Hydrodynamic Limit of Coagulation-Fragmentation Type Models of k-Nary Interacting Particles
Abstract Hydrodynamic limit of general k-nary mass exchange processes with discrete mass distribution is described by a system of kinetic equations that generalize classical Smoluchovski's coagulation equations and many other models that are intensively studied in the current mathematical and p...
Ausführliche Beschreibung
Autor*in: |
Kolokoltsov, Vassili N. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2004 |
---|
Anmerkung: |
© Plenum Publishing Corporation 2004 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of statistical physics - Kluwer Academic Publishers-Plenum Publishers, 1969, 115(2004), 5-6 vom: Juni, Seite 1621-1653 |
---|---|
Übergeordnetes Werk: |
volume:115 ; year:2004 ; number:5-6 ; month:06 ; pages:1621-1653 |
Links: |
---|
DOI / URN: |
10.1023/B:JOSS.0000028071.96950.12 |
---|
Katalog-ID: |
OLC2046602137 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2046602137 | ||
003 | DE-627 | ||
005 | 20230503154238.0 | ||
007 | tu | ||
008 | 200819s2004 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1023/B:JOSS.0000028071.96950.12 |2 doi | |
035 | |a (DE-627)OLC2046602137 | ||
035 | |a (DE-He213)B:JOSS.0000028071.96950.12-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
084 | |a 33.00 |2 bkl | ||
100 | 1 | |a Kolokoltsov, Vassili N. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Hydrodynamic Limit of Coagulation-Fragmentation Type Models of k-Nary Interacting Particles |
264 | 1 | |c 2004 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Plenum Publishing Corporation 2004 | ||
520 | |a Abstract Hydrodynamic limit of general k-nary mass exchange processes with discrete mass distribution is described by a system of kinetic equations that generalize classical Smoluchovski's coagulation equations and many other models that are intensively studied in the current mathematical and physical literature. Existence and uniqueness theorems for these equations are proved. At last, for k-nary mass exchange processes with k>2 an alternative nondeterministic measure-valued limit (diffusion approximation) is discussed. | ||
773 | 0 | 8 | |i Enthalten in |t Journal of statistical physics |d Kluwer Academic Publishers-Plenum Publishers, 1969 |g 115(2004), 5-6 vom: Juni, Seite 1621-1653 |w (DE-627)129549711 |w (DE-600)219136-2 |w (DE-576)015002918 |x 0022-4715 |7 nnns |
773 | 1 | 8 | |g volume:115 |g year:2004 |g number:5-6 |g month:06 |g pages:1621-1653 |
856 | 4 | 1 | |u https://doi.org/10.1023/B:JOSS.0000028071.96950.12 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2192 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4116 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4317 | ||
912 | |a GBV_ILN_4323 | ||
936 | b | k | |a 33.00 |q VZ |
951 | |a AR | ||
952 | |d 115 |j 2004 |e 5-6 |c 06 |h 1621-1653 |
author_variant |
v n k vn vnk |
---|---|
matchkey_str |
article:00224715:2004----::yrdnmciiocauainrgettotpmdlokay |
hierarchy_sort_str |
2004 |
bklnumber |
33.00 |
publishDate |
2004 |
allfields |
10.1023/B:JOSS.0000028071.96950.12 doi (DE-627)OLC2046602137 (DE-He213)B:JOSS.0000028071.96950.12-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Kolokoltsov, Vassili N. verfasserin aut Hydrodynamic Limit of Coagulation-Fragmentation Type Models of k-Nary Interacting Particles 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 2004 Abstract Hydrodynamic limit of general k-nary mass exchange processes with discrete mass distribution is described by a system of kinetic equations that generalize classical Smoluchovski's coagulation equations and many other models that are intensively studied in the current mathematical and physical literature. Existence and uniqueness theorems for these equations are proved. At last, for k-nary mass exchange processes with k>2 an alternative nondeterministic measure-valued limit (diffusion approximation) is discussed. Enthalten in Journal of statistical physics Kluwer Academic Publishers-Plenum Publishers, 1969 115(2004), 5-6 vom: Juni, Seite 1621-1653 (DE-627)129549711 (DE-600)219136-2 (DE-576)015002918 0022-4715 nnns volume:115 year:2004 number:5-6 month:06 pages:1621-1653 https://doi.org/10.1023/B:JOSS.0000028071.96950.12 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_2192 GBV_ILN_2409 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4317 GBV_ILN_4323 33.00 VZ AR 115 2004 5-6 06 1621-1653 |
spelling |
