A Minimum Principle for Potentials with Application to Chebyshev Constants
Abstract For “Riesz-like” kernels K(x,y) = f(|x−y|) on A×A, where A is a compact d-regular set $A\subset \mathbb {R}^{p}$, we prove a minimum principle for potentials $U_{K}^{\mu }=\int K(x,y)\textup {d}\mu (x)$, where μ is a Borel measure supported on A. Setting $P_{K}(\mu )=\inf _{y\in A}U^{\mu }(...
Ausführliche Beschreibung
Autor*in: |
Reznikov, A. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media Dordrecht 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: Potential analysis - Springer Netherlands, 1992, 47(2017), 2 vom: 08. Feb., Seite 235-244 |
---|---|
Übergeordnetes Werk: |
volume:47 ; year:2017 ; number:2 ; day:08 ; month:02 ; pages:235-244 |
Links: |
---|
DOI / URN: |
10.1007/s11118-017-9618-x |
---|
Katalog-ID: |
OLC2046684362 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2046684362 | ||
003 | DE-627 | ||
005 | 20230504012255.0 | ||
007 | tu | ||
008 | 200820s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11118-017-9618-x |2 doi | |
035 | |a (DE-627)OLC2046684362 | ||
035 | |a (DE-He213)s11118-017-9618-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Reznikov, A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a A Minimum Principle for Potentials with Application to Chebyshev Constants |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media Dordrecht 2017 | ||
520 | |a Abstract For “Riesz-like” kernels K(x,y) = f(|x−y|) on A×A, where A is a compact d-regular set $A\subset \mathbb {R}^{p}$, we prove a minimum principle for potentials $U_{K}^{\mu }=\int K(x,y)\textup {d}\mu (x)$, where μ is a Borel measure supported on A. Setting $P_{K}(\mu )=\inf _{y\in A}U^{\mu }(y)$, the K-polarization of μ, the principle is used to show that if {νN} is a sequence of measures on A that converges in the weak-star sense to the measure ν, then PK(νN)→PK(ν) as $N\to \infty $. The continuous Chebyshev (polarization) problem concerns maximizing PK(μ) over all probability measures μ supported on A, while the N-point discrete Chebyshev problem maximizes PK(μ) only over normalized counting measures for N-point multisets on A. We prove for such kernels and sets A, that if {νN} is a sequence of N-point measures solving the discrete problem, then every weak-star limit measure of νN as $N \to \infty $ is a solution to the continuous problem. | ||
650 | 4 | |a Maximal Riesz polarization | |
650 | 4 | |a Chebyshev constant | |
650 | 4 | |a Hausdorff measure | |
650 | 4 | |a Riesz potential | |
650 | 4 | |a Minimum principle | |
700 | 1 | |a Saff, E. B. |4 aut | |
700 | 1 | |a Vlasiuk, O. V. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Potential analysis |d Springer Netherlands, 1992 |g 47(2017), 2 vom: 08. Feb., Seite 235-244 |w (DE-627)165647787 |w (DE-600)33485-6 |w (DE-576)032989911 |x 0926-2601 |7 nnns |
773 | 1 | 8 | |g volume:47 |g year:2017 |g number:2 |g day:08 |g month:02 |g pages:235-244 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11118-017-9618-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2088 | ||
951 | |a AR | ||
952 | |d 47 |j 2017 |e 2 |b 08 |c 02 |h 235-244 |
author_variant |
a r ar e b s eb ebs o v v ov ovv |
---|---|
matchkey_str |
article:09262601:2017----::mnmmrnilfroetasihplctotc |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1007/s11118-017-9618-x doi (DE-627)OLC2046684362 (DE-He213)s11118-017-9618-x-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Reznikov, A. verfasserin aut A Minimum Principle for Potentials with Application to Chebyshev Constants 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2017 Abstract For “Riesz-like” kernels K(x,y) = f(|x−y|) on A×A, where A is a compact d-regular set $A\subset \mathbb {R}^{p}$, we prove a minimum principle for potentials $U_{K}^{\mu }=\int K(x,y)\textup {d}\mu (x)$, where μ is a Borel measure supported on A. Setting $P_{K}(\mu )=\inf _{y\in A}U^{\mu }(y)$, the K-polarization of μ, the principle is used to show that if {νN} is a sequence of measures on A that converges in the weak-star sense to the measure ν, then PK(νN)→PK(ν) as $N\to \infty $. The continuous Chebyshev (polarization) problem concerns maximizing PK(μ) over all probability measures μ supported on A, while the N-point discrete Chebyshev problem maximizes PK(μ) only over normalized counting measures for N-point multisets on A. We prove for such kernels and sets A, that if {νN} is a sequence of N-point measures solving the discrete problem, then every weak-star limit measure of νN as $N \to \infty $ is a solution to the continuous problem. Maximal Riesz polarization Chebyshev constant Hausdorff measure Riesz potential Minimum principle Saff, E. B. aut Vlasiuk, O. V. aut Enthalten in Potential analysis Springer Netherlands, 1992 47(2017), 2 vom: 08. Feb., Seite 235-244 (DE-627)165647787 (DE-600)33485-6 (DE-576)032989911 0926-2601 nnns volume:47 year:2017 number:2 day:08 month:02 pages:235-244 https://doi.org/10.1007/s11118-017-9618-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2088 AR 47 2017 2 08 02 235-244 |
spelling |
10.1007/s11118-017-9618-x doi (DE-627)OLC2046684362 (DE-He213)s11118-017-9618-x-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Reznikov, A. verfasserin aut A Minimum Principle for Potentials with Application to Chebyshev Constants 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2017 Abstract For “Riesz-like” kernels K(x,y) = f(|x−y|) on A×A, where A is a compact d-regular set $A\subset \mathbb {R}^{p}$, we prove a minimum principle for potentials $U_{K}^{\mu }=\int K(x,y)\textup {d}\mu (x)$, where μ is a Borel measure supported on A. Setting $P_{K}(\mu )=\inf _{y\in A}U^{\mu }(y)$, the K-polarization of μ, the principle is used to show that if {νN} is a sequence of measures on A that converges in the weak-star sense to the measure ν, then PK(νN)→PK(ν) as $N\to \infty $. The continuous Chebyshev (polarization) problem concerns maximizing PK(μ) over all probability measures μ supported on A, while the N-point discrete Chebyshev problem maximizes PK(μ) only over normalized counting measures for N-point multisets on A. We prove for such kernels and sets A, that if {νN} is a sequence of N-point measures solving the discrete problem, then every weak-star limit measure of νN as $N \to \infty $ is a solution to the continuous problem. Maximal Riesz polarization Chebyshev constant Hausdorff measure Riesz potential Minimum principle Saff, E. B. aut Vlasiuk, O. V. aut Enthalten in Potential analysis Springer Netherlands, 1992 47(2017), 2 vom: 08. Feb., Seite 235-244 (DE-627)165647787 (DE-600)33485-6 (DE-576)032989911 0926-2601 nnns volume:47 year:2017 number:2 day:08 month:02 pages:235-244 https://doi.org/10.1007/s11118-017-9618-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2088 AR 47 2017 2 08 02 235-244 |
allfields_unstemmed |
10.1007/s11118-017-9618-x doi (DE-627)OLC2046684362 (DE-He213)s11118-017-9618-x-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Reznikov, A. verfasserin aut A Minimum Principle for Potentials with Application to Chebyshev Constants 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2017 Abstract For “Riesz-like” kernels K(x,y) = f(|x−y|) on A×A, where A is a compact d-regular set $A\subset \mathbb {R}^{p}$, we prove a minimum principle for potentials $U_{K}^{\mu }=\int K(x,y)\textup {d}\mu (x)$, where μ is a Borel measure supported on A. Setting $P_{K}(\mu )=\inf _{y\in A}U^{\mu }(y)$, the K-polarization of μ, the principle is used to show that if {νN} is a sequence of measures on A that converges in the weak-star sense to the measure ν, then PK(νN)→PK(ν) as $N\to \infty $. The continuous Chebyshev (polarization) problem concerns maximizing PK(μ) over all probability measures μ supported on A, while the N-point discrete Chebyshev problem maximizes PK(μ) only over normalized counting measures for N-point multisets on A. We prove for such kernels and sets A, that if {νN} is a sequence of N-point measures solving the discrete problem, then every weak-star limit measure of νN as $N \to \infty $ is a solution to the continuous problem. Maximal Riesz polarization Chebyshev constant Hausdorff measure Riesz potential Minimum principle Saff, E. B. aut Vlasiuk, O. V. aut Enthalten in Potential analysis Springer Netherlands, 1992 47(2017), 2 vom: 08. Feb., Seite 235-244 (DE-627)165647787 (DE-600)33485-6 (DE-576)032989911 0926-2601 nnns volume:47 year:2017 number:2 day:08 month:02 pages:235-244 https://doi.org/10.1007/s11118-017-9618-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2088 AR 47 2017 2 08 02 235-244 |
