Recrystallization of biphase niobium alloys with zirconium and nitrogen
Conclusions The properties of heterophase Nb−Zr−N alloys depend to a considerable extent on the ratio of at.% Zr/at.% N. With a stoichiometric ratio (at.% Zr/at.% N≃ 1) the basic structural component determining the properties of the alloys is dispersed nitride phase. These alloys have the highest s...
Ausführliche Beschreibung
Autor*in: |
Sheftel', E. N. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1979 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Plenum Publishing Corporation 1980 |
---|
Übergeordnetes Werk: |
Enthalten in: Metal science and heat treatment - Kluwer Academic Publishers-Plenum Publishers, 1959, 21(1979), 7 vom: Juli, Seite 511-517 |
---|---|
Übergeordnetes Werk: |
volume:21 ; year:1979 ; number:7 ; month:07 ; pages:511-517 |
Links: |
---|
DOI / URN: |
10.1007/BF00703657 |
---|
Katalog-ID: |
OLC2048021794 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2048021794 | ||
003 | DE-627 | ||
005 | 20230503191829.0 | ||
007 | tu | ||
008 | 200819s1979 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF00703657 |2 doi | |
035 | |a (DE-627)OLC2048021794 | ||
035 | |a (DE-He213)BF00703657-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |a 620 |a 660 |q VZ |
100 | 1 | |a Sheftel', E. N. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Recrystallization of biphase niobium alloys with zirconium and nitrogen |
264 | 1 | |c 1979 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Plenum Publishing Corporation 1980 | ||
520 | |a Conclusions The properties of heterophase Nb−Zr−N alloys depend to a considerable extent on the ratio of at.% Zr/at.% N. With a stoichiometric ratio (at.% Zr/at.% N≃ 1) the basic structural component determining the properties of the alloys is dispersed nitride phase. These alloys have the highest strength.In niobium alloys with 1–3% Zr and at.% Zr/at.% N≃1 the cellular substructure formed during cold plastic deformation is resistant up to the initial recrystallization temperature (tps) and is partially retained in the entire temperature range of the recrystallization treatment.The initial recrystallization temperature (tps), other conditions being equal, depends on the dispersity of the nitride phase in the original structure. Under our experimental conditions the initial recrystallization temperature after 60% deformation was 1100°.Decomposition of the solid solution in Nb−1–3% Zr−N alloys, occurring at some temperatures in the recrystallization range, inhibits completion of recrystallization up to 1500°.Dispersed nitride phase inhibits grain growth in the process of secondary recrystallization. The alloy with 3% Zr and at.% Zr/at.% N≃ 1 is the most resistant to grain growth. | ||
650 | 4 | |a Zirconium | |
650 | 4 | |a Solid Solution | |
650 | 4 | |a Recrystallization | |
650 | 4 | |a Plastic Deformation | |
650 | 4 | |a Nitride | |
700 | 1 | |a Usmanova, G. Sh. |4 aut | |
700 | 1 | |a Grigorovich, V. K. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Metal science and heat treatment |d Kluwer Academic Publishers-Plenum Publishers, 1959 |g 21(1979), 7 vom: Juli, Seite 511-517 |w (DE-627)129596981 |w (DE-600)240858-2 |w (DE-576)015090159 |x 0026-0673 |7 nnns |
773 | 1 | 8 | |g volume:21 |g year:1979 |g number:7 |g month:07 |g pages:511-517 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF00703657 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4082 | ||
912 | |a GBV_ILN_4319 | ||
951 | |a AR | ||
952 | |d 21 |j 1979 |e 7 |c 07 |h 511-517 |
author_variant |
e n s en ens g s u gs gsu v k g vk vkg |
---|---|
matchkey_str |
article:00260673:1979----::ersalztoobpaeibualywtz |
hierarchy_sort_str |
1979 |
publishDate |
1979 |
allfields |
10.1007/BF00703657 doi (DE-627)OLC2048021794 (DE-He213)BF00703657-p DE-627 ger DE-627 rakwb eng 670 620 660 VZ Sheftel', E. N. verfasserin aut Recrystallization of biphase niobium alloys with zirconium and nitrogen 1979 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 1980 Conclusions The properties of heterophase Nb−Zr−N alloys depend to a considerable extent on the ratio of at.% Zr/at.% N. With a stoichiometric ratio (at.% Zr/at.% N≃ 1) the basic structural component determining the properties of the alloys is dispersed nitride phase. These alloys have the highest strength.In niobium alloys with 1–3% Zr and at.% Zr/at.