10.1023/B:JOSS.0000028071.96950.12 doi (DE-627)OLC2046602137 (DE-He213)B:JOSS.0000028071.96950.12-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Kolokoltsov, Vassili N. verfasserin aut Hydrodynamic Limit of Coagulation-Fragmentation Type Models of k-Nary Interacting Particles 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 2004 Abstract Hydrodynamic limit of general k-nary mass exchange processes with discrete mass distribution is described by a system of kinetic equations that generalize classical Smoluchovski's coagulation equations and many other models that are intensively studied in the current mathematical and physical literature. Existence and uniqueness theorems for these equations are proved. At last, for k-nary mass exchange processes with k>2 an alternative nondeterministic measure-valued limit (diffusion approximation) is discussed. Enthalten in Journal of statistical physics Kluwer Academic Publishers-Plenum Publishers, 1969 115(2004), 5-6 vom: Juni, Seite 1621-1653 (DE-627)129549711 (DE-600)219136-2 (DE-576)015002918 0022-4715 nnns volume:115 year:2004 number:5-6 month:06 pages:1621-1653 https://doi.org/10.1023/B:JOSS.0000028071.96950.12 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_2192 GBV_ILN_2409 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4317 GBV_ILN_4323 33.00 VZ AR 115 2004 5-6 06 1621-1653 |
allfields_unstemmed |
10.1023/B:JOSS.0000028071.96950.12 doi (DE-627)OLC2046602137 (DE-He213)B:JOSS.0000028071.96950.12-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Kolokoltsov, Vassili N. verfasserin aut Hydrodynamic Limit of Coagulation-Fragmentation Type Models of k-Nary Interacting Particles 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 2004 Abstract Hydrodynamic limit of general k-nary mass exchange processes with discrete mass distribution is described by a system of kinetic equations that generalize classical Smoluchovski's coagulation equations and many other models that are intensively studied in the current mathematical and physical literature. Existence and uniqueness theorems for these equations are proved. At last, for k-nary mass exchange processes with k>2 an alternative nondeterministic measure-valued limit (diffusion approximation) is discussed. Enthalten in Journal of statistical physics Kluwer Academic Publishers-Plenum Publishers, 1969 115(2004), 5-6 vom: Juni, Seite 1621-1653 (DE-627)129549711 (DE-600)219136-2 (DE-576)015002918 0022-4715 nnns volume:115 year:2004 number:5-6 month:06 pages:1621-1653 https://doi.org/10.1023/B:JOSS.0000028071.96950.12 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_2192 GBV_ILN_2409 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4317 GBV_ILN_4323 33.00 VZ AR 115 2004 5-6 06 1621-1653 |
allfieldsGer |
10.1023/B:JOSS.0000028071.96950.12 doi (DE-627)OLC2046602137 (DE-He213)B:JOSS.0000028071.96950.12-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Kolokoltsov, Vassili N. verfasserin aut Hydrodynamic Limit of Coagulation-Fragmentation Type Models of k-Nary Interacting Particles 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 2004 Abstract Hydrodynamic limit of general k-nary mass exchange processes with discrete mass distribution is described by a system of kinetic equations that generalize classical Smoluchovski's coagulation equations and many other models that are intensively studied in the current mathematical and physical literature. Existence and uniqueness theorems for these equations are proved. At last, for k-nary mass exchange processes with k>2 an alternative nondeterministic measure-valued limit (diffusion approximation) is discussed. Enthalten in Journal of statistical physics Kluwer Academic Publishers-Plenum Publishers, 1969 115(2004), 5-6 vom: Juni, Seite 1621-1653 (DE-627)129549711 (DE-600)219136-2 (DE-576)015002918 0022-4715 nnns volume:115 year:2004 number:5-6 month:06 pages:1621-1653 https://doi.org/10.1023/B:JOSS.0000028071.96950.12 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_2192 GBV_ILN_2409 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4317 GBV_ILN_4323 33.00 VZ AR 115 2004 5-6 06 1621-1653 |
allfieldsSound |
10.1023/B:JOSS.0000028071.96950.12 doi (DE-627)OLC2046602137 (DE-He213)B:JOSS.0000028071.96950.12-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Kolokoltsov, Vassili N. verfasserin aut Hydrodynamic Limit of Coagulation-Fragmentation Type Models of k-Nary Interacting Particles 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 2004 Abstract Hydrodynamic limit of general k-nary mass exchange processes with discrete mass distribution is described by a system of kinetic equations that generalize classical Smoluchovski's coagulation equations and many other models that are intensively studied in the current mathematical and physical literature. Existence and uniqueness theorems for these equations are proved. At last, for k-nary mass exchange processes with k>2 an alternative nondeterministic measure-valued limit (diffusion approximation) is discussed. Enthalten in Journal of statistical physics Kluwer Academic Publishers-Plenum Publishers, 1969 115(2004), 5-6 vom: Juni, Seite 1621-1653 (DE-627)129549711 (DE-600)219136-2 (DE-576)015002918 0022-4715 nnns volume:115 year:2004 number:5-6 month:06 pages:1621-1653 https://doi.org/10.1023/B:JOSS.0000028071.96950.12 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_2192 GBV_ILN_2409 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4317 GBV_ILN_4323 33.00 VZ AR 115 2004 5-6 06 1621-1653 |
