Rotation-assisted wet-spinning of UV-cured gelatin fibres and nonwovens
Abstract Photoinduced network formation is an attractive strategy for designing water-insoluble gelatin fibres as medical device building blocks and for enabling late-stage property customisation. However, mechanically competent, long-lasting filaments are still hard to realise with current photoact...
Ausführliche Beschreibung
Autor*in: |
Rickman, Jessica [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Anmerkung: |
© The Author(s) 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials science - Springer US, 1966, 54(2019), 14 vom: 16. Apr., Seite 10529-10547 |
---|---|
Übergeordnetes Werk: |
volume:54 ; year:2019 ; number:14 ; day:16 ; month:04 ; pages:10529-10547 |
Links: |
---|
DOI / URN: |
10.1007/s10853-019-03498-5 |
---|
Katalog-ID: |
OLC2046449851 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2046449851 | ||
003 | DE-627 | ||
005 | 20230503125031.0 | ||
007 | tu | ||
008 | 200820s2019 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10853-019-03498-5 |2 doi | |
035 | |a (DE-627)OLC2046449851 | ||
035 | |a (DE-He213)s10853-019-03498-5-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Rickman, Jessica |e verfasserin |0 (orcid)0000-0001-5882-4983 |4 aut | |
245 | 1 | 0 | |a Rotation-assisted wet-spinning of UV-cured gelatin fibres and nonwovens |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s) 2019 | ||
520 | |a Abstract Photoinduced network formation is an attractive strategy for designing water-insoluble gelatin fibres as medical device building blocks and for enabling late-stage property customisation. However, mechanically competent, long-lasting filaments are still hard to realise with current photoactive, e.g. methacrylated, gelatin systems due to inherent spinning instability and restricted coagulation capability. To explore this challenge, we present a multiscale approach combining the synthesis of 4-vinylbenzyl chloride (4VBC)-functionalised gelatin (Gel-4VBC) with a voltage-free spinning and UV-curing process so that biopolymer networks in the form of either individual fibres or nonwovens could be successfully manufactured. In comparison with state-of-the-art methacrylated gelatin, the mechanical properties of UV-cured Gel-4VBC fibres were readily modulated by adjustment of coagulation conditions, so that an ultimate tensile strength and strain at break of 25 ± 4–74 ± 3 MPa and 1.7 ± 0.3–8.6 ± 0.5% were measured, respectively. The sequential functionalisation/spinning route proved to be highly scalable, so that one-step spun-laid formation of fibroblast-friendly nonwoven fabrics was successfully demonstrated with wet-spun Gel-4VBC fibres. The presented approach could be exploited to generate a library of gelatin building blocks tuneable from the molecular to the macroscopic level to deliver computer-controlled extrusion of fibres and nonwovens according to defined clinical applications. | ||
700 | 1 | |a Tronci, Giuseppe |0 (orcid)0000-0002-9426-4220 |4 aut | |
700 | 1 | |a Liang, He |0 (orcid)0000-0002-7361-4690 |4 aut | |
700 | 1 | |a Russell, Stephen J. |0 (orcid)0000-0002-6238-0606 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials science |d Springer US, 1966 |g 54(2019), 14 vom: 16. Apr., Seite 10529-10547 |w (DE-627)129546372 |w (DE-600)218324-9 |w (DE-576)014996774 |x 0022-2461 |7 nnns |
773 | 1 | 8 | |g volume:54 |g year:2019 |g number:14 |g day:16 |g month:04 |g pages:10529-10547 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10853-019-03498-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
951 | |a AR | ||
952 | |d 54 |j 2019 |e 14 |b 16 |c 04 |h 10529-10547 |
author_variant |
j r jr g t gt h l hl s j r sj sjr |
---|---|
matchkey_str |
