Elliptic convolution operators on non-quasianalytic classes
Abstract. For those nonquasianalytic classes in which an extension of the classical Borel's theorem holds we show that every elliptic convolution operator is the composition of a translation and an invertible ultradifferential operator. This answers a question asked by Chou in: La transformatio...
Ausführliche Beschreibung
Autor*in: |
Fernández, C. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2001 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Birkhäuser Verlag, Basel 2001 |
---|
Übergeordnetes Werk: |
Enthalten in: Archiv der Mathematik - Birkhäuser Verlag, 1948, 76(2001), 2 vom: Feb., Seite 133-140 |
---|---|
Übergeordnetes Werk: |
volume:76 ; year:2001 ; number:2 ; month:02 ; pages:133-140 |
Links: |
---|
DOI / URN: |
10.1007/s000130050553 |
---|
Katalog-ID: |
OLC2049221355 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2049221355 | ||
003 | DE-627 | ||
005 | 20240316005649.0 | ||
007 | tu | ||
008 | 200819s2001 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s000130050553 |2 doi | |
035 | |a (DE-627)OLC2049221355 | ||
035 | |a (DE-He213)s000130050553-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |a 050 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Fernández, C. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Elliptic convolution operators on non-quasianalytic classes |
264 | 1 | |c 2001 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Birkhäuser Verlag, Basel 2001 | ||
520 | |a Abstract. For those nonquasianalytic classes in which an extension of the classical Borel's theorem holds we show that every elliptic convolution operator is the composition of a translation and an invertible ultradifferential operator. This answers a question asked by Chou in: La transformation de Fourier complexe et l'équation de convolution, LNM 325, Berlin-Heidelberg-New York (1973). | ||
650 | 4 | |a Convolution Operator | |
700 | 1 | |a Galbis, A. |4 aut | |
700 | 1 | |a Gómez, M.C. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Archiv der Mathematik |d Birkhäuser Verlag, 1948 |g 76(2001), 2 vom: Feb., Seite 133-140 |w (DE-627)129061581 |w (DE-600)475-3 |w (DE-576)014392364 |x 0003-889X |7 nnns |
773 | 1 | 8 | |g volume:76 |g year:2001 |g number:2 |g month:02 |g pages:133-140 |
856 | 4 | 1 | |u https://doi.org/10.1007/s000130050553 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4082 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4315 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 31.00 |j Mathematik: Allgemeines |j Mathematik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 76 |j 2001 |e 2 |c 02 |h 133-140 |
author_variant |
c f cf a g ag m g mg |
---|---|
matchkey_str |
article:0003889X:2001----::litcovltooeaosnoqai |
hierarchy_sort_str |
2001 |
bklnumber |
31.00 |
publishDate |
2001 |
allfields |
10.1007/s000130050553 doi (DE-627)OLC2049221355 (DE-He213)s000130050553-p DE-627 ger DE-627 rakwb eng 510 050 VZ 17,1 ssgn 31.00 bkl Fernández, C. verfasserin aut Elliptic convolution operators on non-quasianalytic classes 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag, Basel 2001 Abstract. For those nonquasianalytic classes in which an extension of the classical Borel's theorem holds we show that every elliptic convolution operator is the composition of a translation and an invertible ultradifferential operator. This answers a question asked by Chou in: La transformation de Fourier complexe et l'équation de convolution, LNM 325, Berlin-Heidelberg-New York (1973). Convolution Operator Galbis, A. aut Gómez, M.C. aut Enthalten in Archiv der Mathematik Birkhäuser Verlag, 1948 76(2001), 2 vom: Feb., Seite 133-140 (DE-627)129061581 (DE-600)475-3 (DE-576)014392364 0003-889X nnns volume:76 year:2001 number:2 month:02 pages:133-140 https://doi.org/10.1007/s000130050553 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4082 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 31.00 Mathematik: Allgemeines Mathematik: Allgemeines VZ AR 76 2001 2 02 133-140 |
spelling |