% N≃1 the cellular substructure formed during cold plastic deformation is resistant up to the initial recrystallization temperature (tps) and is partially retained in the entire temperature range of the recrystallization treatment.The initial recrystallization temperature (tps), other conditions being equal, depends on the dispersity of the nitride phase in the original structure. Under our experimental conditions the initial recrystallization temperature after 60% deformation was 1100°.Decomposition of the solid solution in Nb−1–3% Zr−N alloys, occurring at some temperatures in the recrystallization range, inhibits completion of recrystallization up to 1500°.Dispersed nitride phase inhibits grain growth in the process of secondary recrystallization. The alloy with 3% Zr and at.% Zr/at.% N≃ 1 is the most resistant to grain growth. Zirconium Solid Solution Recrystallization Plastic Deformation Nitride Usmanova, G. Sh. aut Grigorovich, V. K. aut Enthalten in Metal science and heat treatment Kluwer Academic Publishers-Plenum Publishers, 1959 21(1979), 7 vom: Juli, Seite 511-517 (DE-627)129596981 (DE-600)240858-2 (DE-576)015090159 0026-0673 nnns volume:21 year:1979 number:7 month:07 pages:511-517 https://doi.org/10.1007/BF00703657 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4319 AR 21 1979 7 07 511-517 |
spelling |
10.1007/BF00703657 doi (DE-627)OLC2048021794 (DE-He213)BF00703657-p DE-627 ger DE-627 rakwb eng 670 620 660 VZ Sheftel', E. N. verfasserin aut Recrystallization of biphase niobium alloys with zirconium and nitrogen 1979 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 1980 Conclusions The properties of heterophase Nb−Zr−N alloys depend to a considerable extent on the ratio of at.% Zr/at.% N. With a stoichiometric ratio (at.% Zr/at.% N≃ 1) the basic structural component determining the properties of the alloys is dispersed nitride phase. These alloys have the highest strength.In niobium alloys with 1–3% Zr and at.% Zr/at.% N≃1 the cellular substructure formed during cold plastic deformation is resistant up to the initial recrystallization temperature (tps) and is partially retained in the entire temperature range of the recrystallization treatment.The initial recrystallization temperature (tps), other conditions being equal, depends on the dispersity of the nitride phase in the original structure. Under our experimental conditions the initial recrystallization temperature after 60% deformation was 1100°.Decomposition of the solid solution in Nb−1–3% Zr−N alloys, occurring at some temperatures in the recrystallization range, inhibits completion of recrystallization up to 1500°.Dispersed nitride phase inhibits grain growth in the process of secondary recrystallization. The alloy with 3% Zr and at.% Zr/at.% N≃ 1 is the most resistant to grain growth. Zirconium Solid Solution Recrystallization Plastic Deformation Nitride Usmanova, G. Sh. aut Grigorovich, V. K. aut Enthalten in Metal science and heat treatment Kluwer Academic Publishers-Plenum Publishers, 1959 21(1979), 7 vom: Juli, Seite 511-517 (DE-627)129596981 (DE-600)240858-2 (DE-576)015090159 0026-0673 nnns volume:21 year:1979 number:7 month:07 pages:511-517 https://doi.org/10.1007/BF00703657 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4319 AR 21 1979 7 07 511-517 |
allfields_unstemmed |
10.1007/BF00703657 doi (DE-627)OLC2048021794 (DE-He213)BF00703657-p DE-627 ger DE-627 rakwb eng 670 620 660 VZ Sheftel', E. N. verfasserin aut Recrystallization of biphase niobium alloys with zirconium and nitrogen 1979 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 1980 Conclusions The properties of heterophase Nb−Zr−N alloys depend to a considerable extent on the ratio of at.% Zr/at.% N. With a stoichiometric ratio (at.% Zr/at.% N≃ 1) the basic structural component determining the properties of the alloys is dispersed nitride phase. These alloys have the highest strength.In niobium alloys with 1–3% Zr and at.% Zr/at.% N≃1 the cellular substructure formed during cold plastic deformation is resistant up to the initial recrystallization temperature (tps) and is partially retained in the entire temperature range of the recrystallization treatment.The initial recrystallization temperature (tps), other conditions being equal, depends on the dispersity of the nitride phase in the original structure. Under our experimental conditions the initial recrystallization temperature after 60% deformation was 1100°.Decomposition of the solid solution in Nb−1–3% Zr−N alloys, occurring at some temperatures in the recrystallization range, inhibits completion of recrystallization up to 1500°.Dispersed nitride phase inhibits grain growth in the process of secondary recrystallization. The alloy with 3% Zr and at.% Zr/at.% N≃ 1 is the most resistant to grain growth. Zirconium Solid Solution Recrystallization Plastic Deformation Nitride Usmanova, G. Sh. aut Grigorovich, V. K. aut Enthalten in Metal science and heat treatment Kluwer Academic Publishers-Plenum Publishers, 1959 21(1979), 7 vom: Juli, Seite 511-517 (DE-627)129596981 (DE-600)240858-2 (DE-576)015090159 0026-0673 nnns volume:21 year:1979 number:7 month:07 pages:511-517 https://doi.org/10.1007/BF00703657 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4319 AR 21 1979 7 07 511-517 |
