Dispersion modeling of thermal power plant emissions on stochastic space
Abstract This study aims to couple a deterministic atmospheric dispersion solver based on Gaussian model with a nonintrusive stochastic model to quantify the propagation of multiple uncertainties. The nonintrusive model is based on probabilistic collocation framework. The advantage of nonintrusive n...
Ausführliche Beschreibung
Autor*in: |
Gorle, J. M. R. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© Springer-Verlag Wien 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Theoretical and applied climatology - Springer Vienna, 1986, 124(2015), 3-4 vom: 06. Mai, Seite 1119-1131 |
---|---|
Übergeordnetes Werk: |
volume:124 ; year:2015 ; number:3-4 ; day:06 ; month:05 ; pages:1119-1131 |
Links: |
---|
DOI / URN: |
10.1007/s00704-015-1483-1 |
---|
Katalog-ID: |
OLC2048456510 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2048456510 | ||
003 | DE-627 | ||
005 | 20230502135833.0 | ||
007 | tu | ||
008 | 200820s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00704-015-1483-1 |2 doi | |
035 | |a (DE-627)OLC2048456510 | ||
035 | |a (DE-He213)s00704-015-1483-1-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 14 |2 ssgn | ||
084 | |a RA 1000 |q VZ |2 rvk | ||
100 | 1 | |a Gorle, J. M. R. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Dispersion modeling of thermal power plant emissions on stochastic space |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Wien 2015 | ||
520 | |a Abstract This study aims to couple a deterministic atmospheric dispersion solver based on Gaussian model with a nonintrusive stochastic model to quantify the propagation of multiple uncertainties. The nonintrusive model is based on probabilistic collocation framework. The advantage of nonintrusive nature is to retain the existing deterministic plume dispersion model without missing the accuracy in extracting the statistics of stochastic solution. The developed model is applied to analyze the $ SO_{2} $ emission released from coal firing unit in the second stage of the National Thermal Power Corporation (NTPC) in Dadri, India using “urban” conditions. The entire application is split into two cases, depending on the source of uncertainty. In case 1, the uncertainties in stack gas exit conditions are used to construct the stochastic space while in case 2, meteorological conditions are considered as the sources of uncertainty. Both cases develop 2D uncertain random space in which the uncertainty propagation is quantified in terms of plume rise and pollutant concentration distribution under slightly unstable atmospheric stability conditions. Starting with deterministic Gaussian plume model demonstration and its application, development of stochastic collocation model, convergence study, error analysis, and uncertainty quantification are presented in this paper. | ||
650 | 4 | |a Dispersion Coefficient | |
650 | 4 | |a Uncertainty Propagation | |
650 | 4 | |a Atmospheric Dispersion | |
650 | 4 | |a Plume Height | |
650 | 4 | |a Plume Rise | |
700 | 1 | |a Sambana, N. R. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Theoretical and applied climatology |d Springer Vienna, 1986 |g 124(2015), 3-4 vom: 06. Mai, Seite 1119-1131 |w (DE-627)129958808 |w (DE-600)405799-5 |w (DE-576)01552857X |x 0177-798X |7 nnns |
773 | 1 | 8 | |g volume:124 |g year:2015 |g number:3-4 |g day:06 |g month:05 |g pages:1119-1131 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00704-015-1483-1 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4313 | ||
936 | r | v | |a RA 1000 |
951 | |a AR | ||
952 | |d 124 |j 2015 |e 3-4 |b 06 |c 05 |h 1119-1131 |
author_variant |
j m r g jmr jmrg n r s nr nrs |
---|---|
matchkey_str |
article:0177798X:2015----::iprinoeigfhrapwrlneiso |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s00704-015-1483-1 doi (DE-627)OLC2048456510 (DE-He213)s00704-015-1483-1-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn RA 1000 VZ rvk Gorle, J. M. R. verfasserin aut Dispersion modeling of thermal power plant emissions on stochastic space 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Wien 2015 Abstract This study aims to couple a deterministic atmospheric dispersion solver based on Gaussian model with a nonintrusive stochastic model to quantify the propagation of multiple uncertainties. The nonintrusive model is based on probabilistic collocation framework. The advantage of nonintrusive nature is to retain the existing deterministic plume dispersion model without missing the accuracy in extracting the statistics of stochastic solution. The developed model is applied to analyze the $ SO_{2} $ emission released from coal firing unit in the second stage of the National Thermal Power Corporation (NTPC) in Dadri, India using “urban” conditions. The entire application is split into two cases, depending on the source of uncertainty. In case 1, the uncertainties in stack gas exit conditions are used to construct the