Branched sulfonated polyimide/functionalized silicon carbide composite membranes with improved chemical stabilities and proton selectivities for vanadium redox flow battery application
Abstract Silicon carbide (SiC) was pretreated and functionalized by using α, ω-diaminopropyl polydimethylsiloxane (PDMS) to obtain a novel inorganic filler SiC (PDMS). Then, a series of branched sulfonated polyimide/SiC (PDMS) (bSPI/SiC (PDMS)) composite membranes with different contents of SiC (PDM...
Ausführliche Beschreibung
Autor*in: |
Zhang, Yaping [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials science - Springer US, 1966, 53(2018), 20 vom: 25. Juni, Seite 14506-14524 |
---|---|
Übergeordnetes Werk: |
volume:53 ; year:2018 ; number:20 ; day:25 ; month:06 ; pages:14506-14524 |
Links: |
---|
DOI / URN: |
10.1007/s10853-018-2620-x |
---|
Katalog-ID: |
OLC2046440285 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2046440285 | ||
003 | DE-627 | ||
005 | 20230503124930.0 | ||
007 | tu | ||
008 | 200820s2018 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10853-018-2620-x |2 doi | |
035 | |a (DE-627)OLC2046440285 | ||
035 | |a (DE-He213)s10853-018-2620-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Zhang, Yaping |e verfasserin |0 (orcid)0000-0001-9829-8957 |4 aut | |
245 | 1 | 0 | |a Branched sulfonated polyimide/functionalized silicon carbide composite membranes with improved chemical stabilities and proton selectivities for vanadium redox flow battery application |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2018 | ||
520 | |a Abstract Silicon carbide (SiC) was pretreated and functionalized by using α, ω-diaminopropyl polydimethylsiloxane (PDMS) to obtain a novel inorganic filler SiC (PDMS). Then, a series of branched sulfonated polyimide/SiC (PDMS) (bSPI/SiC (PDMS)) composite membranes with different contents of SiC (PDMS) were fabricated for vanadium redox flow battery (VRFB) application. Fourier transform infrared spectra, X-ray diffraction, and field emission scanning electron microscope demonstrate the successful preparation of SiC (PDMS) and bSPI/SiC (PDMS) membranes. The thermogravimetric analysis shows that bSPI/SiC (PDMS)-1.5% membrane has better thermal stability than pure bSPI, bSPI/SiC-1.5%, and Nafion 117 membranes. The ex situ chemical stability test results show that bSPI/SiC (PDMS)-0.5–2.5% composite membranes have better chemical stabilities than pure bSPI membrane. The physicochemical properties of bSPI/SiC (PDMS) membranes, including water uptake, swelling ratio, ion exchange capacity are investigated. Thereinto, bSPI/SiC (PDMS)-1.5% membrane has the highest proton selectivity (S: 2.99 × $ 10^{5} $ S min $ cm^{−3} $) and was chosen as an optimum VRFB membrane. And the VRFB assembled with bSPI/SiC (PDMS)-1.5% membrane exhibits better battery performance than that assembled with Nafion 117 membrane during 500-time cyclic charge–discharge test at 20–60 mA $ cm^{−2} $. Above results indicate that as-optimized bSPI/SiC (PDMS)-1.5% membrane has great potential for VRFB application. | ||
700 | 1 | |a Pu, Yang |4 aut | |
700 | 1 | |a Yang, Pan |4 aut | |
700 | 1 | |a Yang, Hongyan |4 aut | |
700 | 1 | |a Xuan, Sensen |4 aut | |
700 | 1 | |a Long, Jun |4 aut | |
700 | 1 | |a Wang, Yanlin |4 aut | |
700 | 1 | |a Zhang, Hongping |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials science |d Springer US, 1966 |g 53(2018), 20 vom: 25. Juni, Seite 14506-14524 |w (DE-627)129546372 |w (DE-600)218324-9 |w (DE-576)014996774 |x 0022-2461 |7 nnns |
773 | 1 | 8 | |g volume:53 |g year:2018 |g number:20 |g day:25 |g month:06 |g pages:14506-14524 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10853-018-2620-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
951 | |a AR | ||
952 | |d 53 |j 2018 |e 20 |b 25 |c 06 |h 14506-14524 |
author_variant |
y z yz y p yp p y py h y hy s x sx j l jl y w yw h z hz |