allfieldsGer |
10.1007/BF00703657 doi (DE-627)OLC2048021794 (DE-He213)BF00703657-p DE-627 ger DE-627 rakwb eng 670 620 660 VZ Sheftel', E. N. verfasserin aut Recrystallization of biphase niobium alloys with zirconium and nitrogen 1979 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 1980 Conclusions The properties of heterophase Nb−Zr−N alloys depend to a considerable extent on the ratio of at.% Zr/at.% N. With a stoichiometric ratio (at.% Zr/at.% N≃ 1) the basic structural component determining the properties of the alloys is dispersed nitride phase. These alloys have the highest strength.In niobium alloys with 1–3% Zr and at.% Zr/at.% N≃1 the cellular substructure formed during cold plastic deformation is resistant up to the initial recrystallization temperature (tps) and is partially retained in the entire temperature range of the recrystallization treatment.The initial recrystallization temperature (tps), other conditions being equal, depends on the dispersity of the nitride phase in the original structure. Under our experimental conditions the initial recrystallization temperature after 60% deformation was 1100°.Decomposition of the solid solution in Nb−1–3% Zr−N alloys, occurring at some temperatures in the recrystallization range, inhibits completion of recrystallization up to 1500°.Dispersed nitride phase inhibits grain growth in the process of secondary recrystallization. The alloy with 3% Zr and at.% Zr/at.% N≃ 1 is the most resistant to grain growth. Zirconium Solid Solution Recrystallization Plastic Deformation Nitride Usmanova, G. Sh. aut Grigorovich, V. K. aut Enthalten in Metal science and heat treatment Kluwer Academic Publishers-Plenum Publishers, 1959 21(1979), 7 vom: Juli, Seite 511-517 (DE-627)129596981 (DE-600)240858-2 (DE-576)015090159 0026-0673 nnns volume:21 year:1979 number:7 month:07 pages:511-517 https://doi.org/10.1007/BF00703657 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4319 AR 21 1979 7 07 511-517 |
allfieldsSound |
10.1007/BF00703657 doi (DE-627)OLC2048021794 (DE-He213)BF00703657-p DE-627 ger DE-627 rakwb eng 670 620 660 VZ Sheftel', E. N. verfasserin aut Recrystallization of biphase niobium alloys with zirconium and nitrogen 1979 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 1980 Conclusions The properties of heterophase Nb−Zr−N alloys depend to a considerable extent on the ratio of at.% Zr/at.% N. With a stoichiometric ratio (at.% Zr/at.% N≃ 1) the basic structural component determining the properties of the alloys is dispersed nitride phase. These alloys have the highest strength.In niobium alloys with 1–3% Zr and at.% Zr/at.% N≃1 the cellular substructure formed during cold plastic deformation is resistant up to the initial recrystallization temperature (tps) and is partially retained in the entire temperature range of the recrystallization treatment.The initial recrystallization temperature (tps), other conditions being equal, depends on the dispersity of the nitride phase in the original structure. Under our experimental conditions the initial recrystallization temperature after 60% deformation was 1100°.Decomposition of the solid solution in Nb−1–3% Zr−N alloys, occurring at some temperatures in the recrystallization range, inhibits completion of recrystallization up to 1500°.Dispersed nitride phase inhibits grain growth in the process of secondary recrystallization. The alloy with 3% Zr and at.% Zr/at.% N≃ 1 is the most resistant to grain growth. Zirconium Solid Solution Recrystallization Plastic Deformation Nitride Usmanova, G. Sh. aut Grigorovich, V. K. aut Enthalten in Metal science and heat treatment Kluwer Academic Publishers-Plenum Publishers, 1959 21(1979), 7 vom: Juli, Seite 511-517 (DE-627)129596981 (DE-600)240858-2 (DE-576)015090159 0026-0673 nnns volume:21 year:1979 number:7 month:07 pages:511-517 https://doi.org/10.1007/BF00703657 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4319 AR 21 1979 7 07 511-517 |
language |
English |
source |
Enthalten in Metal science and heat treatment 21(1979), 7 vom: Juli, Seite 511-517 volume:21 year:1979 number:7 month:07 pages:511-517 |
sourceStr |