article:00222461:2019----::oainsitdesinnoucrdeaif |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s10853-019-03498-5 doi (DE-627)OLC2046449851 (DE-He213)s10853-019-03498-5-p DE-627 ger DE-627 rakwb eng 670 VZ Rickman, Jessica verfasserin (orcid)0000-0001-5882-4983 aut Rotation-assisted wet-spinning of UV-cured gelatin fibres and nonwovens 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2019 Abstract Photoinduced network formation is an attractive strategy for designing water-insoluble gelatin fibres as medical device building blocks and for enabling late-stage property customisation. However, mechanically competent, long-lasting filaments are still hard to realise with current photoactive, e.g. methacrylated, gelatin systems due to inherent spinning instability and restricted coagulation capability. To explore this challenge, we present a multiscale approach combining the synthesis of 4-vinylbenzyl chloride (4VBC)-functionalised gelatin (Gel-4VBC) with a voltage-free spinning and UV-curing process so that biopolymer networks in the form of either individual fibres or nonwovens could be successfully manufactured. In comparison with state-of-the-art methacrylated gelatin, the mechanical properties of UV-cured Gel-4VBC fibres were readily modulated by adjustment of coagulation conditions, so that an ultimate tensile strength and strain at break of 25 ± 4–74 ± 3 MPa and 1.7 ± 0.3–8.6 ± 0.5% were measured, respectively. The sequential functionalisation/spinning route proved to be highly scalable, so that one-step spun-laid formation of fibroblast-friendly nonwoven fabrics was successfully demonstrated with wet-spun Gel-4VBC fibres. The presented approach could be exploited to generate a library of gelatin building blocks tuneable from the molecular to the macroscopic level to deliver computer-controlled extrusion of fibres and nonwovens according to defined clinical applications. Tronci, Giuseppe (orcid)0000-0002-9426-4220 aut Liang, He (orcid)0000-0002-7361-4690 aut Russell, Stephen J. (orcid)0000-0002-6238-0606 aut Enthalten in Journal of materials science Springer US, 1966 54(2019), 14 vom: 16. Apr., Seite 10529-10547 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:54 year:2019 number:14 day:16 month:04 pages:10529-10547 https://doi.org/10.1007/s10853-019-03498-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2004 AR 54 2019 14 16 04 10529-10547 |
spelling |
10.1007/s10853-019-03498-5 doi (DE-627)OLC2046449851 (DE-He213)s10853-019-03498-5-p DE-627 ger DE-627 rakwb eng 670 VZ Rickman, Jessica verfasserin (orcid)0000-0001-5882-4983 aut Rotation-assisted wet-spinning of UV-cured gelatin fibres and nonwovens 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2019 Abstract Photoinduced network formation is an attractive strategy for designing water-insoluble gelatin fibres as medical device building blocks and for enabling late-stage property customisation. However, mechanically competent, long-lasting filaments are still hard to realise with current photoactive, e.g. methacrylated, gelatin systems due to inherent spinning instability and restricted coagulation capability. To explore this challenge, we present a multiscale approach combining the synthesis of 4-vinylbenzyl chloride (4VBC)-functionalised gelatin (Gel-4VBC) with a voltage-free spinning and UV-curing process so that biopolymer networks in the form of either individual fibres or nonwovens could be successfully manufactured. In comparison with state-of-the-art methacrylated gelatin, the mechanical properties of UV-cured Gel-4VBC fibres were readily modulated by adjustment of coagulation conditions, so that an ultimate tensile strength and strain at break of 25 ± 4–74 ± 3 MPa and 1.7 ± 0.3–8.6 ± 0.5% were measured, respectively. The sequential functionalisation/spinning route proved to be highly scalable, so that one-step spun-laid formation of fibroblast-friendly nonwoven fabrics was successfully demonstrated with wet-spun Gel-4VBC fibres. The presented approach could be exploited to generate a library of gelatin building blocks tuneable from the molecular to the macroscopic level to deliver computer-controlled extrusion of fibres and nonwovens according to defined clinical applications. Tronci, Giuseppe (orcid)0000-0002-9426-4220 aut Liang, He (orcid)0000-0002-7361-4690 aut Russell, Stephen J. (orcid)0000-0002-6238-0606 aut Enthalten in Journal of materials science Springer US, 1966 54(2019), 14 vom: 16. Apr., Seite 10529-10547 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:54 year:2019 number:14 day:16 month:04 pages:10529-10547 https://doi.org/10.1007/s10853-019-03498-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2004 AR 54 2019 14 16 04 10529-10547 |
allfields_unstemmed |
