Transforming Fixed-Length Self-avoiding Walks into Radial $ SLE_{8/3} $
Abstract We conjecture a relationship between the scaling limit of the fixed-length ensemble of self-avoiding walks in the upper half plane and radial $ SLE_{8/3} $ in this half plane from 0 to i. The relationship is that if we take a curve from the fixed-length scaling limit of the SAW, weight it b...
Ausführliche Beschreibung
Autor*in: |
Kennedy, Tom [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2011 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of statistical physics - Springer US, 1969, 146(2011), 2 vom: 02. Dez., Seite 281-293 |
---|---|
Übergeordnetes Werk: |
volume:146 ; year:2011 ; number:2 ; day:02 ; month:12 ; pages:281-293 |
Links: |
---|
DOI / URN: |
10.1007/s10955-011-0406-5 |
---|
Katalog-ID: |
OLC2046617959 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2046617959 | ||
003 | DE-627 | ||
005 | 20230503154417.0 | ||
007 | tu | ||
008 | 200819s2011 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10955-011-0406-5 |2 doi | |
035 | |a (DE-627)OLC2046617959 | ||
035 | |a (DE-He213)s10955-011-0406-5-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
084 | |a 33.00 |2 bkl | ||
100 | 1 | |a Kennedy, Tom |e verfasserin |4 aut | |
245 | 1 | 0 | |a Transforming Fixed-Length Self-avoiding Walks into Radial $ SLE_{8/3} $ |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2011 | ||
520 | |a Abstract We conjecture a relationship between the scaling limit of the fixed-length ensemble of self-avoiding walks in the upper half plane and radial $ SLE_{8/3} $ in this half plane from 0 to i. The relationship is that if we take a curve from the fixed-length scaling limit of the SAW, weight it by a suitable power of the distance to the endpoint of the curve and apply the conformal map of the half plane that takes the endpoint to i, then we get the same probability measure on curves as radial $ SLE_{8/3} $. In addition to a non-rigorous derivation of this conjecture, we support it with Monte Carlo simulations of the SAW. Using the conjectured relationship between the SAW and radial $ SLE_{8/3} $, our simulations give estimates for both the interior and boundary scaling exponents. The values we obtain are within a few hundredths of a percent of the conjectured values. | ||
650 | 4 | |a 2d self-avoiding walk | |
650 | 4 | |a Radial SLE | |
650 | 4 | |a Fixed length | |
773 | 0 | 8 | |i Enthalten in |t Journal of statistical physics |d Springer US, 1969 |g 146(2011), 2 vom: 02. Dez., Seite 281-293 |w (DE-627)129549711 |w (DE-600)219136-2 |w (DE-576)015002918 |x 0022-4715 |7 nnns |
773 | 1 | 8 | |g volume:146 |g year:2011 |g number:2 |g day:02 |g month:12 |g pages:281-293 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10955-011-0406-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4317 | ||
912 | |a GBV_ILN_4323 | ||
936 | b | k | |a 33.00 |q VZ |
951 | |a AR | ||
952 | |d 146 |j 2011 |e 2 |b 02 |c 12 |h 281-293 |
author_variant |
t k tk |
---|---|
matchkey_str |
article:00224715:2011----::rnfrigielntslaodnwlsn |
hierarchy_sort_str |
2011 |
bklnumber |
33.00 |
publishDate |
2011 |
allfields |
10.1007/s10955-011-0406-5 doi (DE-627)OLC2046617959 (DE-He213)s10955-011-0406-5-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Kennedy, Tom verfasserin aut Transforming Fixed-Length Self-avoiding Walks into Radial $ SLE_{8/3} $ 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract We conjecture a relationship between the scaling limit of the fixed-length ensemble of self-avoiding walks in the upper half plane and radial $ SLE_{8/3} $ in this half plane from 0 to i. The relationship is that if we take a curve from the fixed-length scaling limit of the SAW, weight it by a suitable power of the distance to the endpoint of the curve and apply the conformal map of the half plane that takes the endpoint to i, then we get the same probability measure on curves as radial $ SLE_{8/3} $. In addition to a non-rigorous derivation of this conjecture, we support it with Monte Carlo simulations of the SAW. Using the conjectured relationship between the SAW and radial $ SLE_{8/3} $, our simulations give estimates for both the interior and boundary scaling exponents. The values we obtain are within a few hundredths of a percent of the conjectured values. 2d self-avoiding walk Radial SLE Fixed length Enthalten in Journal of statistical physics Springer US, 1969 146(2011), 2 vom: 02. Dez., Seite 281-293 (DE-627)129549711 (DE-600)219136-2 (DE-576)015002918 0022-4715 nnns volume:146 year:2011 number:2 day:02 month:12 pages:281-293 https://doi.org/10.1007/s10955-011-0406-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2409 GBV_ILN_4036 GBV_ILN_4305 GBV_ILN_4317 GBV_ILN_4323 33.00 VZ AR 146 2011 2 02 12 281-293 |
