Modeling of Acoustic Resonance in Spherical Resonators for the Precision Determination of Thermodynamic Temperature
A procedure for modeling the acoustic resonance lines in spherical resonators, filled with an inert gas, is developed. The method is based on a calculation of the amplitude and phase of the forced oscillations of a gas in a spherical cavity. The theoretical resonance lines are calculated for differe...
Ausführliche Beschreibung
Autor*in: |
Kytin, V. G. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Measurement techniques - Springer US, 1958, 58(2015), 1 vom: Apr., Seite 50-58 |
---|---|
Übergeordnetes Werk: |
volume:58 ; year:2015 ; number:1 ; month:04 ; pages:50-58 |
Links: |
---|
DOI / URN: |
10.1007/s11018-015-0662-x |
---|
Katalog-ID: |
OLC204773374X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC204773374X | ||
003 | DE-627 | ||
005 | 20230503183149.0 | ||
007 | tu | ||
008 | 200819s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11018-015-0662-x |2 doi | |
035 | |a (DE-627)OLC204773374X | ||
035 | |a (DE-He213)s11018-015-0662-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q VZ |
084 | |a 11 |2 ssgn | ||
100 | 1 | |a Kytin, V. G. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Modeling of Acoustic Resonance in Spherical Resonators for the Precision Determination of Thermodynamic Temperature |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2015 | ||
520 | |a A procedure for modeling the acoustic resonance lines in spherical resonators, filled with an inert gas, is developed. The method is based on a calculation of the amplitude and phase of the forced oscillations of a gas in a spherical cavity. The theoretical resonance lines are calculated for different gas pressures and temperatures, and the effect of acoustic converters and holes in the resonator wall on the resonance lines is analyzed. The calculated frequency dependences of the acoustic signal are compared with those measured on an experimental sample of a spherical resonator filled with gaseous helium. | ||
650 | 4 | |a temperature standards | |
650 | 4 | |a acoustic gas thermometer | |
650 | 4 | |a acoustic resonance | |
700 | 1 | |a Kytin, G. A. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Measurement techniques |d Springer US, 1958 |g 58(2015), 1 vom: Apr., Seite 50-58 |w (DE-627)129596876 |w (DE-600)240846-6 |w (DE-576)015090051 |x 0543-1972 |7 nnns |
773 | 1 | 8 | |g volume:58 |g year:2015 |g number:1 |g month:04 |g pages:50-58 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11018-015-0662-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_170 | ||
951 | |a AR | ||
952 | |d 58 |j 2015 |e 1 |c 04 |h 50-58 |
author_variant |
v g k vg vgk g a k ga gak |
---|---|
matchkey_str |
article:05431972:2015----::oeigfcutceoacishrcleoaosotercsodtriai |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s11018-015-0662-x doi (DE-627)OLC204773374X (DE-He213)s11018-015-0662-x-p DE-627 ger DE-627 rakwb eng 620 VZ 11 ssgn Kytin, V. G. verfasserin aut Modeling of Acoustic Resonance in Spherical Resonators for the Precision Determination of Thermodynamic Temperature 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 A procedure for modeling the acoustic resonance lines in spherical resonators, filled with an inert gas, is developed. The method is based on a calculation of the amplitude and phase of the forced oscillations of a gas in a spherical cavity. The theoretical resonance lines are calculated for different gas pressures and temperatures, and the effect of acoustic converters and holes in the resonator wall on the resonance lines is analyzed. The calculated frequency dependences of the acoustic signal are compared with those measured on an experimental sample of a spherical resonator filled with gaseous helium. temperature standards acoustic gas thermometer acoustic resonance Kytin, G. A. aut Enthalten in Measurement techniques Springer US, 1958 58(2015), 1 vom: Apr., Seite 50-58 (DE-627)129596876 (DE-600)240846-6 (DE-576)015090051 0543-1972 nnns volume:58 year:2015 number:1 month:04 pages:50-58 https://doi.org/10.1007/s11018-015-0662-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 AR 58 2015 1 04 50-58 |
spelling |
10.1007/s11018-015-0662-x doi (DE-627)OLC204773374X (DE-He213)s11018-015-0662-x-p DE-627 ger DE-627 rakwb eng 620 VZ 11 ssgn Kytin, V. G. verfasserin aut Modeling of Acoustic Resonance in Spherical Resonators for the Precision Determination of Thermodynamic Temperature 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 A procedure for modeling the acoustic resonance lines in spherical resonators, filled with an inert gas, is developed. The method is based on a calculation of the amplitude and phase of the forced oscillations of a gas in a spherical cavity. The theoretical resonance lines are calculated for different gas pressures and temperatures, and the effect of acoustic converters and holes in the resonator wall on the resonance lines is analyzed. The calculated frequency dependences of the acoustic signal are compared with those measured on an experimental sample of a spherical resonator filled with gaseous helium. temperature standards acoustic gas thermometer acoustic resonance Kytin, G. A. aut Enthalten in Measurement techniques Springer US, 1958 58(2015), 1 vom: Apr., Seite 50-58 (DE-627)129596876 (DE-600)240846-6 (DE-576)015090051 0543-1972 nnns volume:58 year:2015 number:1 month:04 pages:50-58 https://doi.org/10.1007/s11018-015-0662-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 AR 58 2015 1 04 50-58 |
