A Density Result for Homogeneous Sobolev Spaces on Planar Domains
Abstract We show that in a bounded simply connected planar domain Ω the smooth Sobolev functions Wk,∞(Ω) ∩ C∞(Ω) are dense in the homogeneous Sobolev spaces Lk,p(Ω).
Autor*in: |
Nandi, Debanjan [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Nature B.V. 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Potential analysis - Springer Netherlands, 1992, 51(2018), 4 vom: 28. Juli, Seite 483-498 |
---|---|
Übergeordnetes Werk: |
volume:51 ; year:2018 ; number:4 ; day:28 ; month:07 ; pages:483-498 |
Links: |
---|
DOI / URN: |
10.1007/s11118-018-9720-8 |
---|
Katalog-ID: |
OLC2046685504 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2046685504 | ||
003 | DE-627 | ||
005 | 20230504012304.0 | ||
007 | tu | ||
008 | 200820s2018 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11118-018-9720-8 |2 doi | |
035 | |a (DE-627)OLC2046685504 | ||
035 | |a (DE-He213)s11118-018-9720-8-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Nandi, Debanjan |e verfasserin |4 aut | |
245 | 1 | 0 | |a A Density Result for Homogeneous Sobolev Spaces on Planar Domains |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Nature B.V. 2018 | ||
520 | |a Abstract We show that in a bounded simply connected planar domain Ω the smooth Sobolev functions Wk,∞(Ω) ∩ C∞(Ω) are dense in the homogeneous Sobolev spaces Lk,p(Ω). | ||
650 | 4 | |a Sobolev space | |
650 | 4 | |a Homogeneous Sobolev space | |
650 | 4 | |a Density | |
700 | 1 | |a Rajala, Tapio |0 (orcid)0000-0001-6450-9656 |4 aut | |
700 | 1 | |a Schultz, Timo |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Potential analysis |d Springer Netherlands, 1992 |g 51(2018), 4 vom: 28. Juli, Seite 483-498 |w (DE-627)165647787 |w (DE-600)33485-6 |w (DE-576)032989911 |x 0926-2601 |7 nnns |
773 | 1 | 8 | |g volume:51 |g year:2018 |g number:4 |g day:28 |g month:07 |g pages:483-498 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11118-018-9720-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 51 |j 2018 |e 4 |b 28 |c 07 |h 483-498 |
author_variant |
d n dn t r tr t s ts |
---|---|
matchkey_str |
article:09262601:2018----::dniyeutohmgnosooesaeo |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1007/s11118-018-9720-8 doi (DE-627)OLC2046685504 (DE-He213)s11118-018-9720-8-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Nandi, Debanjan verfasserin aut A Density Result for Homogeneous Sobolev Spaces on Planar Domains 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2018 Abstract We show that in a bounded simply connected planar domain Ω the smooth Sobolev functions Wk,∞(Ω) ∩ C∞(Ω) are dense in the homogeneous Sobolev spaces Lk,p(Ω). Sobolev space Homogeneous Sobolev space Density Rajala, Tapio (orcid)0000-0001-6450-9656 aut Schultz, Timo aut Enthalten in Potential analysis Springer Netherlands, 1992 51(2018), 4 vom: 28. Juli, Seite 483-498 (DE-627)165647787 (DE-600)33485-6 (DE-576)032989911 0926-2601 nnns volume:51 year:2018 number:4 day:28 month:07 pages:483-498 https://doi.org/10.1007/s11118-018-9720-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 51 2018 4 28 07 483-498 |
spelling |
10.1007/s11118-018-9720-8 doi (DE-627)OLC2046685504 (DE-He213)s11118-018-9720-8-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Nandi, Debanjan verfasserin aut A Density Result for Homogeneous Sobolev Spaces on Planar Domains 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2018 Abstract We show that in a bounded simply connected planar domain Ω the smooth Sobolev functions Wk,∞(Ω) ∩ C∞(Ω) are dense in the homogeneous Sobolev spaces Lk,p(Ω). Sobolev space Homogeneous Sobolev space Density Rajala, Tapio (orcid)0000-0001-6450-9656 aut Schultz, Timo aut Enthalten in Potential analysis Springer Netherlands, 1992 51(2018), 4 vom: 28. Juli, Seite 483-498 (DE-627)165647787 (DE-600)33485-6 (DE-576)032989911 0926-2601 nnns volume:51 year:2018 number:4 day:28 month:07 pages:483-498 https://doi.org/10.1007/s11118-018-9720-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 51 2018 4 28 07 483-498 |
allfields_unstemmed |
10.1007/s11118-018-9720-8 doi (DE-627)OLC2046685504 (DE-He213)s11118-018-9720-8-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Nandi, Debanjan verfasserin aut A Density Result for Homogeneous Sobolev Spaces on Planar Domains 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2018 Abstract We show that in a bounded simply connected planar domain Ω the smooth Sobolev functions Wk,∞(Ω) ∩ C∞(Ω) are dense in the homogeneous Sobolev spaces Lk,p(Ω). Sobolev space Homogeneous Sobolev space Density Rajala, Tapio (orcid)0000-0001-6450-9656 aut Schultz, Timo aut Enthalten in Potential analysis Springer Netherlands, 1992 51(2018), 4 vom: 28. Juli, Seite 483-498 (DE-627)165647787 (DE-600)33485-6 (DE-576)032989911 0926-2601 nnns volume:51 year:2018 number:4 day:28 month:07 pages:483-498 https://doi.org/10.1007/s11118-018-9720-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 51 2018 4 28 07 483-498 |