language |
English |
source |
Enthalten in Journal of statistical physics 115(2004), 5-6 vom: Juni, Seite 1621-1653 volume:115 year:2004 number:5-6 month:06 pages:1621-1653 |
sourceStr |
Enthalten in Journal of statistical physics 115(2004), 5-6 vom: Juni, Seite 1621-1653 volume:115 year:2004 number:5-6 month:06 pages:1621-1653 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of statistical physics |
authorswithroles_txt_mv |
Kolokoltsov, Vassili N. @@aut@@ |
publishDateDaySort_date |
2004-06-01T00:00:00Z |
hierarchy_top_id |
129549711 |
dewey-sort |
3530 |
id |
OLC2046602137 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046602137</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503154238.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2004 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/B:JOSS.0000028071.96950.12</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046602137</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)B:JOSS.0000028071.96950.12-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kolokoltsov, Vassili N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hydrodynamic Limit of Coagulation-Fragmentation Type Models of k-Nary Interacting Particles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2004</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Plenum Publishing Corporation 2004</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Hydrodynamic limit of general k-nary mass exchange processes with discrete mass distribution is described by a system of kinetic equations that generalize classical Smoluchovski's coagulation equations and many other models that are intensively studied in the current mathematical and physical literature. Existence and uniqueness theorems for these equations are proved. At last, for k-nary mass exchange processes with k>2 an alternative nondeterministic measure-valued limit (diffusion approximation) is discussed.</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of statistical physics</subfield><subfield code="d">Kluwer Academic Publishers-Plenum Publishers, 1969</subfield><subfield code="g">115(2004), 5-6 vom: Juni, Seite 1621-1653</subfield><subfield code="w">(DE-627)129549711</subfield><subfield code="w">(DE-600)219136-2</subfield><subfield code="w">(DE-576)015002918</subfield><subfield code="x">0022-4715</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:115</subfield><subfield code="g">year:2004</subfield><subfield code="g">number:5-6</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:1621-1653</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/B:JOSS.0000028071.96950.12</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2192</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">115</subfield><subfield code="j">2004</subfield><subfield code="e">5-6</subfield><subfield code="c">06</subfield><subfield code="h">1621-1653</subfield></datafield></record></collection>
|
author |
Kolokoltsov, Vassili N. |
spellingShingle |
Kolokoltsov, Vassili N. ddc 530 bkl 33.00 Hydrodynamic Limit of Coagulation-Fragmentation Type Models of k-Nary Interacting Particles |
authorStr |
Kolokoltsov, Vassili N. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129549711 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-4715 |
topic_title |
530 VZ 33.00 bkl Hydrodynamic Limit of Coagulation-Fragmentation Type Models of k-Nary Interacting Particles |
topic |
ddc 530 bkl 33.00 |
topic_unstemmed |
ddc 530 bkl 33.00 |
topic_browse |
ddc 530 bkl 33.00 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of statistical physics |
hierarchy_parent_id |
129549711 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Journal of statistical physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129549711 (DE-600)219136-2 (DE-576)015002918 |
title |
Hydrodynamic Limit of Coagulation-Fragmentation Type Models of k-Nary Interacting Particles |
ctrlnum |
(DE-627)OLC2046602137 (DE-He213)B:JOSS.0000028071.96950.12-p |
title_full |
Hydrodynamic Limit of Coagulation-Fragmentation Type Models of k-Nary Interacting Particles |
author_sort |
Kolokoltsov, Vassili N. |
journal |
Journal of statistical physics |
journalStr |
Journal of statistical physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2004 |
contenttype_str_mv |
txt |
container_start_page |
1621 |
author_browse |
Kolokoltsov, Vassili N. |
container_volume |
115 |
class |
530 VZ 33.00 bkl |
format_se |
Aufsätze |
author-letter |
Kolokoltsov, Vassili N. |
doi_str_mv |
10.1023/B:JOSS.0000028071.96950.12 |
dewey-full |
530 |
title_sort |