spelling |
10.1007/s10955-011-0406-5 doi (DE-627)OLC2046617959 (DE-He213)s10955-011-0406-5-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Kennedy, Tom verfasserin aut Transforming Fixed-Length Self-avoiding Walks into Radial $ SLE_{8/3} $ 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract We conjecture a relationship between the scaling limit of the fixed-length ensemble of self-avoiding walks in the upper half plane and radial $ SLE_{8/3} $ in this half plane from 0 to i. The relationship is that if we take a curve from the fixed-length scaling limit of the SAW, weight it by a suitable power of the distance to the endpoint of the curve and apply the conformal map of the half plane that takes the endpoint to i, then we get the same probability measure on curves as radial $ SLE_{8/3} $. In addition to a non-rigorous derivation of this conjecture, we support it with Monte Carlo simulations of the SAW. Using the conjectured relationship between the SAW and radial $ SLE_{8/3} $, our simulations give estimates for both the interior and boundary scaling exponents. The values we obtain are within a few hundredths of a percent of the conjectured values. 2d self-avoiding walk Radial SLE Fixed length Enthalten in Journal of statistical physics Springer US, 1969 146(2011), 2 vom: 02. Dez., Seite 281-293 (DE-627)129549711 (DE-600)219136-2 (DE-576)015002918 0022-4715 nnns volume:146 year:2011 number:2 day:02 month:12 pages:281-293 https://doi.org/10.1007/s10955-011-0406-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2409 GBV_ILN_4036 GBV_ILN_4305 GBV_ILN_4317 GBV_ILN_4323 33.00 VZ AR 146 2011 2 02 12 281-293 |
allfields_unstemmed |
10.1007/s10955-011-0406-5 doi (DE-627)OLC2046617959 (DE-He213)s10955-011-0406-5-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Kennedy, Tom verfasserin aut Transforming Fixed-Length Self-avoiding Walks into Radial $ SLE_{8/3} $ 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract We conjecture a relationship between the scaling limit of the fixed-length ensemble of self-avoiding walks in the upper half plane and radial $ SLE_{8/3} $ in this half plane from 0 to i. The relationship is that if we take a curve from the fixed-length scaling limit of the SAW, weight it by a suitable power of the distance to the endpoint of the curve and apply the conformal map of the half plane that takes the endpoint to i, then we get the same probability measure on curves as radial $ SLE_{8/3} $. In addition to a non-rigorous derivation of this conjecture, we support it with Monte Carlo simulations of the SAW. Using the conjectured relationship between the SAW and radial $ SLE_{8/3} $, our simulations give estimates for both the interior and boundary scaling exponents. The values we obtain are within a few hundredths of a percent of the conjectured values. 2d self-avoiding walk Radial SLE Fixed length Enthalten in Journal of statistical physics Springer US, 1969 146(2011), 2 vom: 02. Dez., Seite 281-293 (DE-627)129549711 (DE-600)219136-2 (DE-576)015002918 0022-4715 nnns volume:146 year:2011 number:2 day:02 month:12 pages:281-293 https://doi.org/10.1007/s10955-011-0406-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2409 GBV_ILN_4036 GBV_ILN_4305 GBV_ILN_4317 GBV_ILN_4323 33.00 VZ AR 146 2011 2 02 12 281-293 |
allfieldsGer |
10.1007/s10955-011-0406-5 doi (DE-627)OLC2046617959 (DE-He213)s10955-011-0406-5-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Kennedy, Tom verfasserin aut Transforming Fixed-Length Self-avoiding Walks into Radial $ SLE_{8/3} $ 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract We conjecture a relationship between the scaling limit of the fixed-length ensemble of self-avoiding walks in the upper half plane and radial $ SLE_{8/3} $ in this half plane from 0 to i. The relationship is that if we take a curve from the fixed-length scaling limit of the SAW, weight it by a suitable power of the distance to the endpoint of the curve and apply the conformal map of the half plane that takes the endpoint to i, then we get the same probability measure on curves as radial $ SLE_{8/3} $. In addition to a non-rigorous derivation of this conjecture, we support it with Monte Carlo simulations of the SAW. Using the conjectured relationship between the SAW and radial $ SLE_{8/3} $, our simulations give estimates for both the interior and boundary scaling exponents. The values we obtain are within a few hundredths of a percent of the conjectured values. 