---|---|
matchkey_str |
article:00222461:2018----::rnhdufntdoymdfntoaieslcnabdcmoieebaewtipoeceiasaiiisnpooslcii |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1007/s10853-018-2620-x doi (DE-627)OLC2046440285 (DE-He213)s10853-018-2620-x-p DE-627 ger DE-627 rakwb eng 670 VZ Zhang, Yaping verfasserin (orcid)0000-0001-9829-8957 aut Branched sulfonated polyimide/functionalized silicon carbide composite membranes with improved chemical stabilities and proton selectivities for vanadium redox flow battery application 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Silicon carbide (SiC) was pretreated and functionalized by using α, ω-diaminopropyl polydimethylsiloxane (PDMS) to obtain a novel inorganic filler SiC (PDMS). Then, a series of branched sulfonated polyimide/SiC (PDMS) (bSPI/SiC (PDMS)) composite membranes with different contents of SiC (PDMS) were fabricated for vanadium redox flow battery (VRFB) application. Fourier transform infrared spectra, X-ray diffraction, and field emission scanning electron microscope demonstrate the successful preparation of SiC (PDMS) and bSPI/SiC (PDMS) membranes. The thermogravimetric analysis shows that bSPI/SiC (PDMS)-1.5% membrane has better thermal stability than pure bSPI, bSPI/SiC-1.5%, and Nafion 117 membranes. The ex situ chemical stability test results show that bSPI/SiC (PDMS)-0.5–2.5% composite membranes have better chemical stabilities than pure bSPI membrane. The physicochemical properties of bSPI/SiC (PDMS) membranes, including water uptake, swelling ratio, ion exchange capacity are investigated. Thereinto, bSPI/SiC (PDMS)-1.5% membrane has the highest proton selectivity (S: 2.99 × $ 10^{5} $ S min $ cm^{−3} $) and was chosen as an optimum VRFB membrane. And the VRFB assembled with bSPI/SiC (PDMS)-1.5% membrane exhibits better battery performance than that assembled with Nafion 117 membrane during 500-time cyclic charge–discharge test at 20–60 mA $ cm^{−2} $. Above results indicate that as-optimized bSPI/SiC (PDMS)-1.5% membrane has great potential for VRFB application. Pu, Yang aut Yang, Pan aut Yang, Hongyan aut Xuan, Sensen aut Long, Jun aut Wang, Yanlin aut Zhang, Hongping aut Enthalten in Journal of materials science Springer US, 1966 53(2018), 20 vom: 25. Juni, Seite 14506-14524 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:53 year:2018 number:20 day:25 month:06 pages:14506-14524 https://doi.org/10.1007/s10853-018-2620-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2004 AR 53 2018 20 25 06 14506-14524 |
spelling |
10.1007/s10853-018-2620-x doi (DE-627)OLC2046440285 (DE-He213)s10853-018-2620-x-p DE-627 ger DE-627 rakwb eng 670 VZ Zhang, Yaping verfasserin (orcid)0000-0001-9829-8957 aut Branched sulfonated polyimide/functionalized silicon carbide composite membranes with improved chemical stabilities and proton selectivities for vanadium redox flow battery application 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Silicon carbide (SiC) was pretreated and functionalized by using α, ω-diaminopropyl polydimethylsiloxane (PDMS) to obtain a novel inorganic filler SiC (PDMS). Then, a series of branched sulfonated polyimide/SiC (PDMS) (bSPI/SiC (PDMS)) composite membranes with different contents of SiC (PDMS) were fabricated for vanadium redox flow battery (VRFB) application. Fourier transform infrared spectra, X-ray diffraction, and field emission scanning electron microscope demonstrate the successful preparation of SiC (PDMS) and bSPI/SiC (PDMS) membranes. The thermogravimetric analysis shows that bSPI/SiC (PDMS)-1.5% membrane has better thermal stability than pure bSPI, bSPI/SiC-1.5%, and Nafion 117 membranes. The ex situ chemical stability test results show that bSPI/SiC (PDMS)-0.5–2.5% composite membranes have better chemical stabilities than pure bSPI membrane. The physicochemical properties of bSPI/SiC (PDMS) membranes, including water uptake, swelling ratio, ion exchange capacity are investigated. Thereinto, bSPI/SiC (PDMS)-1.5% membrane has the highest proton selectivity (S: 2.99 × $ 10^{5} $ S min $ cm^{−3} $) and was chosen as an optimum VRFB membrane. And the VRFB assembled with bSPI/SiC (PDMS)-1.5% membrane exhibits better battery performance than that assembled with Nafion 117 membrane during 500-time cyclic charge–discharge test at 20–60 mA $ cm^{−2} $. Above results indicate that as-optimized bSPI/SiC (PDMS)-1.5% membrane has great potential for VRFB application. Pu, Yang aut Yang, Pan aut Yang, Hongyan aut Xuan, Sensen aut Long, Jun aut Wang, Yanlin aut Zhang, Hongping aut Enthalten in Journal of materials science Springer US, 1966 53(2018), 20 vom: 25. Juni, Seite 14506-14524 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:53 year:2018 number:20 day:25 month:06 pages:14506-14524 https://doi.org/10.1007/s10853-018-2620-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2004 AR 53 2018 20 25 06 14506-14524 |
allfields_unstemmed |
10.1007/s10853-018-2620-x doi (DE-627)OLC2046440285 (DE-He213)s10853-018-2620-x-p DE-627 ger DE-627 rakwb eng 670 VZ Zhang, Yaping verfasserin (orcid)0000-0001-9829-8957 aut Branched sulfonated polyimide/functionalized silicon carbide composite membranes with improved chemical stabilities and proton selectivities for vanadium redox flow battery application 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Silicon carbide (SiC) was pretreated and functionalized by using α, ω-diaminopropyl polydimethylsiloxane (PDMS) to obtain a novel inorganic filler SiC (PDMS). Then, a series of branched sulfonated polyimide/SiC (PDMS) (bSPI/SiC (PDMS)) composite membranes with different contents of SiC (PDMS) were fabricated for vanadium redox flow battery (VRFB) application. Fourier transform infrared spectra, X-ray diffraction, and field emission scanning electron microscope demonstrate the successful preparation of SiC (PDMS) and bSPI/SiC (PDMS) membranes. The thermogravimetric analysis shows that bSPI/SiC (PDMS)-1.5% membrane has better thermal stability than pure bSPI, bSPI/SiC-1.5%, and Nafion 117 membranes. The ex situ chemical stability test results show that bSPI/SiC (PDMS)-0.5–2.5% composite membranes have better chemical stabilities than pure bSPI membrane. The physicochemical properties of bSPI/SiC (PDMS) membranes, including water uptake, swelling ratio, ion exchange capacity are investigated. Thereinto, bSPI/SiC (PDMS)-1.5% membrane has the highest proton selectivity (S: 2.99 × $ 10^{5} $ S min $ cm^{−3} $) and was chosen as an optimum VRFB membrane. And the VRFB assembled with bSPI/SiC (PDMS)-1.5% membrane exhibits better battery performance than that assembled with Nafion 117 membrane during 500-time cyclic charge–discharge test at 20–60 mA $ cm^{−2} $. Above results indicate that as-optimized bSPI/SiC (PDMS)-1.5% membrane has great potential for VRFB application. Pu, Yang aut Yang, Pan aut Yang, Hongyan aut Xuan, Sensen aut Long, Jun aut Wang, Yanlin aut Zhang, Hongping aut Enthalten in Journal of materials science Springer US, 1966 53(2018), 20 vom: 25. Juni, Seite 14506-14524 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:53 year:2018 number:20 day:25 month:06 pages:14506-14524 https://doi.org/10.1007/s10853-018-2620-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2004 AR 53 2018 20 25 06 14506-14524 |
allfieldsGer |