stochastic space while in case 2, meteorological conditions are considered as the sources of uncertainty. Both cases develop 2D uncertain random space in which the uncertainty propagation is quantified in terms of plume rise and pollutant concentration distribution under slightly unstable atmospheric stability conditions. Starting with deterministic Gaussian plume model demonstration and its application, development of stochastic collocation model, convergence study, error analysis, and uncertainty quantification are presented in this paper. Dispersion Coefficient Uncertainty Propagation Atmospheric Dispersion Plume Height Plume Rise Sambana, N. R. aut Enthalten in Theoretical and applied climatology Springer Vienna, 1986 124(2015), 3-4 vom: 06. Mai, Seite 1119-1131 (DE-627)129958808 (DE-600)405799-5 (DE-576)01552857X 0177-798X nnns volume:124 year:2015 number:3-4 day:06 month:05 pages:1119-1131 https://doi.org/10.1007/s00704-015-1483-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_70 GBV_ILN_4012 GBV_ILN_4313 RA 1000 AR 124 2015 3-4 06 05 1119-1131 |
spelling |
10.1007/s00704-015-1483-1 doi (DE-627)OLC2048456510 (DE-He213)s00704-015-1483-1-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn RA 1000 VZ rvk Gorle, J. M. R. verfasserin aut Dispersion modeling of thermal power plant emissions on stochastic space 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Wien 2015 Abstract This study aims to couple a deterministic atmospheric dispersion solver based on Gaussian model with a nonintrusive stochastic model to quantify the propagation of multiple uncertainties. The nonintrusive model is based on probabilistic collocation framework. The advantage of nonintrusive nature is to retain the existing deterministic plume dispersion model without missing the accuracy in extracting the statistics of stochastic solution. The developed model is applied to analyze the $ SO_{2} $ emission released from coal firing unit in the second stage of the National Thermal Power Corporation (NTPC) in Dadri, India using “urban” conditions. The entire application is split into two cases, depending on the source of uncertainty. In case 1, the uncertainties in stack gas exit conditions are used to construct the stochastic space while in case 2, meteorological conditions are considered as the sources of uncertainty. Both cases develop 2D uncertain random space in which the uncertainty propagation is quantified in terms of plume rise and pollutant concentration distribution under slightly unstable atmospheric stability conditions. Starting with deterministic Gaussian plume model demonstration and its application, development of stochastic collocation model, convergence study, error analysis, and uncertainty quantification are presented in this paper. Dispersion Coefficient Uncertainty Propagation Atmospheric Dispersion Plume Height Plume Rise Sambana, N. R. aut Enthalten in Theoretical and applied climatology Springer Vienna, 1986 124(2015), 3-4 vom: 06. Mai, Seite 1119-1131 (DE-627)129958808 (DE-600)405799-5 (DE-576)01552857X 0177-798X nnns volume:124 year:2015 number:3-4 day:06 month:05 pages:1119-1131 https://doi.org/10.1007/s00704-015-1483-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_70 GBV_ILN_4012 GBV_ILN_4313 RA 1000 AR 124 2015 3-4 06 05 1119-1131 |
allfields_unstemmed |
10.1007/s00704-015-1483-1 doi (DE-627)OLC2048456510 (DE-He213)s00704-015-1483-1-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn RA 1000 VZ rvk Gorle, J. M. R. verfasserin aut Dispersion modeling of thermal power plant emissions on stochastic space 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Wien 2015 Abstract This study aims to couple a deterministic atmospheric dispersion solver based on Gaussian model with a nonintrusive stochastic model to quantify the propagation of multiple uncertainties. The nonintrusive model is based on probabilistic collocation framework. The advantage of nonintrusive nature is to retain the existing deterministic plume dispersion model without missing the accuracy in extracting the statistics of stochastic solution. The developed model is applied to analyze the $ SO_{2} $ emission released from coal firing unit in the second stage of the National Thermal Power Corporation (NTPC) in Dadri, India using “urban” conditions. The entire application is split into two cases, depending on the source of uncertainty. In case 1, the uncertainties in stack gas exit conditions are used to construct the stochastic space while in case 2, meteorological conditions are considered as the sources of uncertainty. Both cases develop 2D uncertain random space in which the uncertainty propagation is quantified in terms of plume rise and pollutant concentration distribution under slightly unstable atmospheric stability conditions. Starting with deterministic Gaussian plume model demonstration and its application, development of stochastic collocation model, convergence study, error analysis, and uncertainty quantification are presented in this paper. Dispersion Coefficient Uncertainty Propagation Atmospheric Dispersion Plume Height Plume Rise Sambana, N. R. aut Enthalten in Theoretical and applied climatology Springer Vienna, 1986 124(2015), 3-4 vom: 06. Mai, Seite 1119-1131 (DE-627)129958808 (DE-600)405799-5 (DE-576)01552857X 0177-798X nnns volume:124 year:2015 number:3-4 day:06 month:05 pages:1119-1131 https://doi.org/10.1007/s00704-015-1483-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_70 GBV_ILN_4012 GBV_ILN_4313 RA 1000 AR 124 2015 3-4 06 05 1119-1131 |