allfieldsGer |
10.1007/s11118-017-9618-x doi (DE-627)OLC2046684362 (DE-He213)s11118-017-9618-x-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Reznikov, A. verfasserin aut A Minimum Principle for Potentials with Application to Chebyshev Constants 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2017 Abstract For “Riesz-like” kernels K(x,y) = f(|x−y|) on A×A, where A is a compact d-regular set $A\subset \mathbb {R}^{p}$, we prove a minimum principle for potentials $U_{K}^{\mu }=\int K(x,y)\textup {d}\mu (x)$, where μ is a Borel measure supported on A. Setting $P_{K}(\mu )=\inf _{y\in A}U^{\mu }(y)$, the K-polarization of μ, the principle is used to show that if {νN} is a sequence of measures on A that converges in the weak-star sense to the measure ν, then PK(νN)→PK(ν) as $N\to \infty $. The continuous Chebyshev (polarization) problem concerns maximizing PK(μ) over all probability measures μ supported on A, while the N-point discrete Chebyshev problem maximizes PK(μ) only over normalized counting measures for N-point multisets on A. We prove for such kernels and sets A, that if {νN} is a sequence of N-point measures solving the discrete problem, then every weak-star limit measure of νN as $N \to \infty $ is a solution to the continuous problem. Maximal Riesz polarization Chebyshev constant Hausdorff measure Riesz potential Minimum principle Saff, E. B. aut Vlasiuk, O. V. aut Enthalten in Potential analysis Springer Netherlands, 1992 47(2017), 2 vom: 08. Feb., Seite 235-244 (DE-627)165647787 (DE-600)33485-6 (DE-576)032989911 0926-2601 nnns volume:47 year:2017 number:2 day:08 month:02 pages:235-244 https://doi.org/10.1007/s11118-017-9618-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2088 AR 47 2017 2 08 02 235-244 |
allfieldsSound |
10.1007/s11118-017-9618-x doi (DE-627)OLC2046684362 (DE-He213)s11118-017-9618-x-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Reznikov, A. verfasserin aut A Minimum Principle for Potentials with Application to Chebyshev Constants 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2017 Abstract For “Riesz-like” kernels K(x,y) = f(|x−y|) on A×A, where A is a compact d-regular set $A\subset \mathbb {R}^{p}$, we prove a minimum principle for potentials $U_{K}^{\mu }=\int K(x,y)\textup {d}\mu (x)$, where μ is a Borel measure supported on A. Setting $P_{K}(\mu )=\inf _{y\in A}U^{\mu }(y)$, the K-polarization of μ, the principle is used to show that if {νN} is a sequence of measures on A that converges in the weak-star sense to the measure ν, then PK(νN)→PK(ν) as $N\to \infty $. The continuous Chebyshev (polarization) problem concerns maximizing PK(μ) over all probability measures μ supported on A, while the N-point discrete Chebyshev problem maximizes PK(μ) only over normalized counting measures for N-point multisets on A. We prove for such kernels and sets A, that if {νN} is a sequence of N-point measures solving the discrete problem, then every weak-star limit measure of νN as $N \to \infty $ is a solution to the continuous problem. Maximal Riesz polarization Chebyshev constant Hausdorff measure Riesz potential Minimum principle Saff, E. B. aut Vlasiuk, O. V. aut Enthalten in Potential analysis Springer Netherlands, 1992 47(2017), 2 vom: 08. Feb., Seite 235-244 (DE-627)165647787 (DE-600)33485-6 (DE-576)032989911 0926-2601 nnns volume:47 year:2017 number:2 day:08 month:02 pages:235-244 https://doi.org/10.1007/s11118-017-9618-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2088 AR 47 2017 2 08 02 235-244 |
language |
English |
source |
Enthalten in Potential analysis 47(2017), 2 vom: 08. Feb., Seite 235-244 volume:47 year:2017 number:2 day:08 month:02 pages:235-244 |
sourceStr |