10.1007/s000130050553 doi (DE-627)OLC2049221355 (DE-He213)s000130050553-p DE-627 ger DE-627 rakwb eng 510 050 VZ 17,1 ssgn 31.00 bkl Fernández, C. verfasserin aut Elliptic convolution operators on non-quasianalytic classes 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag, Basel 2001 Abstract. For those nonquasianalytic classes in which an extension of the classical Borel's theorem holds we show that every elliptic convolution operator is the composition of a translation and an invertible ultradifferential operator. This answers a question asked by Chou in: La transformation de Fourier complexe et l'équation de convolution, LNM 325, Berlin-Heidelberg-New York (1973). Convolution Operator Galbis, A. aut Gómez, M.C. aut Enthalten in Archiv der Mathematik Birkhäuser Verlag, 1948 76(2001), 2 vom: Feb., Seite 133-140 (DE-627)129061581 (DE-600)475-3 (DE-576)014392364 0003-889X nnns volume:76 year:2001 number:2 month:02 pages:133-140 https://doi.org/10.1007/s000130050553 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4082 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 31.00 Mathematik: Allgemeines Mathematik: Allgemeines VZ AR 76 2001 2 02 133-140 |
allfields_unstemmed |
10.1007/s000130050553 doi (DE-627)OLC2049221355 (DE-He213)s000130050553-p DE-627 ger DE-627 rakwb eng 510 050 VZ 17,1 ssgn 31.00 bkl Fernández, C. verfasserin aut Elliptic convolution operators on non-quasianalytic classes 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag, Basel 2001 Abstract. For those nonquasianalytic classes in which an extension of the classical Borel's theorem holds we show that every elliptic convolution operator is the composition of a translation and an invertible ultradifferential operator. This answers a question asked by Chou in: La transformation de Fourier complexe et l'équation de convolution, LNM 325, Berlin-Heidelberg-New York (1973). Convolution Operator Galbis, A. aut Gómez, M.C. aut Enthalten in Archiv der Mathematik Birkhäuser Verlag, 1948 76(2001), 2 vom: Feb., Seite 133-140 (DE-627)129061581 (DE-600)475-3 (DE-576)014392364 0003-889X nnns volume:76 year:2001 number:2 month:02 pages:133-140 https://doi.org/10.1007/s000130050553 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4082 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 31.00 Mathematik: Allgemeines Mathematik: Allgemeines VZ AR 76 2001 2 02 133-140 |
allfieldsGer |
10.1007/s000130050553 doi (DE-627)OLC2049221355 (DE-He213)s000130050553-p DE-627 ger DE-627 rakwb eng 510 050 VZ 17,1 ssgn 31.00 bkl Fernández, C. verfasserin aut Elliptic convolution operators on non-quasianalytic classes 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag, Basel 2001 Abstract. For those nonquasianalytic classes in which an extension of the classical Borel's theorem holds we show that every elliptic convolution operator is the composition of a translation and an invertible ultradifferential operator. This answers a question asked by Chou in: La transformation de Fourier complexe et l'équation de convolution, LNM 325, Berlin-Heidelberg-New York (1973). Convolution Operator Galbis, A. aut Gómez, M.C. aut Enthalten in Archiv der Mathematik Birkhäuser Verlag, 1948 76(2001), 2 vom: Feb., Seite 133-140 (DE-627)129061581 (DE-600)475-3 (DE-576)014392364 0003-889X nnns volume:76 year:2001 number:2 month:02 pages:133-140 https://doi.org/10.1007/s000130050553 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4082 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 31.00 Mathematik: Allgemeines Mathematik: Allgemeines VZ AR 76 2001 2 02 133-140 |
allfieldsSound |
10.1007/s000130050553 doi (DE-627)OLC2049221355 (DE-He213)s000130050553-p DE-627 ger DE-627 rakwb eng 510 050 VZ 17,1 ssgn 31.00 bkl Fernández, C. verfasserin aut Elliptic convolution operators on non-quasianalytic classes 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag, Basel 2001 Abstract. For those nonquasianalytic classes in which an extension of the classical Borel's theorem holds we show that every elliptic convolution operator is the composition of a translation and an invertible ultradifferential operator. This answers a question asked by Chou in: La transformation de Fourier complexe et l'équation de convolution, LNM 325, Berlin-Heidelberg-New York (1973). Convolution Operator Galbis, A. aut Gómez, M.C. aut Enthalten in Archiv der Mathematik Birkhäuser Verlag, 1948 76(2001), 2 vom: Feb., Seite 133-140 (DE-627)129061581 (DE-600)475-3 (DE-576)014392364 0003-889X nnns volume:76 year:2001 number:2 month:02 pages:133-140 https://doi.org/10.1007/s000130050553 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4082 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 31.00 Mathematik: Allgemeines Mathematik: Allgemeines VZ AR 76 2001 2 02 133-140 |
language |
English |
source |