allfieldsGer |
10.1007/s00704-015-1483-1 doi (DE-627)OLC2048456510 (DE-He213)s00704-015-1483-1-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn RA 1000 VZ rvk Gorle, J. M. R. verfasserin aut Dispersion modeling of thermal power plant emissions on stochastic space 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Wien 2015 Abstract This study aims to couple a deterministic atmospheric dispersion solver based on Gaussian model with a nonintrusive stochastic model to quantify the propagation of multiple uncertainties. The nonintrusive model is based on probabilistic collocation framework. The advantage of nonintrusive nature is to retain the existing deterministic plume dispersion model without missing the accuracy in extracting the statistics of stochastic solution. The developed model is applied to analyze the $ SO_{2} $ emission released from coal firing unit in the second stage of the National Thermal Power Corporation (NTPC) in Dadri, India using “urban” conditions. The entire application is split into two cases, depending on the source of uncertainty. In case 1, the uncertainties in stack gas exit conditions are used to construct the stochastic space while in case 2, meteorological conditions are considered as the sources of uncertainty. Both cases develop 2D uncertain random space in which the uncertainty propagation is quantified in terms of plume rise and pollutant concentration distribution under slightly unstable atmospheric stability conditions. Starting with deterministic Gaussian plume model demonstration and its application, development of stochastic collocation model, convergence study, error analysis, and uncertainty quantification are presented in this paper. Dispersion Coefficient Uncertainty Propagation Atmospheric Dispersion Plume Height Plume Rise Sambana, N. R. aut Enthalten in Theoretical and applied climatology Springer Vienna, 1986 124(2015), 3-4 vom: 06. Mai, Seite 1119-1131 (DE-627)129958808 (DE-600)405799-5 (DE-576)01552857X 0177-798X nnns volume:124 year:2015 number:3-4 day:06 month:05 pages:1119-1131 https://doi.org/10.1007/s00704-015-1483-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_70 GBV_ILN_4012 GBV_ILN_4313 RA 1000 AR 124 2015 3-4 06 05 1119-1131 |
allfieldsSound |
10.1007/s00704-015-1483-1 doi (DE-627)OLC2048456510 (DE-He213)s00704-015-1483-1-p DE-627 ger DE-627 rakwb eng 550 VZ 14 ssgn RA 1000 VZ rvk Gorle, J. M. R. verfasserin aut Dispersion modeling of thermal power plant emissions on stochastic space 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Wien 2015 Abstract This study aims to couple a deterministic atmospheric dispersion solver based on Gaussian model with a nonintrusive stochastic model to quantify the propagation of multiple uncertainties. The nonintrusive model is based on probabilistic collocation framework. The advantage of nonintrusive nature is to retain the existing deterministic plume dispersion model without missing the accuracy in extracting the statistics of stochastic solution. The developed model is applied to analyze the $ SO_{2} $ emission released from coal firing unit in the second stage of the National Thermal Power Corporation (NTPC) in Dadri, India using “urban” conditions. The entire application is split into two cases, depending on the source of uncertainty. In case 1, the uncertainties in stack gas exit conditions are used to construct the stochastic space while in case 2, meteorological conditions are considered as the sources of uncertainty. Both cases develop 2D uncertain random space in which the uncertainty propagation is quantified in terms of plume rise and pollutant concentration distribution under slightly unstable atmospheric stability conditions. Starting with deterministic Gaussian plume model demonstration and its application, development of stochastic collocation model, convergence study, error analysis, and uncertainty quantification are presented in this paper. Dispersion Coefficient Uncertainty Propagation Atmospheric Dispersion Plume Height Plume Rise Sambana, N. R. aut Enthalten in Theoretical and applied climatology Springer Vienna, 1986 124(2015), 3-4 vom: 06. Mai, Seite 1119-1131 (DE-627)129958808 (DE-600)405799-5 (DE-576)01552857X 0177-798X nnns volume:124 year:2015 number:3-4 day:06 month:05 pages:1119-1131 https://doi.org/10.1007/s00704-015-1483-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_70 GBV_ILN_4012 GBV_ILN_4313 RA 1000 AR 124 2015 3-4 06 05 1119-1131 |