10.1007/s10853-018-2620-x doi (DE-627)OLC2046440285 (DE-He213)s10853-018-2620-x-p DE-627 ger DE-627 rakwb eng 670 VZ Zhang, Yaping verfasserin (orcid)0000-0001-9829-8957 aut Branched sulfonated polyimide/functionalized silicon carbide composite membranes with improved chemical stabilities and proton selectivities for vanadium redox flow battery application 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Silicon carbide (SiC) was pretreated and functionalized by using α, ω-diaminopropyl polydimethylsiloxane (PDMS) to obtain a novel inorganic filler SiC (PDMS). Then, a series of branched sulfonated polyimide/SiC (PDMS) (bSPI/SiC (PDMS)) composite membranes with different contents of SiC (PDMS) were fabricated for vanadium redox flow battery (VRFB) application. Fourier transform infrared spectra, X-ray diffraction, and field emission scanning electron microscope demonstrate the successful preparation of SiC (PDMS) and bSPI/SiC (PDMS) membranes. The thermogravimetric analysis shows that bSPI/SiC (PDMS)-1.5% membrane has better thermal stability than pure bSPI, bSPI/SiC-1.5%, and Nafion 117 membranes. The ex situ chemical stability test results show that bSPI/SiC (PDMS)-0.5–2.5% composite membranes have better chemical stabilities than pure bSPI membrane. The physicochemical properties of bSPI/SiC (PDMS) membranes, including water uptake, swelling ratio, ion exchange capacity are investigated. Thereinto, bSPI/SiC (PDMS)-1.5% membrane has the highest proton selectivity (S: 2.99 × $ 10^{5} $ S min $ cm^{−3} $) and was chosen as an optimum VRFB membrane. And the VRFB assembled with bSPI/SiC (PDMS)-1.5% membrane exhibits better battery performance than that assembled with Nafion 117 membrane during 500-time cyclic charge–discharge test at 20–60 mA $ cm^{−2} $. Above results indicate that as-optimized bSPI/SiC (PDMS)-1.5% membrane has great potential for VRFB application. Pu, Yang aut Yang, Pan aut Yang, Hongyan aut Xuan, Sensen aut Long, Jun aut Wang, Yanlin aut Zhang, Hongping aut Enthalten in Journal of materials science Springer US, 1966 53(2018), 20 vom: 25. Juni, Seite 14506-14524 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:53 year:2018 number:20 day:25 month:06 pages:14506-14524 https://doi.org/10.1007/s10853-018-2620-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2004 AR 53 2018 20 25 06 14506-14524 |
allfieldsSound |
10.1007/s10853-018-2620-x doi (DE-627)OLC2046440285 (DE-He213)s10853-018-2620-x-p DE-627 ger DE-627 rakwb eng 670 VZ Zhang, Yaping verfasserin (orcid)0000-0001-9829-8957 aut Branched sulfonated polyimide/functionalized silicon carbide composite membranes with improved chemical stabilities and proton selectivities for vanadium redox flow battery application 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Silicon carbide (SiC) was pretreated and functionalized by using α, ω-diaminopropyl polydimethylsiloxane (PDMS) to obtain a novel inorganic filler SiC (PDMS). Then, a series of branched sulfonated polyimide/SiC (PDMS) (bSPI/SiC (PDMS)) composite membranes with different contents of SiC (PDMS) were fabricated for vanadium redox flow battery (VRFB) application. Fourier transform infrared spectra, X-ray diffraction, and field emission scanning electron microscope demonstrate the successful preparation of SiC (PDMS) and bSPI/SiC (PDMS) membranes. The thermogravimetric analysis shows that bSPI/SiC (PDMS)-1.5% membrane has better thermal stability than pure bSPI, bSPI/SiC-1.5%, and Nafion 117 membranes. The ex situ chemical stability test results show that bSPI/SiC (PDMS)-0.5–2.5% composite membranes have better chemical stabilities than pure bSPI membrane. The physicochemical properties of bSPI/SiC (PDMS) membranes, including water uptake, swelling ratio, ion exchange capacity are investigated. Thereinto, bSPI/SiC (PDMS)-1.5% membrane has the highest proton selectivity (S: 2.99 × $ 10^{5} $ S min $ cm^{−3} $) and was chosen as an optimum VRFB membrane. And the VRFB assembled with bSPI/SiC (PDMS)-1.5% membrane exhibits better battery performance than that assembled with Nafion 117 membrane during 500-time cyclic charge–discharge test at 20–60 mA $ cm^{−2} $. Above results indicate that as-optimized bSPI/SiC (PDMS)-1.5% membrane has great potential for VRFB application. Pu, Yang aut Yang, Pan aut Yang, Hongyan aut Xuan, Sensen aut Long, Jun aut Wang, Yanlin aut Zhang, Hongping aut Enthalten in Journal of materials science Springer US, 1966 53(2018), 20 vom: 25. Juni, Seite 14506-14524 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:53 year:2018 number:20 day:25 month:06 pages:14506-14524 https://doi.org/10.1007/s10853-018-2620-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2004 AR 53 2018 20 25 06 14506-14524 |