Enthalten in Archiv der Mathematik 76(2001), 2 vom: Feb., Seite 133-140 volume:76 year:2001 number:2 month:02 pages:133-140 |
sourceStr |
Enthalten in Archiv der Mathematik 76(2001), 2 vom: Feb., Seite 133-140 volume:76 year:2001 number:2 month:02 pages:133-140 |
format_phy_str_mv |
Article |
bklname |
Mathematik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Convolution Operator |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Archiv der Mathematik |
authorswithroles_txt_mv |
Fernández, C. @@aut@@ Galbis, A. @@aut@@ Gómez, M.C. @@aut@@ |
publishDateDaySort_date |
2001-02-01T00:00:00Z |
hierarchy_top_id |
129061581 |
dewey-sort |
3510 |
id |
OLC2049221355 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2049221355</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240316005649.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2001 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s000130050553</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2049221355</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s000130050553-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">050</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fernández, C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elliptic convolution operators on non-quasianalytic classes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2001</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Birkhäuser Verlag, Basel 2001</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract. For those nonquasianalytic classes in which an extension of the classical Borel's theorem holds we show that every elliptic convolution operator is the composition of a translation and an invertible ultradifferential operator. This answers a question asked by Chou in: La transformation de Fourier complexe et l'équation de convolution, LNM 325, Berlin-Heidelberg-New York (1973).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convolution Operator</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Galbis, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gómez, M.C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Archiv der Mathematik</subfield><subfield code="d">Birkhäuser Verlag, 1948</subfield><subfield code="g">76(2001), 2 vom: Feb., Seite 133-140</subfield><subfield code="w">(DE-627)129061581</subfield><subfield code="w">(DE-600)475-3</subfield><subfield code="w">(DE-576)014392364</subfield><subfield code="x">0003-889X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:76</subfield><subfield code="g">year:2001</subfield><subfield code="g">number:2</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:133-140</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s000130050553</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">76</subfield><subfield code="j">2001</subfield><subfield code="e">2</subfield><subfield code="c">02</subfield><subfield code="h">133-140</subfield></datafield></record></collection>
|
author |
Fernández, C. |
spellingShingle |
Fernández, C. ddc 510 ssgn 17,1 bkl 31.00 misc Convolution Operator Elliptic convolution operators on non-quasianalytic classes |
authorStr |
Fernández, C. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129061581 |
format |
Article |
dewey-ones |
510 - Mathematics 050 - General serial publications |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0003-889X |
topic_title |
510 050 VZ 17,1 ssgn 31.00 bkl Elliptic convolution operators on non-quasianalytic classes Convolution Operator |
topic |
ddc 510 ssgn 17,1 bkl 31.00 misc Convolution Operator |
topic_unstemmed |
ddc 510 ssgn 17,1 bkl 31.00 misc Convolution Operator |
topic_browse |
ddc 510 ssgn 17,1 bkl 31.00 misc Convolution Operator |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Archiv der Mathematik |
hierarchy_parent_id |
129061581 |
dewey-tens |
510 - Mathematics 050 - Magazines, journals & serials |
hierarchy_top_title |
Archiv der Mathematik |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129061581 (DE-600)475-3 (DE-576)014392364 |
title |
Elliptic convolution operators on non-quasianalytic classes |
ctrlnum |
(DE-627)OLC2049221355 (DE-He213)s000130050553-p |
title_full |
Elliptic convolution operators on non-quasianalytic classes |
author_sort |
Fernández, C. |
journal |
Archiv der Mathematik |
journalStr |
Archiv der Mathematik |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2001 |
contenttype_str_mv |
txt |
container_start_page |
133 |
author_browse |
