm. Therefore, fabrication of macroscopic centimeter-scale CNT/SiC composites by chemical vapor infiltration (CVI) process requires that the nanoscale fillers could form macroscopic architectures with an open pore network. Direct infiltration of matrix into porous CNT sponges consisting of a three-dimensional nanotube scaffold may provide a possible solution to this challenge. Here, the study reports on the fabrication of CNT/SiC composites by CVI of SiC matrix into the open pore network of CNT sponges while maintaining the original CNT network. The unique microstructure, mechanical properties, electrical conductivity, and electromagnetic shielding effectiveness of the resultant composites were systematically investigated. Energy dissipation toughening mechanism at the nanoscale such as CNT pullout is observed, and the phase composition of the fabricated materials includes β-SiC and CNTs. © Springer Science+Business Media New York 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 |
container_issue |
14 |
title_short |
CNT/SiC composites produced by direct matrix infiltration of self-assembled CNT sponges |
url |
https://doi.org/10.1007/s10853-017-1096-4 |
remote_bool |
false |
author2 |
Mei, Hui Xiao, Shanshan Xue, Wangqi Bai, Qianglai Cheng, Laifei |
author2Str |
Mei, Hui Xiao, Shanshan Xue, Wangqi Bai, Qianglai Cheng, Laifei |
ppnlink |
129546372 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10853-017-1096-4 |
up_date |
2024-07-04T05:03:49.611Z |
_version_ |
1803623522213298176 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046424484</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230508184115.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10853-017-1096-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046424484</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10853-017-1096-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Han, Daoyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">CNT/SiC composites produced by direct matrix infiltration of self-assembled CNT sponges</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Carbon nanotube-reinforced silicon carbide composites (CNT/SiC) produced by direct infiltration of matrix into a porous CNT arrays have been demonstrated to possess a unique microstructure and excellent micromechanical properties. However, the thickness of the array preforms is usually very small, typically less than 2 mm. Therefore, fabrication of macroscopic centimeter-scale CNT/SiC composites by chemical vapor infiltration (CVI) process requires that the nanoscale fillers could form macroscopic architectures with an open pore network. Direct infiltration of matrix into porous CNT sponges consisting of a three-dimensional nanotube scaffold may provide a possible solution to this challenge. Here, the study reports on the fabrication of CNT/SiC composites by CVI of SiC matrix into the open pore network of CNT sponges while maintaining the original CNT network. The unique microstructure, mechanical properties, electrical conductivity, and electromagnetic shielding effectiveness of the resultant composites were systematically investigated. Energy dissipation toughening mechanism at the nanoscale such as CNT pullout is observed, and the phase composition of the fabricated materials includes β-SiC and CNTs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sponge</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flexural Strength</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical Vapor Infiltration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical Vapor Infiltration Process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Catalyst Chemical Vapor Deposition</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mei, Hui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiao, Shanshan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xue, Wangqi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bai, Qianglai</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Laifei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Springer US, 1966</subfield><subfield code="g">52(2017), 14 vom: 21. Apr., Seite 8401-8411</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:52</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:14</subfield><subfield code="g">day:21</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:8401-8411</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10853-017-1096-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">52</subfield><subfield code="j">2017</subfield><subfield code="e">14</subfield><subfield code="b">21</subfield><subfield code="c">04</subfield><subfield code="h">8401-8411</subfield></datafield></record></collection>
|
score |
7.4016 |