language |
English |
source |
Enthalten in Journal of materials science 53(2018), 20 vom: 25. Juni, Seite 14506-14524 volume:53 year:2018 number:20 day:25 month:06 pages:14506-14524 |
sourceStr |
Enthalten in Journal of materials science 53(2018), 20 vom: 25. Juni, Seite 14506-14524 volume:53 year:2018 number:20 day:25 month:06 pages:14506-14524 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of materials science |
authorswithroles_txt_mv |
Zhang, Yaping @@aut@@ Pu, Yang @@aut@@ Yang, Pan @@aut@@ Yang, Hongyan @@aut@@ Xuan, Sensen @@aut@@ Long, Jun @@aut@@ Wang, Yanlin @@aut@@ Zhang, Hongping @@aut@@ |
publishDateDaySort_date |
2018-06-25T00:00:00Z |
hierarchy_top_id |
129546372 |
dewey-sort |
3670 |
id |
OLC2046440285 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046440285</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503124930.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10853-018-2620-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046440285</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10853-018-2620-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Yaping</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9829-8957</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Branched sulfonated polyimide/functionalized silicon carbide composite membranes with improved chemical stabilities and proton selectivities for vanadium redox flow battery application</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Silicon carbide (SiC) was pretreated and functionalized by using α, ω-diaminopropyl polydimethylsiloxane (PDMS) to obtain a novel inorganic filler SiC (PDMS). Then, a series of branched sulfonated polyimide/SiC (PDMS) (bSPI/SiC (PDMS)) composite membranes with different contents of SiC (PDMS) were fabricated for vanadium redox flow battery (VRFB) application. Fourier transform infrared spectra, X-ray diffraction, and field emission scanning electron microscope demonstrate the successful preparation of SiC (PDMS) and bSPI/SiC (PDMS) membranes. The thermogravimetric analysis shows that bSPI/SiC (PDMS)-1.5% membrane has better thermal stability than pure bSPI, bSPI/SiC-1.5%, and Nafion 117 membranes. The ex situ chemical stability test results show that bSPI/SiC (PDMS)-0.5–2.5% composite membranes have better chemical stabilities than pure bSPI membrane. The physicochemical properties of bSPI/SiC (PDMS) membranes, including water uptake, swelling ratio, ion exchange capacity are investigated. Thereinto, bSPI/SiC (PDMS)-1.5% membrane has the highest proton selectivity (S: 2.99 × $ 10^{5} $ S min $ cm^{−3} $) and was chosen as an optimum VRFB membrane. And the VRFB assembled with bSPI/SiC (PDMS)-1.5% membrane exhibits better battery performance than that assembled with Nafion 117 membrane during 500-time cyclic charge–discharge test at 20–60 mA $ cm^{−2} $. Above results indicate that as-optimized bSPI/SiC (PDMS)-1.5% membrane has great potential for VRFB application.