allfields_unstemmed |
10.1007/s11018-015-0662-x doi (DE-627)OLC204773374X (DE-He213)s11018-015-0662-x-p DE-627 ger DE-627 rakwb eng 620 VZ 11 ssgn Kytin, V. G. verfasserin aut Modeling of Acoustic Resonance in Spherical Resonators for the Precision Determination of Thermodynamic Temperature 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 A procedure for modeling the acoustic resonance lines in spherical resonators, filled with an inert gas, is developed. The method is based on a calculation of the amplitude and phase of the forced oscillations of a gas in a spherical cavity. The theoretical resonance lines are calculated for different gas pressures and temperatures, and the effect of acoustic converters and holes in the resonator wall on the resonance lines is analyzed. The calculated frequency dependences of the acoustic signal are compared with those measured on an experimental sample of a spherical resonator filled with gaseous helium. temperature standards acoustic gas thermometer acoustic resonance Kytin, G. A. aut Enthalten in Measurement techniques Springer US, 1958 58(2015), 1 vom: Apr., Seite 50-58 (DE-627)129596876 (DE-600)240846-6 (DE-576)015090051 0543-1972 nnns volume:58 year:2015 number:1 month:04 pages:50-58 https://doi.org/10.1007/s11018-015-0662-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 AR 58 2015 1 04 50-58 |
allfieldsGer |
10.1007/s11018-015-0662-x doi (DE-627)OLC204773374X (DE-He213)s11018-015-0662-x-p DE-627 ger DE-627 rakwb eng 620 VZ 11 ssgn Kytin, V. G. verfasserin aut Modeling of Acoustic Resonance in Spherical Resonators for the Precision Determination of Thermodynamic Temperature 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 A procedure for modeling the acoustic resonance lines in spherical resonators, filled with an inert gas, is developed. The method is based on a calculation of the amplitude and phase of the forced oscillations of a gas in a spherical cavity. The theoretical resonance lines are calculated for different gas pressures and temperatures, and the effect of acoustic converters and holes in the resonator wall on the resonance lines is analyzed. The calculated frequency dependences of the acoustic signal are compared with those measured on an experimental sample of a spherical resonator filled with gaseous helium. temperature standards acoustic gas thermometer acoustic resonance Kytin, G. A. aut Enthalten in Measurement techniques Springer US, 1958 58(2015), 1 vom: Apr., Seite 50-58 (DE-627)129596876 (DE-600)240846-6 (DE-576)015090051 0543-1972 nnns volume:58 year:2015 number:1 month:04 pages:50-58 https://doi.org/10.1007/s11018-015-0662-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 AR 58 2015 1 04 50-58 |
allfieldsSound |
10.1007/s11018-015-0662-x doi (DE-627)OLC204773374X (DE-He213)s11018-015-0662-x-p DE-627 ger DE-627 rakwb eng 620 VZ 11 ssgn Kytin, V. G. verfasserin aut Modeling of Acoustic Resonance in Spherical Resonators for the Precision Determination of Thermodynamic Temperature 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 A procedure for modeling the acoustic resonance lines in spherical resonators, filled with an inert gas, is developed. The method is based on a calculation of the amplitude and phase of the forced oscillations of a gas in a spherical cavity. The theoretical resonance lines are calculated for different gas pressures and temperatures, and the effect of acoustic converters and holes in the resonator wall on the resonance lines is analyzed. The calculated frequency dependences of the acoustic signal are compared with those measured on an experimental sample of a spherical resonator filled with gaseous helium. temperature standards acoustic gas thermometer acoustic resonance Kytin, G. A. aut Enthalten in Measurement techniques Springer US, 1958 58(2015), 1 vom: Apr., Seite 50-58 (DE-627)129596876 (DE-600)240846-6 (DE-576)015090051 0543-1972 nnns volume:58 year:2015 number:1 month:04 pages:50-58 https://doi.org/10.1007/s11018-015-0662-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 AR 58 2015 1 04 50-58 |
language |
English |
source |
Enthalten in Measurement techniques 58(2015), 1 vom: Apr., Seite 50-58 volume:58 year:2015 number:1 month:04 pages:50-58 |
sourceStr |