2d self-avoiding walk Radial SLE Fixed length Enthalten in Journal of statistical physics Springer US, 1969 146(2011), 2 vom: 02. Dez., Seite 281-293 (DE-627)129549711 (DE-600)219136-2 (DE-576)015002918 0022-4715 nnns volume:146 year:2011 number:2 day:02 month:12 pages:281-293 https://doi.org/10.1007/s10955-011-0406-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2409 GBV_ILN_4036 GBV_ILN_4305 GBV_ILN_4317 GBV_ILN_4323 33.00 VZ AR 146 2011 2 02 12 281-293 |
allfieldsSound |
10.1007/s10955-011-0406-5 doi (DE-627)OLC2046617959 (DE-He213)s10955-011-0406-5-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Kennedy, Tom verfasserin aut Transforming Fixed-Length Self-avoiding Walks into Radial $ SLE_{8/3} $ 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract We conjecture a relationship between the scaling limit of the fixed-length ensemble of self-avoiding walks in the upper half plane and radial $ SLE_{8/3} $ in this half plane from 0 to i. The relationship is that if we take a curve from the fixed-length scaling limit of the SAW, weight it by a suitable power of the distance to the endpoint of the curve and apply the conformal map of the half plane that takes the endpoint to i, then we get the same probability measure on curves as radial $ SLE_{8/3} $. In addition to a non-rigorous derivation of this conjecture, we support it with Monte Carlo simulations of the SAW. Using the conjectured relationship between the SAW and radial $ SLE_{8/3} $, our simulations give estimates for both the interior and boundary scaling exponents. The values we obtain are within a few hundredths of a percent of the conjectured values. 2d self-avoiding walk Radial SLE Fixed length Enthalten in Journal of statistical physics Springer US, 1969 146(2011), 2 vom: 02. Dez., Seite 281-293 (DE-627)129549711 (DE-600)219136-2 (DE-576)015002918 0022-4715 nnns volume:146 year:2011 number:2 day:02 month:12 pages:281-293 https://doi.org/10.1007/s10955-011-0406-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2409 GBV_ILN_4036 GBV_ILN_4305 GBV_ILN_4317 GBV_ILN_4323 33.00 VZ AR 146 2011 2 02 12 281-293 |
language |
English |
source |
Enthalten in Journal of statistical physics 146(2011), 2 vom: 02. Dez., Seite 281-293 volume:146 year:2011 number:2 day:02 month:12 pages:281-293 |
sourceStr |
Enthalten in Journal of statistical physics 146(2011), 2 vom: 02. Dez., Seite 281-293 volume:146 year:2011 number:2 day:02 month:12 pages:281-293 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
2d self-avoiding walk Radial SLE Fixed length |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of statistical physics |
authorswithroles_txt_mv |
Kennedy, Tom @@aut@@ |
publishDateDaySort_date |
2011-12-02T00:00:00Z |
hierarchy_top_id |
129549711 |
dewey-sort |
3530 |
id |
OLC2046617959 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046617959</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503154417.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10955-011-0406-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046617959</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10955-011-0406-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kennedy, Tom</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transforming Fixed-Length Self-avoiding Walks into Radial $ SLE_{8/3} $</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We conjecture a relationship between the scaling limit of the fixed-length ensemble of self-avoiding walks in the upper half plane and radial $ SLE_{8/3} $ in this half plane from 0 to i. The relationship is that if we take a curve from the fixed-length scaling limit of the SAW, weight it by a suitable power of the distance to the endpoint of the curve and apply the conformal map of the half plane that takes the endpoint to i, then we get the same probability measure on curves as radial $ SLE_{8/3} $. In addition to a non-rigorous derivation of this conjecture, we support it with Monte Carlo simulations of the SAW. Using the conjectured relationship between the SAW and radial $ SLE_{8/3} $, our simulations give estimates for both the interior and boundary scaling exponents. The values we obtain are within a few hundredths of a percent of the conjectured values.