language |
English |
source |
Enthalten in Theoretical and applied climatology 124(2015), 3-4 vom: 06. Mai, Seite 1119-1131 volume:124 year:2015 number:3-4 day:06 month:05 pages:1119-1131 |
sourceStr |
Enthalten in Theoretical and applied climatology 124(2015), 3-4 vom: 06. Mai, Seite 1119-1131 volume:124 year:2015 number:3-4 day:06 month:05 pages:1119-1131 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Dispersion Coefficient Uncertainty Propagation Atmospheric Dispersion Plume Height Plume Rise |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Theoretical and applied climatology |
authorswithroles_txt_mv |
Gorle, J. M. R. @@aut@@ Sambana, N. R. @@aut@@ |
publishDateDaySort_date |
2015-05-06T00:00:00Z |
hierarchy_top_id |
129958808 |
dewey-sort |
3550 |
id |
OLC2048456510 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2048456510</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502135833.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00704-015-1483-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2048456510</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00704-015-1483-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RA 1000</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gorle, J. M. R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dispersion modeling of thermal power plant emissions on stochastic space</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Wien 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This study aims to couple a deterministic atmospheric dispersion solver based on Gaussian model with a nonintrusive stochastic model to quantify the propagation of multiple uncertainties. The nonintrusive model is based on probabilistic collocation framework. The advantage of nonintrusive nature is to retain the existing deterministic plume dispersion model without missing the accuracy in extracting the statistics of stochastic solution. The developed model is applied to analyze the $ SO_{2} $ emission released from coal firing unit in the second stage of the National Thermal Power Corporation (NTPC) in Dadri, India using “urban” conditions. The entire application is split into two cases, depending on the source of uncertainty. In case 1, the uncertainties in stack gas exit conditions are used to construct the stochastic space while in case 2, meteorological conditions are considered as the sources of uncertainty. Both cases develop 2D uncertain random space in which the uncertainty propagation is quantified in terms of plume rise and pollutant concentration distribution under slightly unstable atmospheric stability conditions. Starting with deterministic Gaussian plume model demonstration and its application, development of stochastic collocation model, convergence study, error analysis, and uncertainty quantification are presented in this paper.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dispersion Coefficient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertainty Propagation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Atmospheric Dispersion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plume Height</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plume Rise</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sambana, N. R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Theoretical and applied climatology</subfield><subfield code="d">Springer Vienna, 1986</subfield><subfield code="g">124(2015), 3-4 vom: 06. Mai, Seite 1119-1131</subfield><subfield code="w">(DE-627)129958808</subfield><subfield code="w">(DE-600)405799-5</subfield><subfield code="w">(DE-576)01552857X</subfield><subfield code="x">0177-798X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:124</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3-4</subfield><subfield code="g">day:06</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:1119-1131</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00704-015-1483-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">RA 1000</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">124</subfield><subfield code="j">2015</subfield><subfield code="e">3-4</subfield><subfield code="b">06</subfield><subfield code="c">05</subfield><subfield code="h">1119-1131</subfield></datafield></record></collection>
|
author |
Gorle, J. M. R. |
spellingShingle |
Gorle, J. M. R. ddc 550 ssgn 14 rvk RA 1000 misc Dispersion Coefficient misc Uncertainty Propagation misc Atmospheric Dispersion misc Plume Height misc Plume Rise Dispersion modeling of thermal power plant emissions on stochastic space |
authorStr |
Gorle, J. M. R. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129958808 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0177-798X |
topic_title |
550 VZ 14 ssgn RA 1000 VZ rvk Dispersion modeling of thermal power plant emissions on stochastic space Dispersion Coefficient Uncertainty Propagation Atmospheric Dispersion Plume Height Plume Rise |