Enthalten in Measurement techniques 58(2015), 1 vom: Apr., Seite 50-58 volume:58 year:2015 number:1 month:04 pages:50-58 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
temperature standards acoustic gas thermometer acoustic resonance |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Measurement techniques |
authorswithroles_txt_mv |
Kytin, V. G. @@aut@@ Kytin, G. A. @@aut@@ |
publishDateDaySort_date |
2015-04-01T00:00:00Z |
hierarchy_top_id |
129596876 |
dewey-sort |
3620 |
id |
OLC204773374X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC204773374X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503183149.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11018-015-0662-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC204773374X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11018-015-0662-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kytin, V. G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling of Acoustic Resonance in Spherical Resonators for the Precision Determination of Thermodynamic Temperature</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A procedure for modeling the acoustic resonance lines in spherical resonators, filled with an inert gas, is developed. The method is based on a calculation of the amplitude and phase of the forced oscillations of a gas in a spherical cavity. The theoretical resonance lines are calculated for different gas pressures and temperatures, and the effect of acoustic converters and holes in the resonator wall on the resonance lines is analyzed. The calculated frequency dependences of the acoustic signal are compared with those measured on an experimental sample of a spherical resonator filled with gaseous helium.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">temperature standards</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">acoustic gas thermometer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">acoustic resonance</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kytin, G. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Measurement techniques</subfield><subfield code="d">Springer US, 1958</subfield><subfield code="g">58(2015), 1 vom: Apr., Seite 50-58</subfield><subfield code="w">(DE-627)129596876</subfield><subfield code="w">(DE-600)240846-6</subfield><subfield code="w">(DE-576)015090051</subfield><subfield code="x">0543-1972</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:58</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:50-58</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11018-015-0662-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">58</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="c">04</subfield><subfield code="h">50-58</subfield></datafield></record></collection>
|
author |
Kytin, V. G. |
spellingShingle |
Kytin, V. G. ddc 620 ssgn 11 misc temperature standards misc acoustic gas thermometer misc acoustic resonance Modeling of Acoustic Resonance in Spherical Resonators for the Precision Determination of Thermodynamic Temperature |
authorStr |
Kytin, V. G. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129596876 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0543-1972 |
topic_title |
620 VZ 11 ssgn Modeling of Acoustic Resonance in Spherical Resonators for the Precision Determination of Thermodynamic Temperature temperature standards acoustic gas thermometer acoustic resonance |
topic |
ddc 620 ssgn 11 misc temperature standards misc acoustic gas thermometer misc acoustic resonance |
topic_unstemmed |
ddc 620 ssgn 11 misc temperature standards misc acoustic gas thermometer misc acoustic resonance |
topic_browse |
ddc 620 ssgn 11 misc temperature standards misc acoustic gas thermometer misc acoustic resonance |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Measurement techniques |
hierarchy_parent_id |
129596876 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Measurement techniques |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129596876 (DE-600)240846-6 (DE-576)015090051 |
title |
Modeling of Acoustic Resonance in Spherical Resonators for the Precision Determination of Thermodynamic Temperature |
ctrlnum |
(DE-627)OLC204773374X (DE-He213)s11018-015-0662-x-p |
title_full |
Modeling of Acoustic Resonance in Spherical Resonators for the Precision Determination of Thermodynamic Temperature |
author_sort |
Kytin, V. G. |
journal |
Measurement techniques |
journalStr |
Measurement techniques |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
50 |
author_browse |
Kytin, V. G. Kytin, G. A. |
container_volume |
58 |
class |
620 VZ 11 ssgn |
format_se |
Aufsätze |
author-letter |
Kytin, V. G. |
doi_str_mv |
10.1007/s11018-015-0662-x |
dewey-full |
620 |
title_sort |
modeling of acoustic resonance in spherical resonators for the precision determination of thermodynamic temperature |
title_auth |