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">2d self-avoiding walk</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radial SLE</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fixed length</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of statistical physics</subfield><subfield code="d">Springer US, 1969</subfield><subfield code="g">146(2011), 2 vom: 02. Dez., Seite 281-293</subfield><subfield code="w">(DE-627)129549711</subfield><subfield code="w">(DE-600)219136-2</subfield><subfield code="w">(DE-576)015002918</subfield><subfield code="x">0022-4715</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:146</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:2</subfield><subfield code="g">day:02</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:281-293</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10955-011-0406-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">146</subfield><subfield code="j">2011</subfield><subfield code="e">2</subfield><subfield code="b">02</subfield><subfield code="c">12</subfield><subfield code="h">281-293</subfield></datafield></record></collection>
|
author |
Kennedy, Tom |
spellingShingle |
Kennedy, Tom ddc 530 bkl 33.00 misc 2d self-avoiding walk misc Radial SLE misc Fixed length Transforming Fixed-Length Self-avoiding Walks into Radial $ SLE_{8/3} $ |
authorStr |
Kennedy, Tom |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129549711 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-4715 |
topic_title |
530 VZ 33.00 bkl Transforming Fixed-Length Self-avoiding Walks into Radial $ SLE_{8/3} $ 2d self-avoiding walk Radial SLE Fixed length |
topic |
ddc 530 bkl 33.00 misc 2d self-avoiding walk misc Radial SLE misc Fixed length |
topic_unstemmed |
ddc 530 bkl 33.00 misc 2d self-avoiding walk misc Radial SLE misc Fixed length |
topic_browse |
ddc 530 bkl 33.00 misc 2d self-avoiding walk misc Radial SLE misc Fixed length |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of statistical physics |
hierarchy_parent_id |
129549711 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Journal of statistical physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129549711 (DE-600)219136-2 (DE-576)015002918 |
title |
Transforming Fixed-Length Self-avoiding Walks into Radial $ SLE_{8/3} $ |
ctrlnum |
(DE-627)OLC2046617959 (DE-He213)s10955-011-0406-5-p |
title_full |
Transforming Fixed-Length Self-avoiding Walks into Radial $ SLE_{8/3} $ |
author_sort |
Kennedy, Tom |
journal |
Journal of statistical physics |
journalStr |
Journal of statistical physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
container_start_page |
281 |
author_browse |
Kennedy, Tom |
container_volume |
146 |
class |
530 VZ 33.00 bkl |
format_se |
Aufsätze |
author-letter |
Kennedy, Tom |
doi_str_mv |
10.1007/s10955-011-0406-5 |
dewey-full |
530 |
title_sort |
transforming fixed-length self-avoiding walks into radial $ sle_{8/3} $ |
title_auth |
Transforming Fixed-Length Self-avoiding Walks into Radial $ SLE_{8/3} $ |
abstract |
Abstract We conjecture a relationship between the scaling limit of the fixed-length ensemble of self-avoiding walks in the upper half plane and radial $ SLE_{8/3} $ in this half plane from 0 to i. The relationship is that if we take a curve from the fixed-length scaling limit of the SAW, weight it by a suitable power of the distance to the endpoint of the curve and apply the conformal map of the half plane that takes the endpoint to i, then we get the same probability measure on curves as radial $ SLE_{8/3} $. In addition to a non-rigorous derivation of this conjecture, we support it with Monte Carlo simulations of the SAW. Using the conjectured relationship between the SAW and radial $ SLE_{8/3} $, our simulations give estimates for both the interior and boundary scaling exponents. The values we obtain are within a few hundredths of a percent of the conjectured values. © Springer Science+Business Media, LLC 2011 |
abstractGer |