Enthalten in Metal science and heat treatment 21(1979), 7 vom: Juli, Seite 511-517 volume:21 year:1979 number:7 month:07 pages:511-517 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Zirconium Solid Solution Recrystallization Plastic Deformation Nitride |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Metal science and heat treatment |
authorswithroles_txt_mv |
Sheftel', E. N. @@aut@@ Usmanova, G. Sh. @@aut@@ Grigorovich, V. K. @@aut@@ |
publishDateDaySort_date |
1979-07-01T00:00:00Z |
hierarchy_top_id |
129596981 |
dewey-sort |
3670 |
id |
OLC2048021794 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2048021794</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503191829.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1979 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF00703657</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2048021794</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF00703657-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="a">620</subfield><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sheftel', E. N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Recrystallization of biphase niobium alloys with zirconium and nitrogen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1979</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Plenum Publishing Corporation 1980</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Conclusions The properties of heterophase Nb−Zr−N alloys depend to a considerable extent on the ratio of at.% Zr/at.% N. With a stoichiometric ratio (at.% Zr/at.% N≃ 1) the basic structural component determining the properties of the alloys is dispersed nitride phase. These alloys have the highest strength.In niobium alloys with 1–3% Zr and at.% Zr/at.% N≃1 the cellular substructure formed during cold plastic deformation is resistant up to the initial recrystallization temperature (tps) and is partially retained in the entire temperature range of the recrystallization treatment.The initial recrystallization temperature (tps), other conditions being equal, depends on the dispersity of the nitride phase in the original structure. Under our experimental conditions the initial recrystallization temperature after 60% deformation was 1100°.Decomposition of the solid solution in Nb−1–3% Zr−N alloys, occurring at some temperatures in the recrystallization range, inhibits completion of recrystallization up to 1500°.Dispersed nitride phase inhibits grain growth in the process of secondary recrystallization. The alloy with 3% Zr and at.% Zr/at.% N≃ 1 is the most resistant to grain growth.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zirconium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solid Solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Recrystallization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plastic Deformation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nitride</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Usmanova, G. Sh.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grigorovich, V. K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Metal science and heat treatment</subfield><subfield code="d">Kluwer Academic Publishers-Plenum Publishers, 1959</subfield><subfield code="g">21(1979), 7 vom: Juli, Seite 511-517</subfield><subfield code="w">(DE-627)129596981</subfield><subfield code="w">(DE-600)240858-2</subfield><subfield code="w">(DE-576)015090159</subfield><subfield code="x">0026-0673</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:1979</subfield><subfield code="g">number:7</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:511-517</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF00703657</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">1979</subfield><subfield code="e">7</subfield><subfield code="c">07</subfield><subfield code="h">511-517</subfield></datafield></record></collection>
|
author |
Sheftel', E. N. |
spellingShingle |
Sheftel', E. N. ddc 670 misc Zirconium misc Solid Solution misc Recrystallization misc Plastic Deformation misc Nitride Recrystallization of biphase niobium alloys with zirconium and nitrogen |
authorStr |
Sheftel', E. N. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129596981 |
format |
Article |
dewey-ones |
670 - Manufacturing 620 - Engineering & allied operations 660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0026-0673 |
topic_title |
670 620 660 VZ Recrystallization of biphase niobium alloys with zirconium and nitrogen Zirconium Solid Solution Recrystallization Plastic Deformation Nitride |
topic |