topic |
ddc 550 ssgn 14 rvk RA 1000 misc Dispersion Coefficient misc Uncertainty Propagation misc Atmospheric Dispersion misc Plume Height misc Plume Rise |
topic_unstemmed |
ddc 550 ssgn 14 rvk RA 1000 misc Dispersion Coefficient misc Uncertainty Propagation misc Atmospheric Dispersion misc Plume Height misc Plume Rise |
topic_browse |
ddc 550 ssgn 14 rvk RA 1000 misc Dispersion Coefficient misc Uncertainty Propagation misc Atmospheric Dispersion misc Plume Height misc Plume Rise |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Theoretical and applied climatology |
hierarchy_parent_id |
129958808 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Theoretical and applied climatology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129958808 (DE-600)405799-5 (DE-576)01552857X |
title |
Dispersion modeling of thermal power plant emissions on stochastic space |
ctrlnum |
(DE-627)OLC2048456510 (DE-He213)s00704-015-1483-1-p |
title_full |
Dispersion modeling of thermal power plant emissions on stochastic space |
author_sort |
Gorle, J. M. R. |
journal |
Theoretical and applied climatology |
journalStr |
Theoretical and applied climatology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
1119 |
author_browse |
Gorle, J. M. R. Sambana, N. R. |
container_volume |
124 |
class |
550 VZ 14 ssgn RA 1000 VZ rvk |
format_se |
Aufsätze |
author-letter |
Gorle, J. M. R. |
doi_str_mv |
10.1007/s00704-015-1483-1 |
dewey-full |
550 |
title_sort |
dispersion modeling of thermal power plant emissions on stochastic space |
title_auth |
Dispersion modeling of thermal power plant emissions on stochastic space |
abstract |
Abstract This study aims to couple a deterministic atmospheric dispersion solver based on Gaussian model with a nonintrusive stochastic model to quantify the propagation of multiple uncertainties. The nonintrusive model is based on probabilistic collocation framework. The advantage of nonintrusive nature is to retain the existing deterministic plume dispersion model without missing the accuracy in extracting the statistics of stochastic solution. The developed model is applied to analyze the $ SO_{2} $ emission released from coal firing unit in the second stage of the National Thermal Power Corporation (NTPC) in Dadri, India using “urban” conditions. The entire application is split into two cases, depending on the source of uncertainty. In case 1, the uncertainties in stack gas exit conditions are used to construct the stochastic space while in case 2, meteorological conditions are considered as the sources of uncertainty. Both cases develop 2D uncertain random space in which the uncertainty propagation is quantified in terms of plume rise and pollutant concentration distribution under slightly unstable atmospheric stability conditions. Starting with deterministic Gaussian plume model demonstration and its application, development of stochastic collocation model, convergence study, error analysis, and uncertainty quantification are presented in this paper. © Springer-Verlag Wien 2015 |
abstractGer |
Abstract This study aims to couple a deterministic atmospheric dispersion solver based on Gaussian model with a nonintrusive stochastic model to quantify the propagation of multiple uncertainties. The nonintrusive model is based on probabilistic collocation framework. The advantage of nonintrusive nature is to retain the existing deterministic plume dispersion model without missing the accuracy in extracting the statistics of stochastic solution. The developed model is applied to analyze the $ SO_{2} $ emission released from coal firing unit in the second stage of the National Thermal Power Corporation (NTPC) in Dadri, India using “urban” conditions. The entire application is split into two cases, depending on the source of uncertainty. In case 1, the uncertainties in stack gas exit conditions are used to construct the stochastic space while in case 2, meteorological conditions are considered as the sources of uncertainty. Both cases develop 2D uncertain random space in which the uncertainty propagation is quantified in terms of plume rise and pollutant concentration distribution under slightly unstable atmospheric stability conditions. Starting with deterministic Gaussian plume model demonstration and its application, development of stochastic collocation model, convergence study, error analysis, and uncertainty quantification are presented in this paper. © Springer-Verlag Wien 2015 |
abstract_unstemmed |