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pu, Yang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Pan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Hongyan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xuan, Sensen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Long, Jun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yanlin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Hongping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Springer US, 1966</subfield><subfield code="g">53(2018), 20 vom: 25. Juni, Seite 14506-14524</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:53</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:20</subfield><subfield code="g">day:25</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:14506-14524</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10853-018-2620-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">53</subfield><subfield code="j">2018</subfield><subfield code="e">20</subfield><subfield code="b">25</subfield><subfield code="c">06</subfield><subfield code="h">14506-14524</subfield></datafield></record></collection>
|
author |
Zhang, Yaping |
spellingShingle |
Zhang, Yaping ddc 670 Branched sulfonated polyimide/functionalized silicon carbide composite membranes with improved chemical stabilities and proton selectivities for vanadium redox flow battery application |
authorStr |
Zhang, Yaping |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129546372 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-2461 |
topic_title |
670 VZ Branched sulfonated polyimide/functionalized silicon carbide composite membranes with improved chemical stabilities and proton selectivities for vanadium redox flow battery application |
topic |
ddc 670 |
topic_unstemmed |
ddc 670 |
topic_browse |
ddc 670 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials science |
hierarchy_parent_id |
129546372 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of materials science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 |
title |
Branched sulfonated polyimide/functionalized silicon carbide composite membranes with improved chemical stabilities and proton selectivities for vanadium redox flow battery application |
ctrlnum |
(DE-627)OLC2046440285 (DE-He213)s10853-018-2620-x-p |
title_full |
Branched sulfonated polyimide/functionalized silicon carbide composite membranes with improved chemical stabilities and proton selectivities for vanadium redox flow battery application |
author_sort |
Zhang, Yaping |
journal |
Journal of materials science |
journalStr |
Journal of materials science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
14506 |
author_browse |
Zhang, Yaping Pu, Yang Yang, Pan Yang, Hongyan Xuan, Sensen Long, Jun Wang, Yanlin Zhang, Hongping |
container_volume |
53 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Zhang, Yaping |
doi_str_mv |
10.1007/s10853-018-2620-x |
normlink |
(ORCID)0000-0001-9829-8957 |
normlink_prefix_str_mv |
(orcid)0000-0001-9829-8957 |
dewey-full |
670 |
title_sort |
branched sulfonated polyimide/functionalized silicon carbide composite membranes with improved chemical stabilities and proton selectivities for vanadium redox flow battery application |
title_auth |
Branched sulfonated polyimide/functionalized silicon carbide composite membranes with improved chemical stabilities and proton selectivities for vanadium redox flow battery application |
abstract |
Abstract Silicon carbide (SiC) was pretreated and functionalized by using α, ω-diaminopropyl polydimethylsiloxane (PDMS) to obtain a novel inorganic filler SiC (PDMS). Then, a series of branched sulfonated polyimide/SiC (PDMS) (bSPI/SiC (PDMS)) composite membranes with different contents of SiC (PDMS) were fabricated for vanadium redox flow battery (VRFB) application. Fourier transform infrared spectra, X-ray diffraction, and field emission scanning electron microscope demonstrate the successful preparation of SiC (PDMS) and bSPI/SiC (PDMS) membranes. The thermogravimetric analysis shows that bSPI/SiC (PDMS)-1.5% membrane has better thermal stability than pure bSPI, bSPI/SiC-1.5%, and Nafion 117 membranes. The ex situ chemical stability test results show that bSPI/SiC (PDMS)-0.5–2.5% composite membranes have better chemical stabilities than pure bSPI membrane. The physicochemical properties of bSPI/SiC (PDMS) membranes, including water uptake, swelling ratio, ion exchange capacity are investigated. Thereinto, bSPI/SiC (PDMS)-1.5% membrane has the highest proton selectivity (S: 2.99 × $ 10^{5} $ S min $ cm^{−3} $) and was chosen as an optimum VRFB membrane. And the VRFB assembled with bSPI/SiC (PDMS)-1.5% membrane exhibits better battery performance than that assembled with Nafion 117 membrane during 500-time cyclic charge–discharge test at 20–60 mA $ cm^{−2} $. Above results indicate that as-optimized bSPI/SiC (PDMS)-1.5% membrane has great potential for VRFB application. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
abstractGer |
Abstract Silicon carbide (SiC) was pretreated and functionalized by using α, ω-diaminopropyl polydimethylsiloxane (PDMS) to obtain a novel inorganic filler SiC (PDMS). Then, a series of branched sulfonated polyimide/SiC (PDMS) (bSPI/SiC (PDMS)) composite membranes with different contents of SiC (PDMS) were fabricated for vanadium redox flow battery (VRFB) application. Fourier transform infrared spectra, X-ray diffraction, and field emission scanning electron microscope demonstrate the successful preparation of SiC (PDMS) and bSPI/SiC (PDMS) membranes. The thermogravimetric analysis shows that bSPI/SiC (PDMS)-1.5% membrane has better thermal stability than pure bSPI, bSPI/SiC-1.5%, and Nafion 117 membranes. The ex situ chemical stability test results show that bSPI/SiC (PDMS)-0.5–2.5% composite membranes have better chemical stabilities than pure bSPI membrane. The physicochemical properties of bSPI/SiC (PDMS) membranes, including water uptake, swelling ratio, ion exchange capacity are investigated. Thereinto, bSPI/SiC (PDMS)-1.5% membrane has the highest proton selectivity (S: 2.99 × $ 10^{5} $ S min $ cm^{−3} $) and was chosen as an optimum VRFB membrane. And the VRFB assembled with bSPI/SiC (PDMS)-1.5% membrane exhibits better battery performance than that assembled with Nafion 117 membrane during 500-time cyclic charge–discharge test at 20–60 mA $ cm^{−2} $. Above results indicate that as-optimized bSPI/SiC (PDMS)-1.5% membrane has great potential for VRFB application. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
abstract_unstemmed |
Abstract Silicon carbide (SiC) was pretreated and functionalized by using α, ω-diaminopropyl polydimethylsiloxane (PDMS) to obtain a novel inorganic filler SiC (PDMS). Then, a series of branched sulfonated polyimide/SiC (PDMS) (bSPI/SiC (PDMS)) composite membranes with different contents of SiC (PDMS) were fabricated for vanadium redox flow battery (VRFB) application. Fourier transform infrared spectra, X-ray diffraction, and field emission scanning electron microscope demonstrate the successful preparation of SiC (PDMS) and bSPI/SiC (PDMS) membranes. The thermogravimetric analysis shows that bSPI/SiC (PDMS)-1.5% membrane has better thermal stability than pure bSPI, bSPI/SiC-1.5%, and Nafion 117 membranes. The ex situ chemical stability test results show that bSPI/SiC (PDMS)-0.5–2.5% composite membranes have better chemical stabilities than pure bSPI membrane. The physicochemical properties of bSPI/SiC (PDMS) membranes, including water uptake, swelling ratio, ion exchange capacity are investigated. Thereinto, bSPI/SiC (PDMS)-1.5% membrane has the highest proton selectivity (S: 2.99 × $ 10^{5} $ S min $ cm^{−3} $) and was chosen as an optimum VRFB membrane. And the VRFB assembled with bSPI/SiC (PDMS)-1.5% membrane exhibits better battery performance than that assembled with Nafion 117 membrane during 500-time cyclic charge–discharge test at 20–60 mA $ cm^{−2} $. Above results indicate that as-optimized bSPI/SiC (PDMS)-1.5% membrane has great potential for VRFB application. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2004 |
container_issue |
20 |
title_short |
Branched sulfonated polyimide/functionalized silicon carbide composite membranes with improved chemical stabilities and proton selectivities for vanadium redox flow battery application |