10.1007/s10853-019-03498-5 doi (DE-627)OLC2046449851 (DE-He213)s10853-019-03498-5-p DE-627 ger DE-627 rakwb eng 670 VZ Rickman, Jessica verfasserin (orcid)0000-0001-5882-4983 aut Rotation-assisted wet-spinning of UV-cured gelatin fibres and nonwovens 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2019 Abstract Photoinduced network formation is an attractive strategy for designing water-insoluble gelatin fibres as medical device building blocks and for enabling late-stage property customisation. However, mechanically competent, long-lasting filaments are still hard to realise with current photoactive, e.g. methacrylated, gelatin systems due to inherent spinning instability and restricted coagulation capability. To explore this challenge, we present a multiscale approach combining the synthesis of 4-vinylbenzyl chloride (4VBC)-functionalised gelatin (Gel-4VBC) with a voltage-free spinning and UV-curing process so that biopolymer networks in the form of either individual fibres or nonwovens could be successfully manufactured. In comparison with state-of-the-art methacrylated gelatin, the mechanical properties of UV-cured Gel-4VBC fibres were readily modulated by adjustment of coagulation conditions, so that an ultimate tensile strength and strain at break of 25 ± 4–74 ± 3 MPa and 1.7 ± 0.3–8.6 ± 0.5% were measured, respectively. The sequential functionalisation/spinning route proved to be highly scalable, so that one-step spun-laid formation of fibroblast-friendly nonwoven fabrics was successfully demonstrated with wet-spun Gel-4VBC fibres. The presented approach could be exploited to generate a library of gelatin building blocks tuneable from the molecular to the macroscopic level to deliver computer-controlled extrusion of fibres and nonwovens according to defined clinical applications. Tronci, Giuseppe (orcid)0000-0002-9426-4220 aut Liang, He (orcid)0000-0002-7361-4690 aut Russell, Stephen J. (orcid)0000-0002-6238-0606 aut Enthalten in Journal of materials science Springer US, 1966 54(2019), 14 vom: 16. Apr., Seite 10529-10547 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:54 year:2019 number:14 day:16 month:04 pages:10529-10547 https://doi.org/10.1007/s10853-019-03498-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2004 AR 54 2019 14 16 04 10529-10547 |
allfieldsGer |
10.1007/s10853-019-03498-5 doi (DE-627)OLC2046449851 (DE-He213)s10853-019-03498-5-p DE-627 ger DE-627 rakwb eng 670 VZ Rickman, Jessica verfasserin (orcid)0000-0001-5882-4983 aut Rotation-assisted wet-spinning of UV-cured gelatin fibres and nonwovens 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2019 Abstract Photoinduced network formation is an attractive strategy for designing water-insoluble gelatin fibres as medical device building blocks and for enabling late-stage property customisation. However, mechanically competent, long-lasting filaments are still hard to realise with current photoactive, e.g. methacrylated, gelatin systems due to inherent spinning instability and restricted coagulation capability. To explore this challenge, we present a multiscale approach combining the synthesis of 4-vinylbenzyl chloride (4VBC)-functionalised gelatin (Gel-4VBC) with a voltage-free spinning and UV-curing process so that biopolymer networks in the form of either individual fibres or nonwovens could be successfully manufactured. In comparison with state-of-the-art methacrylated gelatin, the mechanical properties of UV-cured Gel-4VBC fibres were readily modulated by adjustment of coagulation conditions, so that an ultimate tensile strength and strain at break of 25 ± 4–74 ± 3 MPa and 1.7 ± 0.3–8.6 ± 0.5% were measured, respectively. The sequential functionalisation/spinning route proved to be highly scalable, so that one-step spun-laid formation of fibroblast-friendly nonwoven fabrics was successfully demonstrated with wet-spun Gel-4VBC fibres. The presented approach could be exploited to generate a library of gelatin building blocks tuneable from the molecular to the macroscopic level to deliver computer-controlled extrusion of fibres and nonwovens according to defined clinical applications. Tronci, Giuseppe (orcid)0000-0002-9426-4220 aut Liang, He (orcid)0000-0002-7361-4690 aut Russell, Stephen J. (orcid)0000-0002-6238-0606 aut Enthalten in Journal of materials science Springer US, 1966 54(2019), 14 vom: 16. Apr., Seite 10529-10547 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:54 year:2019 number:14 day:16 month:04 pages:10529-10547 https://doi.org/10.1007/s10853-019-03498-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2004 AR 54 2019 14 16 04 10529-10547 |
