Simplicity of principal eigenvalue for p-Laplace operator with singular indefinite weight
Abstract. Given a connected open set $$\Omega \subset \mathbb{R}^{N} $$ and a function w ∈LN/p(Ω) if 1 < p < N and w ∈Lr (Ω) for some r ∈(1, ∞) if p ≧ N, with $$w^{+} \not\equiv 0,$$ we prove that the positive principal eigenvalue of the problem $$ - \hbox{div}(|\nabla _{u} |^{{p - 2}} \nabla...
Ausführliche Beschreibung
Autor*in: |
Lucia, Marcello [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2006 |
---|
Anmerkung: |
© Birkhäuser Verlag, Basel 2006 |
---|
Übergeordnetes Werk: |
Enthalten in: Archiv der Mathematik - Birkhäuser-Verlag, 1948, 86(2006), 1 vom: Jan., Seite 79-89 |
---|---|
Übergeordnetes Werk: |
volume:86 ; year:2006 ; number:1 ; month:01 ; pages:79-89 |
Links: |
---|
DOI / URN: |
10.1007/s00013-005-1512-x |
---|
Katalog-ID: |
OLC2049228198 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2049228198 | ||
003 | DE-627 | ||
005 | 20240316005700.0 | ||
007 | tu | ||
008 | 200819s2006 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00013-005-1512-x |2 doi | |
035 | |a (DE-627)OLC2049228198 | ||
035 | |a (DE-He213)s00013-005-1512-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |a 050 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Lucia, Marcello |e verfasserin |4 aut | |
245 | 1 | 0 | |a Simplicity of principal eigenvalue for p-Laplace operator with singular indefinite weight |
264 | 1 | |c 2006 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Birkhäuser Verlag, Basel 2006 | ||
520 | |a Abstract. Given a connected open set $$\Omega \subset \mathbb{R}^{N} $$ and a function w ∈LN/p(Ω) if 1 < p < N and w ∈Lr (Ω) for some r ∈(1, ∞) if p ≧ N, with $$w^{+} \not\equiv 0,$$ we prove that the positive principal eigenvalue of the problem $$ - \hbox{div}(|\nabla _{u} |^{{p - 2}} \nabla u) = \lambda w(x)|u|^{{p - 2}} u,\quad u \in \mathcal{D}^{{1,p}}_{0} (\Omega ), $$ is unique and simple. This improves previous works all of which assumed w in a smaller space than LN/p (Ω) to ensure that Harnack’s inequality holds. Our proof does not rely on Harnack’s inequality, which may fail in our case. | ||
700 | 1 | |a Prashanth, S. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Archiv der Mathematik |d Birkhäuser-Verlag, 1948 |g 86(2006), 1 vom: Jan., Seite 79-89 |w (DE-627)129061581 |w (DE-600)475-3 |w (DE-576)014392364 |x 0003-889X |7 nnns |
773 | 1 | 8 | |g volume:86 |g year:2006 |g number:1 |g month:01 |g pages:79-89 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00013-005-1512-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2030 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4317 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 31.00 |j Mathematik: Allgemeines |j Mathematik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 86 |j 2006 |e 1 |c 01 |h 79-89 |
author_variant |
m l ml s p sp |
---|---|
matchkey_str |
article:0003889X:2006----::ipiiyfrniaegnaufrlpaeprtrihi |
hierarchy_sort_str |
2006 |
bklnumber |
31.00 |
publishDate |
2006 |
allfields |