Enthalten in Potential analysis 47(2017), 2 vom: 08. Feb., Seite 235-244 volume:47 year:2017 number:2 day:08 month:02 pages:235-244 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Maximal Riesz polarization Chebyshev constant Hausdorff measure Riesz potential Minimum principle |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Potential analysis |
authorswithroles_txt_mv |
Reznikov, A. @@aut@@ Saff, E. B. @@aut@@ Vlasiuk, O. V. @@aut@@ |
publishDateDaySort_date |
2017-02-08T00:00:00Z |
hierarchy_top_id |
165647787 |
dewey-sort |
3510 |
id |
OLC2046684362 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046684362</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504012255.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11118-017-9618-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046684362</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11118-017-9618-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Reznikov, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Minimum Principle for Potentials with Application to Chebyshev Constants</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media Dordrecht 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract For “Riesz-like” kernels K(x,y) = f(|x−y|) on A×A, where A is a compact d-regular set $A\subset \mathbb {R}^{p}$, we prove a minimum principle for potentials $U_{K}^{\mu }=\int K(x,y)\textup {d}\mu (x)$, where μ is a Borel measure supported on A. Setting $P_{K}(\mu )=\inf _{y\in A}U^{\mu }(y)$, the K-polarization of μ, the principle is used to show that if {νN} is a sequence of measures on A that converges in the weak-star sense to the measure ν, then PK(νN)→PK(ν) as $N\to \infty $. The continuous Chebyshev (polarization) problem concerns maximizing PK(μ) over all probability measures μ supported on A, while the N-point discrete Chebyshev problem maximizes PK(μ) only over normalized counting measures for N-point multisets on A. We prove for such kernels and sets A, that if {νN} is a sequence of N-point measures solving the discrete problem, then every weak-star limit measure of νN as $N \to \infty $ is a solution to the continuous problem.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maximal Riesz polarization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chebyshev constant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hausdorff measure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riesz potential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimum principle</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saff, E. B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vlasiuk, O. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Potential analysis</subfield><subfield code="d">Springer Netherlands, 1992</subfield><subfield code="g">47(2017), 2 vom: 08. Feb., Seite 235-244</subfield><subfield code="w">(DE-627)165647787</subfield><subfield code="w">(DE-600)33485-6</subfield><subfield code="w">(DE-576)032989911</subfield><subfield code="x">0926-2601</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:47</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:2</subfield><subfield code="g">day:08</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:235-244</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11118-017-9618-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">47</subfield><subfield code="j">2017</subfield><subfield code="e">2</subfield><subfield code="b">08</subfield><subfield code="c">02</subfield><subfield code="h">235-244</subfield></datafield></record></collection>
|
author |
Reznikov, A. |
spellingShingle |
Reznikov, A. ddc 510 ssgn 17,1 misc Maximal Riesz polarization misc Chebyshev constant misc Hausdorff measure misc Riesz potential misc Minimum principle A Minimum Principle for Potentials with Application to Chebyshev Constants |
authorStr |
Reznikov, A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)165647787 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0926-2601 |
topic_title |
510 VZ 17,1 ssgn A Minimum Principle for Potentials with Application to Chebyshev Constants Maximal Riesz polarization Chebyshev constant Hausdorff measure Riesz potential Minimum principle |