allfieldsSound |
10.1007/s10853-019-03498-5 doi (DE-627)OLC2046449851 (DE-He213)s10853-019-03498-5-p DE-627 ger DE-627 rakwb eng 670 VZ Rickman, Jessica verfasserin (orcid)0000-0001-5882-4983 aut Rotation-assisted wet-spinning of UV-cured gelatin fibres and nonwovens 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2019 Abstract Photoinduced network formation is an attractive strategy for designing water-insoluble gelatin fibres as medical device building blocks and for enabling late-stage property customisation. However, mechanically competent, long-lasting filaments are still hard to realise with current photoactive, e.g. methacrylated, gelatin systems due to inherent spinning instability and restricted coagulation capability. To explore this challenge, we present a multiscale approach combining the synthesis of 4-vinylbenzyl chloride (4VBC)-functionalised gelatin (Gel-4VBC) with a voltage-free spinning and UV-curing process so that biopolymer networks in the form of either individual fibres or nonwovens could be successfully manufactured. In comparison with state-of-the-art methacrylated gelatin, the mechanical properties of UV-cured Gel-4VBC fibres were readily modulated by adjustment of coagulation conditions, so that an ultimate tensile strength and strain at break of 25 ± 4–74 ± 3 MPa and 1.7 ± 0.3–8.6 ± 0.5% were measured, respectively. The sequential functionalisation/spinning route proved to be highly scalable, so that one-step spun-laid formation of fibroblast-friendly nonwoven fabrics was successfully demonstrated with wet-spun Gel-4VBC fibres. The presented approach could be exploited to generate a library of gelatin building blocks tuneable from the molecular to the macroscopic level to deliver computer-controlled extrusion of fibres and nonwovens according to defined clinical applications. Tronci, Giuseppe (orcid)0000-0002-9426-4220 aut Liang, He (orcid)0000-0002-7361-4690 aut Russell, Stephen J. (orcid)0000-0002-6238-0606 aut Enthalten in Journal of materials science Springer US, 1966 54(2019), 14 vom: 16. Apr., Seite 10529-10547 (DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 0022-2461 nnns volume:54 year:2019 number:14 day:16 month:04 pages:10529-10547 https://doi.org/10.1007/s10853-019-03498-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2004 AR 54 2019 14 16 04 10529-10547 |
language |
English |
source |
Enthalten in Journal of materials science 54(2019), 14 vom: 16. Apr., Seite 10529-10547 volume:54 year:2019 number:14 day:16 month:04 pages:10529-10547 |
sourceStr |
Enthalten in Journal of materials science 54(2019), 14 vom: 16. Apr., Seite 10529-10547 volume:54 year:2019 number:14 day:16 month:04 pages:10529-10547 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of materials science |
authorswithroles_txt_mv |
Rickman, Jessica @@aut@@ Tronci, Giuseppe @@aut@@ Liang, He @@aut@@ Russell, Stephen J. @@aut@@ |
publishDateDaySort_date |
2019-04-16T00:00:00Z |
hierarchy_top_id |
129546372 |
dewey-sort |
3670 |
id |
OLC2046449851 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046449851</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503125031.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10853-019-03498-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046449851</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10853-019-03498-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rickman, Jessica</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5882-4983</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rotation-assisted wet-spinning of UV-cured gelatin fibres and nonwovens</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Photoinduced network formation is an attractive strategy for designing water-insoluble gelatin fibres as medical device building blocks and for enabling late-stage property customisation. However, mechanically competent, long-lasting filaments are