hydrodynamic limit of coagulation-fragmentation type models of k-nary interacting particles |
title_auth |
Hydrodynamic Limit of Coagulation-Fragmentation Type Models of k-Nary Interacting Particles |
abstract |
Abstract Hydrodynamic limit of general k-nary mass exchange processes with discrete mass distribution is described by a system of kinetic equations that generalize classical Smoluchovski's coagulation equations and many other models that are intensively studied in the current mathematical and physical literature. Existence and uniqueness theorems for these equations are proved. At last, for k-nary mass exchange processes with k>2 an alternative nondeterministic measure-valued limit (diffusion approximation) is discussed. © Plenum Publishing Corporation 2004 |
abstractGer |
Abstract Hydrodynamic limit of general k-nary mass exchange processes with discrete mass distribution is described by a system of kinetic equations that generalize classical Smoluchovski's coagulation equations and many other models that are intensively studied in the current mathematical and physical literature. Existence and uniqueness theorems for these equations are proved. At last, for k-nary mass exchange processes with k>2 an alternative nondeterministic measure-valued limit (diffusion approximation) is discussed. © Plenum Publishing Corporation 2004 |
abstract_unstemmed |
Abstract Hydrodynamic limit of general k-nary mass exchange processes with discrete mass distribution is described by a system of kinetic equations that generalize classical Smoluchovski's coagulation equations and many other models that are intensively studied in the current mathematical and physical literature. Existence and uniqueness theorems for these equations are proved. At last, for k-nary mass exchange processes with k>2 an alternative nondeterministic measure-valued limit (diffusion approximation) is discussed. © Plenum Publishing Corporation 2004 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_2192 GBV_ILN_2409 GBV_ILN_4036 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4317 GBV_ILN_4323 |
container_issue |
5-6 |
title_short |
Hydrodynamic Limit of Coagulation-Fragmentation Type Models of k-Nary Interacting Particles |
url |
https://doi.org/10.1023/B:JOSS.0000028071.96950.12 |
remote_bool |
false |
ppnlink |
129549711 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1023/B:JOSS.0000028071.96950.12 |
up_date |
2024-07-04T05:28:49.532Z |
_version_ |
1803625095007043584 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046602137</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503154238.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2004 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/B:JOSS.0000028071.96950.12</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046602137</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)B:JOSS.0000028071.96950.12-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kolokoltsov, Vassili N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hydrodynamic Limit of Coagulation-Fragmentation Type Models of k-Nary Interacting Particles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2004</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Plenum Publishing Corporation 2004</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Hydrodynamic limit of general k-nary mass exchange processes with discrete mass distribution is described by a system of kinetic equations that generalize classical Smoluchovski's coagulation equations and many other models that are intensively studied in the current mathematical and physical literature. Existence and uniqueness theorems for these equations are proved. At last, for k-nary mass exchange processes with k>2 an alternative nondeterministic measure-valued limit (diffusion approximation) is discussed.</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of statistical physics</subfield><subfield code="d">Kluwer Academic Publishers-Plenum Publishers, 1969</subfield><subfield code="g">115(2004), 5-6 vom: Juni, Seite 1621-1653</subfield><subfield code="w">(DE-627)129549711</subfield><subfield code="w">(DE-600)219136-2</subfield><subfield code="w">(DE-576)015002918</subfield><subfield code="x">0022-4715</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:115</subfield><subfield code="g">year:2004</subfield><subfield code="g">number:5-6</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:1621-1653</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/B:JOSS.0000028071.96950.12</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2192</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">115</subfield><subfield code="j">2004</subfield><subfield code="e">5-6</subfield><subfield code="c">06</subfield><subfield code="h">1621-1653</subfield></datafield></record></collection>
|
score |
7.399109 |