url |
https://doi.org/10.1007/s10853-018-2620-x |
remote_bool |
false |
author2 |
Pu, Yang Yang, Pan Yang, Hongyan Xuan, Sensen Long, Jun Wang, Yanlin Zhang, Hongping |
author2Str |
Pu, Yang Yang, Pan Yang, Hongyan Xuan, Sensen Long, Jun Wang, Yanlin Zhang, Hongping |
ppnlink |
129546372 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10853-018-2620-x |
up_date |
2024-07-04T05:06:31.090Z |
_version_ |
1803623691543642112 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046440285</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503124930.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10853-018-2620-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046440285</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10853-018-2620-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Yaping</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9829-8957</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Branched sulfonated polyimide/functionalized silicon carbide composite membranes with improved chemical stabilities and proton selectivities for vanadium redox flow battery application</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Silicon carbide (SiC) was pretreated and functionalized by using α, ω-diaminopropyl polydimethylsiloxane (PDMS) to obtain a novel inorganic filler SiC (PDMS). Then, a series of branched sulfonated polyimide/SiC (PDMS) (bSPI/SiC (PDMS)) composite membranes with different contents of SiC (PDMS) were fabricated for vanadium redox flow battery (VRFB) application. Fourier transform infrared spectra, X-ray diffraction, and field emission scanning electron microscope demonstrate the successful preparation of SiC (PDMS) and bSPI/SiC (PDMS) membranes. The thermogravimetric analysis shows that bSPI/SiC (PDMS)-1.5% membrane has better thermal stability than pure bSPI, bSPI/SiC-1.5%, and Nafion 117 membranes. The ex situ chemical stability test results show that bSPI/SiC (PDMS)-0.5–2.5% composite membranes have better chemical stabilities than pure bSPI membrane. The physicochemical properties of bSPI/SiC (PDMS) membranes, including water uptake, swelling ratio, ion exchange capacity are investigated. Thereinto, bSPI/SiC (PDMS)-1.5% membrane has the highest proton selectivity (S: 2.99 × $ 10^{5} $ S min $ cm^{−3} $) and was chosen as an optimum VRFB membrane. And the VRFB assembled with bSPI/SiC (PDMS)-1.5% membrane exhibits better battery performance than that assembled with Nafion 117 membrane during 500-time cyclic charge–discharge test at 20–60 mA $ cm^{−2} $. Above results indicate that as-optimized bSPI/SiC (PDMS)-1.5% membrane has great potential for VRFB application.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pu, Yang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Pan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Hongyan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xuan, Sensen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Long, Jun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yanlin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Hongping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Springer US, 1966</subfield><subfield code="g">53(2018), 20 vom: 25. Juni, Seite 14506-14524</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:53</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:20</subfield><subfield code="g">day:25</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:14506-14524</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10853-018-2620-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">53</subfield><subfield code="j">2018</subfield><subfield code="e">20</subfield><subfield code="b">25</subfield><subfield code="c">06</subfield><subfield code="h">14506-14524</subfield></datafield></record></collection>
|
score |
7.3998127 |