still hard to realise with current photoactive, e.g. methacrylated, gelatin systems due to inherent spinning instability and restricted coagulation capability. To explore this challenge, we present a multiscale approach combining the synthesis of 4-vinylbenzyl chloride (4VBC)-functionalised gelatin (Gel-4VBC) with a voltage-free spinning and UV-curing process so that biopolymer networks in the form of either individual fibres or nonwovens could be successfully manufactured. In comparison with state-of-the-art methacrylated gelatin, the mechanical properties of UV-cured Gel-4VBC fibres were readily modulated by adjustment of coagulation conditions, so that an ultimate tensile strength and strain at break of 25 ± 4–74 ± 3 MPa and 1.7 ± 0.3–8.6 ± 0.5% were measured, respectively. The sequential functionalisation/spinning route proved to be highly scalable, so that one-step spun-laid formation of fibroblast-friendly nonwoven fabrics was successfully demonstrated with wet-spun Gel-4VBC fibres. The presented approach could be exploited to generate a library of gelatin building blocks tuneable from the molecular to the macroscopic level to deliver computer-controlled extrusion of fibres and nonwovens according to defined clinical applications.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tronci, Giuseppe</subfield><subfield code="0">(orcid)0000-0002-9426-4220</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, He</subfield><subfield code="0">(orcid)0000-0002-7361-4690</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Russell, Stephen J.</subfield><subfield code="0">(orcid)0000-0002-6238-0606</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Springer US, 1966</subfield><subfield code="g">54(2019), 14 vom: 16. Apr., Seite 10529-10547</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:54</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:14</subfield><subfield code="g">day:16</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:10529-10547</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10853-019-03498-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">54</subfield><subfield code="j">2019</subfield><subfield code="e">14</subfield><subfield code="b">16</subfield><subfield code="c">04</subfield><subfield code="h">10529-10547</subfield></datafield></record></collection>
|
author |
Rickman, Jessica |
spellingShingle |
Rickman, Jessica ddc 670 Rotation-assisted wet-spinning of UV-cured gelatin fibres and nonwovens |
authorStr |
Rickman, Jessica |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129546372 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-2461 |
topic_title |
670 VZ Rotation-assisted wet-spinning of UV-cured gelatin fibres and nonwovens |
topic |
ddc 670 |
topic_unstemmed |
ddc 670 |
topic_browse |
ddc 670 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials science |
hierarchy_parent_id |
129546372 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of materials science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129546372 (DE-600)218324-9 (DE-576)014996774 |
title |
Rotation-assisted wet-spinning of UV-cured gelatin fibres and nonwovens |
ctrlnum |
(DE-627)OLC2046449851 (DE-He213)s10853-019-03498-5-p |
title_full |
Rotation-assisted wet-spinning of UV-cured gelatin fibres and nonwovens |
author_sort |
Rickman, Jessica |
journal |
Journal of materials science |
journalStr |
Journal of materials science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
10529 |
author_browse |
Rickman, Jessica Tronci, Giuseppe Liang, He Russell, Stephen J. |
container_volume |
54 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Rickman, Jessica |
doi_str_mv |
10.1007/s10853-019-03498-5 |
normlink |
(ORCID)0000-0001-5882-4983 (ORCID)0000-0002-9426-4220 (ORCID)0000-0002-7361-4690 (ORCID)0000-0002-6238-0606 |
normlink_prefix_str_mv |
(orcid)0000-0001-5882-4983 (orcid)0000-0002-9426-4220 (orcid)0000-0002-7361-4690 (orcid)0000-0002-6238-0606 |
dewey-full |
670 |
title_sort |
rotation-assisted wet-spinning of uv-cured gelatin fibres and nonwovens |
title_auth |
Rotation-assisted wet-spinning of UV-cured gelatin fibres and nonwovens |
abstract |