Abstract This study aims to couple a deterministic atmospheric dispersion solver based on Gaussian model with a nonintrusive stochastic model to quantify the propagation of multiple uncertainties. The nonintrusive model is based on probabilistic collocation framework. The advantage of nonintrusive nature is to retain the existing deterministic plume dispersion model without missing the accuracy in extracting the statistics of stochastic solution. The developed model is applied to analyze the $ SO_{2} $ emission released from coal firing unit in the second stage of the National Thermal Power Corporation (NTPC) in Dadri, India using “urban” conditions. The entire application is split into two cases, depending on the source of uncertainty. In case 1, the uncertainties in stack gas exit conditions are used to construct the stochastic space while in case 2, meteorological conditions are considered as the sources of uncertainty. Both cases develop 2D uncertain random space in which the uncertainty propagation is quantified in terms of plume rise and pollutant concentration distribution under slightly unstable atmospheric stability conditions. Starting with deterministic Gaussian plume model demonstration and its application, development of stochastic collocation model, convergence study, error analysis, and uncertainty quantification are presented in this paper. © Springer-Verlag Wien 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO GBV_ILN_70 GBV_ILN_4012 GBV_ILN_4313 |
container_issue |
3-4 |
title_short |
Dispersion modeling of thermal power plant emissions on stochastic space |
url |
https://doi.org/10.1007/s00704-015-1483-1 |
remote_bool |
false |
author2 |
Sambana, N. R. |
author2Str |
Sambana, N. R. |
ppnlink |
129958808 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00704-015-1483-1 |
up_date |
2024-07-03T18:48:36.906Z |
_version_ |
1803584816448274432 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2048456510</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502135833.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00704-015-1483-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2048456510</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00704-015-1483-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RA 1000</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gorle, J. M. R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dispersion modeling of thermal power plant emissions on stochastic space</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Wien 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This study aims to couple a deterministic atmospheric dispersion solver based on Gaussian model with a nonintrusive stochastic model to quantify the propagation of multiple uncertainties. The nonintrusive model is based on probabilistic collocation framework. The advantage of nonintrusive nature is to retain the existing deterministic plume dispersion model without missing the accuracy in extracting the statistics of stochastic solution. The developed model is applied to analyze the $ SO_{2} $ emission released from coal firing unit in the second stage of the National Thermal Power Corporation (NTPC) in Dadri, India using “urban” conditions. The entire application is split into two cases, depending on the source of uncertainty. In case 1, the uncertainties in stack gas exit conditions are used to construct the stochastic space while in case 2, meteorological conditions are considered as the sources of uncertainty. Both cases develop 2D uncertain random space in which the uncertainty propagation is quantified in terms of plume rise and pollutant concentration distribution under slightly unstable atmospheric stability conditions. Starting with deterministic Gaussian plume model demonstration and its application, development of stochastic collocation model, convergence study, error analysis, and uncertainty quantification are presented in this paper.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dispersion Coefficient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertainty Propagation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Atmospheric Dispersion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plume Height</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plume Rise</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sambana, N. R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Theoretical and applied climatology</subfield><subfield code="d">Springer Vienna, 1986</subfield><subfield code="g">124(2015), 3-4 vom: 06. Mai, Seite 1119-1131</subfield><subfield code="w">(DE-627)129958808</subfield><subfield code="w">(DE-600)405799-5</subfield><subfield code="w">(DE-576)01552857X</subfield><subfield code="x">0177-798X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:124</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3-4</subfield><subfield code="g">day:06</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:1119-1131</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00704-015-1483-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">RA 1000</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">124</subfield><subfield code="j">2015</subfield><subfield code="e">3-4</subfield><subfield code="b">06</subfield><subfield code="c">05</subfield><subfield code="h">1119-1131</subfield></datafield></record></collection>
|
score |
7.3993406 |