allfieldsGer |
10.1007/s11118-018-9720-8 doi (DE-627)OLC2046685504 (DE-He213)s11118-018-9720-8-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Nandi, Debanjan verfasserin aut A Density Result for Homogeneous Sobolev Spaces on Planar Domains 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2018 Abstract We show that in a bounded simply connected planar domain Ω the smooth Sobolev functions Wk,∞(Ω) ∩ C∞(Ω) are dense in the homogeneous Sobolev spaces Lk,p(Ω). Sobolev space Homogeneous Sobolev space Density Rajala, Tapio (orcid)0000-0001-6450-9656 aut Schultz, Timo aut Enthalten in Potential analysis Springer Netherlands, 1992 51(2018), 4 vom: 28. Juli, Seite 483-498 (DE-627)165647787 (DE-600)33485-6 (DE-576)032989911 0926-2601 nnns volume:51 year:2018 number:4 day:28 month:07 pages:483-498 https://doi.org/10.1007/s11118-018-9720-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 51 2018 4 28 07 483-498 |
allfieldsSound |
10.1007/s11118-018-9720-8 doi (DE-627)OLC2046685504 (DE-He213)s11118-018-9720-8-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Nandi, Debanjan verfasserin aut A Density Result for Homogeneous Sobolev Spaces on Planar Domains 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature B.V. 2018 Abstract We show that in a bounded simply connected planar domain Ω the smooth Sobolev functions Wk,∞(Ω) ∩ C∞(Ω) are dense in the homogeneous Sobolev spaces Lk,p(Ω). Sobolev space Homogeneous Sobolev space Density Rajala, Tapio (orcid)0000-0001-6450-9656 aut Schultz, Timo aut Enthalten in Potential analysis Springer Netherlands, 1992 51(2018), 4 vom: 28. Juli, Seite 483-498 (DE-627)165647787 (DE-600)33485-6 (DE-576)032989911 0926-2601 nnns volume:51 year:2018 number:4 day:28 month:07 pages:483-498 https://doi.org/10.1007/s11118-018-9720-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 51 2018 4 28 07 483-498 |
language |
English |
source |
Enthalten in Potential analysis 51(2018), 4 vom: 28. Juli, Seite 483-498 volume:51 year:2018 number:4 day:28 month:07 pages:483-498 |
sourceStr |
Enthalten in Potential analysis 51(2018), 4 vom: 28. Juli, Seite 483-498 volume:51 year:2018 number:4 day:28 month:07 pages:483-498 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Sobolev space Homogeneous Sobolev space Density |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Potential analysis |
authorswithroles_txt_mv |
Nandi, Debanjan @@aut@@ Rajala, Tapio @@aut@@ Schultz, Timo @@aut@@ |
publishDateDaySort_date |
2018-07-28T00:00:00Z |
hierarchy_top_id |
165647787 |
dewey-sort |
3510 |
id |
OLC2046685504 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046685504</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504012304.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11118-018-9720-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046685504</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11118-018-9720-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nandi, Debanjan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Density Result for Homogeneous Sobolev Spaces on Planar Domains</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Nature B.V. 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We show that in a bounded simply connected planar domain Ω the smooth Sobolev functions Wk,∞(Ω) ∩ C∞(Ω) are dense in the homogeneous Sobolev spaces Lk,p(Ω).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sobolev space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homogeneous Sobolev space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Density</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rajala, Tapio</subfield><subfield code="0">(orcid)0000-0001-6450-9656</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schultz, Timo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Potential analysis</subfield><subfield code="d">Springer Netherlands, 1992</subfield><subfield code="g">51(2018), 4 vom: 28. Juli, Seite 483-498</subfield><subfield code="w">(DE-627)165647787</subfield><subfield code="w">(DE-600)33485-6</subfield><subfield code="w">(DE-576)032989911</subfield><subfield code="x">0926-2601</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:51</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:4</subfield><subfield code="g">day:28</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:483-498</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11118-018-9720-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">51</subfield><subfield code="j">2018</subfield><subfield code="e">4</subfield><subfield code="b">28</subfield><subfield code="c">07</subfield><subfield code="h">483-498</subfield></datafield></record></collection>
|
author |
Nandi, Debanjan |
spellingShingle |
Nandi, Debanjan ddc 510 ssgn 17,1 misc Sobolev space misc Homogeneous Sobolev space misc Density A Density Result for Homogeneous Sobolev Spaces on Planar Domains |
authorStr |