Abstract Photoinduced network formation is an attractive strategy for designing water-insoluble gelatin fibres as medical device building blocks and for enabling late-stage property customisation. However, mechanically competent, long-lasting filaments are still hard to realise with current photoactive, e.g. methacrylated, gelatin systems due to inherent spinning instability and restricted coagulation capability. To explore this challenge, we present a multiscale approach combining the synthesis of 4-vinylbenzyl chloride (4VBC)-functionalised gelatin (Gel-4VBC) with a voltage-free spinning and UV-curing process so that biopolymer networks in the form of either individual fibres or nonwovens could be successfully manufactured. In comparison with state-of-the-art methacrylated gelatin, the mechanical properties of UV-cured Gel-4VBC fibres were readily modulated by adjustment of coagulation conditions, so that an ultimate tensile strength and strain at break of 25 ± 4–74 ± 3 MPa and 1.7 ± 0.3–8.6 ± 0.5% were measured, respectively. The sequential functionalisation/spinning route proved to be highly scalable, so that one-step spun-laid formation of fibroblast-friendly nonwoven fabrics was successfully demonstrated with wet-spun Gel-4VBC fibres. The presented approach could be exploited to generate a library of gelatin building blocks tuneable from the molecular to the macroscopic level to deliver computer-controlled extrusion of fibres and nonwovens according to defined clinical applications. © The Author(s) 2019 |
abstractGer |
Abstract Photoinduced network formation is an attractive strategy for designing water-insoluble gelatin fibres as medical device building blocks and for enabling late-stage property customisation. However, mechanically competent, long-lasting filaments are still hard to realise with current photoactive, e.g. methacrylated, gelatin systems due to inherent spinning instability and restricted coagulation capability. To explore this challenge, we present a multiscale approach combining the synthesis of 4-vinylbenzyl chloride (4VBC)-functionalised gelatin (Gel-4VBC) with a voltage-free spinning and UV-curing process so that biopolymer networks in the form of either individual fibres or nonwovens could be successfully manufactured. In comparison with state-of-the-art methacrylated gelatin, the mechanical properties of UV-cured Gel-4VBC fibres were readily modulated by adjustment of coagulation conditions, so that an ultimate tensile strength and strain at break of 25 ± 4–74 ± 3 MPa and 1.7 ± 0.3–8.6 ± 0.5% were measured, respectively. The sequential functionalisation/spinning route proved to be highly scalable, so that one-step spun-laid formation of fibroblast-friendly nonwoven fabrics was successfully demonstrated with wet-spun Gel-4VBC fibres. The presented approach could be exploited to generate a library of gelatin building blocks tuneable from the molecular to the macroscopic level to deliver computer-controlled extrusion of fibres and nonwovens according to defined clinical applications. © The Author(s) 2019 |
abstract_unstemmed |
Abstract Photoinduced network formation is an attractive strategy for designing water-insoluble gelatin fibres as medical device building blocks and for enabling late-stage property customisation. However, mechanically competent, long-lasting filaments are still hard to realise with current photoactive, e.g. methacrylated, gelatin systems due to inherent spinning instability and restricted coagulation capability. To explore this challenge, we present a multiscale approach combining the synthesis of 4-vinylbenzyl chloride (4VBC)-functionalised gelatin (Gel-4VBC) with a voltage-free spinning and UV-curing process so that biopolymer networks in the form of either individual fibres or nonwovens could be successfully manufactured. In comparison with state-of-the-art methacrylated gelatin, the mechanical properties of UV-cured Gel-4VBC fibres were readily modulated by adjustment of coagulation conditions, so that an ultimate tensile strength and strain at break of 25 ± 4–74 ± 3 MPa and 1.7 ± 0.3–8.6 ± 0.5% were measured, respectively. The sequential functionalisation/spinning route proved to be highly scalable, so that one-step spun-laid formation of fibroblast-friendly nonwoven fabrics was successfully demonstrated with wet-spun Gel-4VBC fibres. The presented approach could be exploited to generate a library of gelatin building blocks tuneable from the molecular to the macroscopic level to deliver computer-controlled extrusion of fibres and nonwovens according to defined clinical applications. © The Author(s) 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2004 |