Fernández, C. Galbis, A. Gómez, M.C. |
container_volume |
76 |
class |
510 050 VZ 17,1 ssgn 31.00 bkl |
format_se |
Aufsätze |
author-letter |
Fernández, C. |
doi_str_mv |
10.1007/s000130050553 |
dewey-full |
510 050 |
title_sort |
elliptic convolution operators on non-quasianalytic classes |
title_auth |
Elliptic convolution operators on non-quasianalytic classes |
abstract |
Abstract. For those nonquasianalytic classes in which an extension of the classical Borel's theorem holds we show that every elliptic convolution operator is the composition of a translation and an invertible ultradifferential operator. This answers a question asked by Chou in: La transformation de Fourier complexe et l'équation de convolution, LNM 325, Berlin-Heidelberg-New York (1973). © Birkhäuser Verlag, Basel 2001 |
abstractGer |
Abstract. For those nonquasianalytic classes in which an extension of the classical Borel's theorem holds we show that every elliptic convolution operator is the composition of a translation and an invertible ultradifferential operator. This answers a question asked by Chou in: La transformation de Fourier complexe et l'équation de convolution, LNM 325, Berlin-Heidelberg-New York (1973). © Birkhäuser Verlag, Basel 2001 |
abstract_unstemmed |
Abstract. For those nonquasianalytic classes in which an extension of the classical Borel's theorem holds we show that every elliptic convolution operator is the composition of a translation and an invertible ultradifferential operator. This answers a question asked by Chou in: La transformation de Fourier complexe et l'équation de convolution, LNM 325, Berlin-Heidelberg-New York (1973). © Birkhäuser Verlag, Basel 2001 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4082 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Elliptic convolution operators on non-quasianalytic classes |
url |
https://doi.org/10.1007/s000130050553 |
remote_bool |
false |
author2 |
Galbis, A. Gómez, M.C. |
author2Str |
Galbis, A. Gómez, M.C. |
ppnlink |
129061581 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s000130050553 |
up_date |
2024-07-03T21:57:38.347Z |
_version_ |
1803596708814258176 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2049221355</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240316005649.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2001 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s000130050553</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2049221355</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s000130050553-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">050</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fernández, C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elliptic convolution operators on non-quasianalytic classes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2001</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Birkhäuser Verlag, Basel 2001</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract. For those nonquasianalytic classes in which an extension of the classical Borel's theorem holds we show that every elliptic convolution operator is the composition of a translation and an invertible ultradifferential operator. This answers a question asked by Chou in: La transformation de Fourier complexe et l'équation de convolution, LNM 325, Berlin-Heidelberg-New York (1973).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convolution Operator</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Galbis, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gómez, M.C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Archiv der Mathematik</subfield><subfield code="d">Birkhäuser Verlag, 1948</subfield><subfield code="g">76(2001), 2 vom: Feb., Seite 133-140</subfield><subfield code="w">(DE-627)129061581</subfield><subfield code="w">(DE-600)475-3</subfield><subfield code="w">(DE-576)014392364</subfield><subfield code="x">0003-889X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:76</subfield><subfield code="g">year:2001</subfield><subfield code="g">number:2</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:133-140</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s000130050553</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">76</subfield><subfield code="j">2001</subfield><subfield code="e">2</subfield><subfield code="c">02</subfield><subfield code="h">133-140</subfield></datafield></record></collection>
|
score |
7.3998127 |