Nandi, Debanjan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)165647787 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0926-2601 |
topic_title |
510 VZ 17,1 ssgn A Density Result for Homogeneous Sobolev Spaces on Planar Domains Sobolev space Homogeneous Sobolev space Density |
topic |
ddc 510 ssgn 17,1 misc Sobolev space misc Homogeneous Sobolev space misc Density |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Sobolev space misc Homogeneous Sobolev space misc Density |
topic_browse |
ddc 510 ssgn 17,1 misc Sobolev space misc Homogeneous Sobolev space misc Density |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Potential analysis |
hierarchy_parent_id |
165647787 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Potential analysis |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)165647787 (DE-600)33485-6 (DE-576)032989911 |
title |
A Density Result for Homogeneous Sobolev Spaces on Planar Domains |
ctrlnum |
(DE-627)OLC2046685504 (DE-He213)s11118-018-9720-8-p |
title_full |
A Density Result for Homogeneous Sobolev Spaces on Planar Domains |
author_sort |
Nandi, Debanjan |
journal |
Potential analysis |
journalStr |
Potential analysis |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
483 |
author_browse |
Nandi, Debanjan Rajala, Tapio Schultz, Timo |
container_volume |
51 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Nandi, Debanjan |
doi_str_mv |
10.1007/s11118-018-9720-8 |
normlink |
(ORCID)0000-0001-6450-9656 |
normlink_prefix_str_mv |
(orcid)0000-0001-6450-9656 |
dewey-full |
510 |
title_sort |
a density result for homogeneous sobolev spaces on planar domains |
title_auth |
A Density Result for Homogeneous Sobolev Spaces on Planar Domains |
abstract |
Abstract We show that in a bounded simply connected planar domain Ω the smooth Sobolev functions Wk,∞(Ω) ∩ C∞(Ω) are dense in the homogeneous Sobolev spaces Lk,p(Ω). © Springer Nature B.V. 2018 |
abstractGer |
Abstract We show that in a bounded simply connected planar domain Ω the smooth Sobolev functions Wk,∞(Ω) ∩ C∞(Ω) are dense in the homogeneous Sobolev spaces Lk,p(Ω). © Springer Nature B.V. 2018 |
abstract_unstemmed |
Abstract We show that in a bounded simply connected planar domain Ω the smooth Sobolev functions Wk,∞(Ω) ∩ C∞(Ω) are dense in the homogeneous Sobolev spaces Lk,p(Ω). © Springer Nature B.V. 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 |
container_issue |
4 |
title_short |
A Density Result for Homogeneous Sobolev Spaces on Planar Domains |
url |
https://doi.org/10.1007/s11118-018-9720-8 |
remote_bool |
false |
author2 |
Rajala, Tapio Schultz, Timo |
author2Str |
Rajala, Tapio Schultz, Timo |
ppnlink |
165647787 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11118-018-9720-8 |
up_date |
2024-07-04T05:39:52.649Z |
_version_ |
1803625790320934912 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2046685504</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504012304.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11118-018-9720-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2046685504</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11118-018-9720-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nandi, Debanjan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Density Result for Homogeneous Sobolev Spaces on Planar Domains</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Nature B.V. 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We show that in a bounded simply connected planar domain Ω the smooth Sobolev functions Wk,∞(Ω) ∩ C∞(Ω) are dense in the homogeneous Sobolev spaces Lk,p(Ω).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sobolev space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homogeneous Sobolev space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Density</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rajala, Tapio</subfield><subfield code="0">(orcid)0000-0001-6450-9656</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schultz, Timo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Potential analysis</subfield><subfield code="d">Springer Netherlands, 1992</subfield><subfield code="g">51(2018), 4 vom: 28. Juli, Seite 483-498</subfield><subfield code="w">(DE-627)165647787</subfield><subfield code="w">(DE-600)33485-6</subfield><subfield code="w">(DE-576)032989911</subfield><subfield code="x">0926-2601</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:51</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:4</subfield><subfield code="g">day:28</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:483-498</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11118-018-9720-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">51</subfield><subfield code="j">2018</subfield><subfield code="e">4</subfield><subfield code="b">28</subfield><subfield code="c">07</subfield><subfield code="h">483-498</subfield></datafield></record></collection>
|
score |
7.402112 |