container_issue |
14 |
title_short |
Rotation-assisted wet-spinning of UV-cured gelatin fibres and nonwovens |
url |
https://doi.org/10.1007/s10853-019-03498-5 |
remote_bool |
false |
author2 |
Tronci, Giuseppe Liang, He Russell, Stephen J. |
author2Str |
Tronci, Giuseppe Liang, He Russell, Stephen J. |
ppnlink |
129546372 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10853-019-03498-5 |
up_date |
2024-07-04T05:08:08.699Z |
_version_ |
1803623793893048320 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046449851</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503125031.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10853-019-03498-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046449851</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10853-019-03498-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rickman, Jessica</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5882-4983</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rotation-assisted wet-spinning of UV-cured gelatin fibres and nonwovens</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Photoinduced network formation is an attractive strategy for designing water-insoluble gelatin fibres as medical device building blocks and for enabling late-stage property customisation. However, mechanically competent, long-lasting filaments are still hard to realise with current photoactive, e.g. methacrylated, gelatin systems due to inherent spinning instability and restricted coagulation capability. To explore this challenge, we present a multiscale approach combining the synthesis of 4-vinylbenzyl chloride (4VBC)-functionalised gelatin (Gel-4VBC) with a voltage-free spinning and UV-curing process so that biopolymer networks in the form of either individual fibres or nonwovens could be successfully manufactured. In comparison with state-of-the-art methacrylated gelatin, the mechanical properties of UV-cured Gel-4VBC fibres were readily modulated by adjustment of coagulation conditions, so that an ultimate tensile strength and strain at break of 25 ± 4–74 ± 3 MPa and 1.7 ± 0.3–8.6 ± 0.5% were measured, respectively. The sequential functionalisation/spinning route proved to be highly scalable, so that one-step spun-laid formation of fibroblast-friendly nonwoven fabrics was successfully demonstrated with wet-spun Gel-4VBC fibres. The presented approach could be exploited to generate a library of gelatin building blocks tuneable from the molecular to the macroscopic level to deliver computer-controlled extrusion of fibres and nonwovens according to defined clinical applications.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tronci, Giuseppe</subfield><subfield code="0">(orcid)0000-0002-9426-4220</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, He</subfield><subfield code="0">(orcid)0000-0002-7361-4690</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Russell, Stephen J.</subfield><subfield code="0">(orcid)0000-0002-6238-0606</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science</subfield><subfield code="d">Springer US, 1966</subfield><subfield code="g">54(2019), 14 vom: 16. Apr., Seite 10529-10547</subfield><subfield code="w">(DE-627)129546372</subfield><subfield code="w">(DE-600)218324-9</subfield><subfield code="w">(DE-576)014996774</subfield><subfield code="x">0022-2461</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:54</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:14</subfield><subfield code="g">day:16</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:10529-10547</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10853-019-03498-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">54</subfield><subfield code="j">2019</subfield><subfield code="e">14</subfield><subfield code="b">16</subfield><subfield code="c">04</subfield><subfield code="h">10529-10547</subfield></datafield></record></collection>
|
score |
7.400646 |