Modeling of Acoustic Resonance in Spherical Resonators for the Precision Determination of Thermodynamic Temperature |
abstract |
A procedure for modeling the acoustic resonance lines in spherical resonators, filled with an inert gas, is developed. The method is based on a calculation of the amplitude and phase of the forced oscillations of a gas in a spherical cavity. The theoretical resonance lines are calculated for different gas pressures and temperatures, and the effect of acoustic converters and holes in the resonator wall on the resonance lines is analyzed. The calculated frequency dependences of the acoustic signal are compared with those measured on an experimental sample of a spherical resonator filled with gaseous helium. © Springer Science+Business Media New York 2015 |
abstractGer |
A procedure for modeling the acoustic resonance lines in spherical resonators, filled with an inert gas, is developed. The method is based on a calculation of the amplitude and phase of the forced oscillations of a gas in a spherical cavity. The theoretical resonance lines are calculated for different gas pressures and temperatures, and the effect of acoustic converters and holes in the resonator wall on the resonance lines is analyzed. The calculated frequency dependences of the acoustic signal are compared with those measured on an experimental sample of a spherical resonator filled with gaseous helium. © Springer Science+Business Media New York 2015 |
abstract_unstemmed |
A procedure for modeling the acoustic resonance lines in spherical resonators, filled with an inert gas, is developed. The method is based on a calculation of the amplitude and phase of the forced oscillations of a gas in a spherical cavity. The theoretical resonance lines are calculated for different gas pressures and temperatures, and the effect of acoustic converters and holes in the resonator wall on the resonance lines is analyzed. The calculated frequency dependences of the acoustic signal are compared with those measured on an experimental sample of a spherical resonator filled with gaseous helium. © Springer Science+Business Media New York 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 |
container_issue |
1 |
title_short |
Modeling of Acoustic Resonance in Spherical Resonators for the Precision Determination of Thermodynamic Temperature |
url |
https://doi.org/10.1007/s11018-015-0662-x |
remote_bool |
false |
author2 |
Kytin, G. A. |
author2Str |
Kytin, G. A. |
ppnlink |
129596876 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11018-015-0662-x |
up_date |
2024-07-03T16:06:05.480Z |
_version_ |
1803574591337005056 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC204773374X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503183149.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11018-015-0662-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC204773374X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11018-015-0662-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kytin, V. G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling of Acoustic Resonance in Spherical Resonators for the Precision Determination of Thermodynamic Temperature</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A procedure for modeling the acoustic resonance lines in spherical resonators, filled with an inert gas, is developed. The method is based on a calculation of the amplitude and phase of the forced oscillations of a gas in a spherical cavity. The theoretical resonance lines are calculated for different gas pressures and temperatures, and the effect of acoustic converters and holes in the resonator wall on the resonance lines is analyzed. The calculated frequency dependences of the acoustic signal are compared with those measured on an experimental sample of a spherical resonator filled with gaseous helium.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">temperature standards</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">acoustic gas thermometer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">acoustic resonance</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kytin, G. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Measurement techniques</subfield><subfield code="d">Springer US, 1958</subfield><subfield code="g">58(2015), 1 vom: Apr., Seite 50-58</subfield><subfield code="w">(DE-627)129596876</subfield><subfield code="w">(DE-600)240846-6</subfield><subfield code="w">(DE-576)015090051</subfield><subfield code="x">0543-1972</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:58</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:50-58</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11018-015-0662-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">58</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="c">04</subfield><subfield code="h">50-58</subfield></datafield></record></collection>
|
score |
7.4012823 |