topic |
ddc 510 ssgn 17,1 misc Maximal Riesz polarization misc Chebyshev constant misc Hausdorff measure misc Riesz potential misc Minimum principle |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Maximal Riesz polarization misc Chebyshev constant misc Hausdorff measure misc Riesz potential misc Minimum principle |
topic_browse |
ddc 510 ssgn 17,1 misc Maximal Riesz polarization misc Chebyshev constant misc Hausdorff measure misc Riesz potential misc Minimum principle |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Potential analysis |
hierarchy_parent_id |
165647787 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Potential analysis |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)165647787 (DE-600)33485-6 (DE-576)032989911 |
title |
A Minimum Principle for Potentials with Application to Chebyshev Constants |
ctrlnum |
(DE-627)OLC2046684362 (DE-He213)s11118-017-9618-x-p |
title_full |
A Minimum Principle for Potentials with Application to Chebyshev Constants |
author_sort |
Reznikov, A. |
journal |
Potential analysis |
journalStr |
Potential analysis |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
235 |
author_browse |
Reznikov, A. Saff, E. B. Vlasiuk, O. V. |
container_volume |
47 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Reznikov, A. |
doi_str_mv |
10.1007/s11118-017-9618-x |
dewey-full |
510 |
title_sort |
a minimum principle for potentials with application to chebyshev constants |
title_auth |
A Minimum Principle for Potentials with Application to Chebyshev Constants |
abstract |
Abstract For “Riesz-like” kernels K(x,y) = f(|x−y|) on A×A, where A is a compact d-regular set $A\subset \mathbb {R}^{p}$, we prove a minimum principle for potentials $U_{K}^{\mu }=\int K(x,y)\textup {d}\mu (x)$, where μ is a Borel measure supported on A. Setting $P_{K}(\mu )=\inf _{y\in A}U^{\mu }(y)$, the K-polarization of μ, the principle is used to show that if {νN} is a sequence of measures on A that converges in the weak-star sense to the measure ν, then PK(νN)→PK(ν) as $N\to \infty $. The continuous Chebyshev (polarization) problem concerns maximizing PK(μ) over all probability measures μ supported on A, while the N-point discrete Chebyshev problem maximizes PK(μ) only over normalized counting measures for N-point multisets on A. We prove for such kernels and sets A, that if {νN} is a sequence of N-point measures solving the discrete problem, then every weak-star limit measure of νN as $N \to \infty $ is a solution to the continuous problem. © Springer Science+Business Media Dordrecht 2017 |
abstractGer |
Abstract For “Riesz-like” kernels K(x,y) = f(|x−y|) on A×A, where A is a compact d-regular set $A\subset \mathbb {R}^{p}$, we prove a minimum principle for potentials $U_{K}^{\mu }=\int K(x,y)\textup {d}\mu (x)$, where μ is a Borel measure supported on A. Setting $P_{K}(\mu )=\inf _{y\in A}U^{\mu }(y)$, the K-polarization of μ, the principle is used to show that if {νN} is a sequence of measures on A that converges in the weak-star sense to the measure ν, then PK(νN)→PK(ν) as $N\to \infty $. The continuous Chebyshev (polarization) problem concerns maximizing PK(μ) over all probability measures μ supported on A, while the N-point discrete Chebyshev problem maximizes PK(μ) only over normalized counting measures for N-point multisets on A. We prove for such kernels and sets A, that if {νN} is a sequence of N-point measures solving the discrete problem, then every weak-star limit measure of νN as $N \to \infty $ is a solution to the continuous problem. © Springer Science+Business Media Dordrecht 2017 |
abstract_unstemmed |