ddc 670 misc Zirconium misc Solid Solution misc Recrystallization misc Plastic Deformation misc Nitride |
topic_unstemmed |
ddc 670 misc Zirconium misc Solid Solution misc Recrystallization misc Plastic Deformation misc Nitride |
topic_browse |
ddc 670 misc Zirconium misc Solid Solution misc Recrystallization misc Plastic Deformation misc Nitride |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Metal science and heat treatment |
hierarchy_parent_id |
129596981 |
dewey-tens |
670 - Manufacturing 620 - Engineering 660 - Chemical engineering |
hierarchy_top_title |
Metal science and heat treatment |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129596981 (DE-600)240858-2 (DE-576)015090159 |
title |
Recrystallization of biphase niobium alloys with zirconium and nitrogen |
ctrlnum |
(DE-627)OLC2048021794 (DE-He213)BF00703657-p |
title_full |
Recrystallization of biphase niobium alloys with zirconium and nitrogen |
author_sort |
Sheftel', E. N. |
journal |
Metal science and heat treatment |
journalStr |
Metal science and heat treatment |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
1979 |
contenttype_str_mv |
txt |
container_start_page |
511 |
author_browse |
Sheftel', E. N. Usmanova, G. Sh. Grigorovich, V. K. |
container_volume |
21 |
class |
670 620 660 VZ |
format_se |
Aufsätze |
author-letter |
Sheftel', E. N. |
doi_str_mv |
10.1007/BF00703657 |
dewey-full |
670 620 660 |
title_sort |
recrystallization of biphase niobium alloys with zirconium and nitrogen |
title_auth |
Recrystallization of biphase niobium alloys with zirconium and nitrogen |
abstract |
Conclusions The properties of heterophase Nb−Zr−N alloys depend to a considerable extent on the ratio of at.% Zr/at.% N. With a stoichiometric ratio (at.% Zr/at.% N≃ 1) the basic structural component determining the properties of the alloys is dispersed nitride phase. These alloys have the highest strength.In niobium alloys with 1–3% Zr and at.% Zr/at.% N≃1 the cellular substructure formed during cold plastic deformation is resistant up to the initial recrystallization temperature (tps) and is partially retained in the entire temperature range of the recrystallization treatment.The initial recrystallization temperature (tps), other conditions being equal, depends on the dispersity of the nitride phase in the original structure. Under our experimental conditions the initial recrystallization temperature after 60% deformation was 1100°.Decomposition of the solid solution in Nb−1–3% Zr−N alloys, occurring at some temperatures in the recrystallization range, inhibits completion of recrystallization up to 1500°.Dispersed nitride phase inhibits grain growth in the process of secondary recrystallization. The alloy with 3% Zr and at.% Zr/at.% N≃ 1 is the most resistant to grain growth. © Plenum Publishing Corporation 1980 |
abstractGer |
Conclusions The properties of heterophase Nb−Zr−N alloys depend to a considerable extent on the ratio of at.% Zr/at.% N. With a stoichiometric ratio (at.% Zr/at.% N≃ 1) the basic structural component determining the properties of the alloys is dispersed nitride phase. These alloys have the highest strength.In niobium alloys with 1–3% Zr and at.% Zr/at.% N≃1 the cellular substructure formed during cold plastic deformation is resistant up to the initial recrystallization temperature (tps) and is partially retained in the entire temperature range of the recrystallization treatment.The initial recrystallization temperature (tps), other conditions being equal, depends on the dispersity of the nitride phase in the original structure. Under our experimental conditions the initial recrystallization temperature after 60% deformation was 1100°.Decomposition of the solid solution in Nb−1–3% Zr−N alloys, occurring at some temperatures in the recrystallization range, inhibits completion of recrystallization up to 1500°.Dispersed nitride phase inhibits grain growth in the process of secondary recrystallization. The alloy with 3% Zr and at.% Zr/at.% N≃ 1 is the most resistant to grain growth. © Plenum Publishing Corporation 1980 |
abstract_unstemmed |