Abstract We conjecture a relationship between the scaling limit of the fixed-length ensemble of self-avoiding walks in the upper half plane and radial $ SLE_{8/3} $ in this half plane from 0 to i. The relationship is that if we take a curve from the fixed-length scaling limit of the SAW, weight it by a suitable power of the distance to the endpoint of the curve and apply the conformal map of the half plane that takes the endpoint to i, then we get the same probability measure on curves as radial $ SLE_{8/3} $. In addition to a non-rigorous derivation of this conjecture, we support it with Monte Carlo simulations of the SAW. Using the conjectured relationship between the SAW and radial $ SLE_{8/3} $, our simulations give estimates for both the interior and boundary scaling exponents. The values we obtain are within a few hundredths of a percent of the conjectured values. © Springer Science+Business Media, LLC 2011 |
abstract_unstemmed |
Abstract We conjecture a relationship between the scaling limit of the fixed-length ensemble of self-avoiding walks in the upper half plane and radial $ SLE_{8/3} $ in this half plane from 0 to i. The relationship is that if we take a curve from the fixed-length scaling limit of the SAW, weight it by a suitable power of the distance to the endpoint of the curve and apply the conformal map of the half plane that takes the endpoint to i, then we get the same probability measure on curves as radial $ SLE_{8/3} $. In addition to a non-rigorous derivation of this conjecture, we support it with Monte Carlo simulations of the SAW. Using the conjectured relationship between the SAW and radial $ SLE_{8/3} $, our simulations give estimates for both the interior and boundary scaling exponents. The values we obtain are within a few hundredths of a percent of the conjectured values. © Springer Science+Business Media, LLC 2011 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2409 GBV_ILN_4036 GBV_ILN_4305 GBV_ILN_4317 GBV_ILN_4323 |
container_issue |
2 |
title_short |
Transforming Fixed-Length Self-avoiding Walks into Radial $ SLE_{8/3} $ |
url |
https://doi.org/10.1007/s10955-011-0406-5 |
remote_bool |
false |
ppnlink |
129549711 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10955-011-0406-5 |
up_date |
2024-07-04T05:30:53.133Z |
_version_ |
1803625224598454272 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046617959</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503154417.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10955-011-0406-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046617959</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10955-011-0406-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kennedy, Tom</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transforming Fixed-Length Self-avoiding Walks into Radial $ SLE_{8/3} $</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We conjecture a relationship between the scaling limit of the fixed-length ensemble of self-avoiding walks in the upper half plane and radial $ SLE_{8/3} $ in this half plane from 0 to i. The relationship is that if we take a curve from the fixed-length scaling limit of the SAW, weight it by a suitable power of the distance to the endpoint of the curve and apply the conformal map of the half plane that takes the endpoint to i, then we get the same probability measure on curves as radial $ SLE_{8/3} $. In addition to a non-rigorous derivation of this conjecture, we support it with Monte Carlo simulations of the SAW. Using the conjectured relationship between the SAW and radial $ SLE_{8/3} $, our simulations give estimates for both the interior and boundary scaling exponents. The values we obtain are within a few hundredths of a percent of the conjectured values.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">2d self-avoiding walk</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radial SLE</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fixed length</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of statistical physics</subfield><subfield code="d">Springer US, 1969</subfield><subfield code="g">146(2011), 2 vom: 02. Dez., Seite 281-293</subfield><subfield code="w">(DE-627)129549711</subfield><subfield code="w">(DE-600)219136-2</subfield><subfield code="w">(DE-576)015002918</subfield><subfield code="x">0022-4715</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:146</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:2</subfield><subfield code="g">day:02</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:281-293</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10955-011-0406-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">146</subfield><subfield code="j">2011</subfield><subfield code="e">2</subfield><subfield code="b">02</subfield><subfield code="c">12</subfield><subfield code="h">281-293</subfield></datafield></record></collection>
|
score |
7.401165 |