Abstract For “Riesz-like” kernels K(x,y) = f(|x−y|) on A×A, where A is a compact d-regular set $A\subset \mathbb {R}^{p}$, we prove a minimum principle for potentials $U_{K}^{\mu }=\int K(x,y)\textup {d}\mu (x)$, where μ is a Borel measure supported on A. Setting $P_{K}(\mu )=\inf _{y\in A}U^{\mu }(y)$, the K-polarization of μ, the principle is used to show that if {νN} is a sequence of measures on A that converges in the weak-star sense to the measure ν, then PK(νN)→PK(ν) as $N\to \infty $. The continuous Chebyshev (polarization) problem concerns maximizing PK(μ) over all probability measures μ supported on A, while the N-point discrete Chebyshev problem maximizes PK(μ) only over normalized counting measures for N-point multisets on A. We prove for such kernels and sets A, that if {νN} is a sequence of N-point measures solving the discrete problem, then every weak-star limit measure of νN as $N \to \infty $ is a solution to the continuous problem. © Springer Science+Business Media Dordrecht 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2088 |
container_issue |
2 |
title_short |
A Minimum Principle for Potentials with Application to Chebyshev Constants |
url |
https://doi.org/10.1007/s11118-017-9618-x |
remote_bool |
false |
author2 |
Saff, E. B. Vlasiuk, O. V. |
author2Str |
Saff, E. B. Vlasiuk, O. V. |
ppnlink |
165647787 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11118-017-9618-x |
up_date |
2024-07-04T05:39:45.149Z |
_version_ |
1803625782460809216 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046684362</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504012255.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11118-017-9618-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046684362</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11118-017-9618-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Reznikov, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Minimum Principle for Potentials with Application to Chebyshev Constants</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media Dordrecht 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract For “Riesz-like” kernels K(x,y) = f(|x−y|) on A×A, where A is a compact d-regular set $A\subset \mathbb {R}^{p}$, we prove a minimum principle for potentials $U_{K}^{\mu }=\int K(x,y)\textup {d}\mu (x)$, where μ is a Borel measure supported on A. Setting $P_{K}(\mu )=\inf _{y\in A}U^{\mu }(y)$, the K-polarization of μ, the principle is used to show that if {νN} is a sequence of measures on A that converges in the weak-star sense to the measure ν, then PK(νN)→PK(ν) as $N\to \infty $. The continuous Chebyshev (polarization) problem concerns maximizing PK(μ) over all probability measures μ supported on A, while the N-point discrete Chebyshev problem maximizes PK(μ) only over normalized counting measures for N-point multisets on A. We prove for such kernels and sets A, that if {νN} is a sequence of N-point measures solving the discrete problem, then every weak-star limit measure of νN as $N \to \infty $ is a solution to the continuous problem.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maximal Riesz polarization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chebyshev constant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hausdorff measure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riesz potential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimum principle</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saff, E. B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vlasiuk, O. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Potential analysis</subfield><subfield code="d">Springer Netherlands, 1992</subfield><subfield code="g">47(2017), 2 vom: 08. Feb., Seite 235-244</subfield><subfield code="w">(DE-627)165647787</subfield><subfield code="w">(DE-600)33485-6</subfield><subfield code="w">(DE-576)032989911</subfield><subfield code="x">0926-2601</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:47</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:2</subfield><subfield code="g">day:08</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:235-244</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11118-017-9618-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">47</subfield><subfield code="j">2017</subfield><subfield code="e">2</subfield><subfield code="b">08</subfield><subfield code="c">02</subfield><subfield code="h">235-244</subfield></datafield></record></collection>
|
score |
7.402231 |