Conclusions The properties of heterophase Nb−Zr−N alloys depend to a considerable extent on the ratio of at.% Zr/at.% N. With a stoichiometric ratio (at.% Zr/at.% N≃ 1) the basic structural component determining the properties of the alloys is dispersed nitride phase. These alloys have the highest strength.In niobium alloys with 1–3% Zr and at.% Zr/at.% N≃1 the cellular substructure formed during cold plastic deformation is resistant up to the initial recrystallization temperature (tps) and is partially retained in the entire temperature range of the recrystallization treatment.The initial recrystallization temperature (tps), other conditions being equal, depends on the dispersity of the nitride phase in the original structure. Under our experimental conditions the initial recrystallization temperature after 60% deformation was 1100°.Decomposition of the solid solution in Nb−1–3% Zr−N alloys, occurring at some temperatures in the recrystallization range, inhibits completion of recrystallization up to 1500°.Dispersed nitride phase inhibits grain growth in the process of secondary recrystallization. The alloy with 3% Zr and at.% Zr/at.% N≃ 1 is the most resistant to grain growth. © Plenum Publishing Corporation 1980 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_11 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4319 |
container_issue |
7 |
title_short |
Recrystallization of biphase niobium alloys with zirconium and nitrogen |
url |
https://doi.org/10.1007/BF00703657 |
remote_bool |
false |
author2 |
Usmanova, G. Sh Grigorovich, V. K. |
author2Str |
Usmanova, G. Sh Grigorovich, V. K. |
ppnlink |
129596981 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF00703657 |
up_date |
2024-07-03T17:16:29.411Z |
_version_ |
1803579020447580160 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2048021794</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503191829.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1979 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF00703657</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2048021794</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF00703657-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="a">620</subfield><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sheftel', E. N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Recrystallization of biphase niobium alloys with zirconium and nitrogen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1979</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Plenum Publishing Corporation 1980</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Conclusions The properties of heterophase Nb−Zr−N alloys depend to a considerable extent on the ratio of at.% Zr/at.% N. With a stoichiometric ratio (at.% Zr/at.% N≃ 1) the basic structural component determining the properties of the alloys is dispersed nitride phase. These alloys have the highest strength.In niobium alloys with 1–3% Zr and at.% Zr/at.% N≃1 the cellular substructure formed during cold plastic deformation is resistant up to the initial recrystallization temperature (tps) and is partially retained in the entire temperature range of the recrystallization treatment.The initial recrystallization temperature (tps), other conditions being equal, depends on the dispersity of the nitride phase in the original structure. Under our experimental conditions the initial recrystallization temperature after 60% deformation was 1100°.Decomposition of the solid solution in Nb−1–3% Zr−N alloys, occurring at some temperatures in the recrystallization range, inhibits completion of recrystallization up to 1500°.Dispersed nitride phase inhibits grain growth in the process of secondary recrystallization. The alloy with 3% Zr and at.% Zr/at.% N≃ 1 is the most resistant to grain growth.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zirconium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solid Solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Recrystallization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plastic Deformation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nitride</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Usmanova, G. Sh.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grigorovich, V. K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Metal science and heat treatment</subfield><subfield code="d">Kluwer Academic Publishers-Plenum Publishers, 1959</subfield><subfield code="g">21(1979), 7 vom: Juli, Seite 511-517</subfield><subfield code="w">(DE-627)129596981</subfield><subfield code="w">(DE-600)240858-2</subfield><subfield code="w">(DE-576)015090159</subfield><subfield code="x">0026-0673</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:1979</subfield><subfield code="g">number:7</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:511-517</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF00703657</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">1979</subfield><subfield code="e">7</subfield><subfield code="c">07</subfield><subfield code="h">511-517</subfield></datafield></record></collection>
|
score |
7.4001484 |