10.1007/s00013-005-1512-x doi (DE-627)OLC2049228198 (DE-He213)s00013-005-1512-x-p DE-627 ger DE-627 rakwb eng 510 050 VZ 17,1 ssgn 31.00 bkl Lucia, Marcello verfasserin aut Simplicity of principal eigenvalue for p-Laplace operator with singular indefinite weight 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag, Basel 2006 Abstract. Given a connected open set $$\Omega \subset \mathbb{R}^{N} $$ and a function w ∈LN/p(Ω) if 1 < p < N and w ∈Lr (Ω) for some r ∈(1, ∞) if p ≧ N, with $$w^{+} \not\equiv 0,$$ we prove that the positive principal eigenvalue of the problem $$ - \hbox{div}(|\nabla _{u} |^{{p - 2}} \nabla u) = \lambda w(x)|u|^{{p - 2}} u,\quad u \in \mathcal{D}^{{1,p}}_{0} (\Omega ), $$ is unique and simple. This improves previous works all of which assumed w in a smaller space than LN/p (Ω) to ensure that Harnack’s inequality holds. Our proof does not rely on Harnack’s inequality, which may fail in our case. Prashanth, S. aut Enthalten in Archiv der Mathematik Birkhäuser-Verlag, 1948 86(2006), 1 vom: Jan., Seite 79-89 (DE-627)129061581 (DE-600)475-3 (DE-576)014392364 0003-889X nnns volume:86 year:2006 number:1 month:01 pages:79-89 https://doi.org/10.1007/s00013-005-1512-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_120 GBV_ILN_267 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4325 GBV_ILN_4700 31.00 Mathematik: Allgemeines Mathematik: Allgemeines VZ AR 86 2006 1 01 79-89 |
spelling |
10.1007/s00013-005-1512-x doi (DE-627)OLC2049228198 (DE-He213)s00013-005-1512-x-p DE-627 ger DE-627 rakwb eng 510 050 VZ 17,1 ssgn 31.00 bkl Lucia, Marcello verfasserin aut Simplicity of principal eigenvalue for p-Laplace operator with singular indefinite weight 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag, Basel 2006 Abstract. Given a connected open set $$\Omega \subset \mathbb{R}^{N} $$ and a function w ∈LN/p(Ω) if 1 < p < N and w ∈Lr (Ω) for some r ∈(1, ∞) if p ≧ N, with $$w^{+} \not\equiv 0,$$ we prove that the positive principal eigenvalue of the problem $$ - \hbox{div}(|\nabla _{u} |^{{p - 2}} \nabla u) = \lambda w(x)|u|^{{p - 2}} u,\quad u \in \mathcal{D}^{{1,p}}_{0} (\Omega ), $$ is unique and simple. This improves previous works all of which assumed w in a smaller space than LN/p (Ω) to ensure that Harnack’s inequality holds. Our proof does not rely on Harnack’s inequality, which may fail in our case. Prashanth, S. aut Enthalten in Archiv der Mathematik Birkhäuser-Verlag, 1948 86(2006), 1 vom: Jan., Seite 79-89 (DE-627)129061581 (DE-600)475-3 (DE-576)014392364 0003-889X nnns volume:86 year:2006 number:1 month:01 pages:79-89 https://doi.org/10.1007/s00013-005-1512-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_120 GBV_ILN_267 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4325 GBV_ILN_4700 31.00 Mathematik: Allgemeines Mathematik: Allgemeines VZ AR 86 2006 1 01 79-89 |
allfields_unstemmed |
10.1007/s00013-005-1512-x doi (DE-627)OLC2049228198 (DE-He213)s00013-005-1512-x-p DE-627 ger DE-627 rakwb eng 510 050 VZ 17,1 ssgn 31.00 bkl Lucia, Marcello verfasserin aut Simplicity of principal eigenvalue for p-Laplace operator with singular indefinite weight 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag, Basel 2006 Abstract. Given a connected open set $$\Omega \subset \mathbb{R}^{N} $$ and a function w ∈LN/p(Ω) if 1 < p < N and w ∈Lr (Ω) for some r ∈(1, ∞) if p ≧ N, with $$w^{+} \not\equiv 0,$$ we prove that the positive principal eigenvalue of the problem $$ - \hbox{div}(|\nabla _{u} |^{{p - 2}} \nabla u) = \lambda w(x)|u|^{{p - 2}} u,\quad u \in \mathcal{D}^{{1,p}}_{0} (\Omega ), $$ is unique and simple. This improves previous works all of which assumed w in a smaller space than LN/p (Ω) to ensure that Harnack’s inequality holds. Our proof does not rely on Harnack’s inequality, which may fail in our case. Prashanth, S. aut Enthalten in Archiv der Mathematik Birkhäuser-Verlag, 1948 86(2006), 1 vom: Jan., Seite 79-89 (DE-627)129061581 (DE-600)475-3 (DE-576)014392364 0003-889X nnns volume:86 year:2006 number:1 month:01 pages:79-89 https://doi.org/10.1007/s00013-005-1512-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_120 GBV_ILN_267 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4325 GBV_ILN_4700 31.00 Mathematik: Allgemeines Mathematik: Allgemeines VZ AR 86 2006 1 01 79-89 |
allfieldsGer |
10.1007/s00013-005-1512-x doi (DE-627)OLC2049228198 (DE-He213)s00013-005-1512-x-p DE-627 ger DE-627 rakwb eng 510 050 VZ 17,1 ssgn 31.00 bkl Lucia, Marcello verfasserin aut Simplicity of principal eigenvalue for p-Laplace operator with singular indefinite weight 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag, Basel 2006 Abstract. Given a connected open set $$\Omega \subset \mathbb{R}^{N} $$ and a function w ∈LN/p(Ω) if 1 < p < N and w ∈Lr (Ω) for some r ∈(1, ∞) if p ≧ N, with $$w^{+} \not\equiv 0,$$ we prove that the positive principal eigenvalue of the problem $$ - \hbox{div}(|\nabla _{u} |^{{p - 2}} \nabla u) = \lambda w(x)|u|^{{p - 2}} u,\quad u \in \mathcal{D}^{{1,p}}_{0} (\Omega ), $$ is unique and simple. This improves previous works all of which assumed w in a smaller space than LN/p (Ω) to ensure that Harnack’s inequality holds. Our proof does not rely on Harnack’s inequality, which may fail in our case. Prashanth, S. aut Enthalten in Archiv der Mathematik Birkhäuser-Verlag, 1948 86(2006), 1 vom: Jan., Seite 79-89 (DE-627)129061581 (DE-600)475-3 (DE-576)014392364 0003-889X nnns volume:86 year:2006 number:1 month:01 pages:79-89 https://doi.org/10.1007/s00013-005-1512-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_120 GBV_ILN_267 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4325 GBV_ILN_4700 31.00 Mathematik: Allgemeines Mathematik: Allgemeines VZ AR 86 2006 1 01 79-89 |
allfieldsSound |
10.1007/s00013-005-1512-x doi (DE-627)OLC2049228198 (DE-He213)s00013-005-1512-x-p DE-627 ger DE-627 rakwb eng 510 050 VZ 17,1 ssgn 31.00 bkl Lucia, Marcello verfasserin aut Simplicity of principal eigenvalue for p-Laplace operator with singular indefinite weight 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Birkhäuser Verlag, Basel 2006 Abstract. Given a connected open set $$\Omega \subset \mathbb{R}^{N} $$ and a function w ∈LN/p(Ω) if 1 < p < N and w ∈Lr (Ω) for some r ∈(1, ∞) if p ≧ N, with $$w^{+} \not\equiv 0,$$ we prove that the positive principal eigenvalue of the problem $$ - \hbox{div}(|\nabla _{u} |^{{p - 2}} \nabla u) = \lambda w(x)|u|^{{p - 2}} u,\quad u \in \mathcal{D}^{{1,p}}_{0} (\Omega ), $$ is unique and simple. This improves previous works all of which assumed w in a smaller space than LN/p (Ω) to ensure that Harnack’s inequality holds. Our proof does not rely on Harnack’s inequality, which may fail in our case. Prashanth, S. aut Enthalten in Archiv der Mathematik Birkhäuser-Verlag, 1948 86(2006), 1 vom: Jan., Seite 79-89 (DE-627)129061581 (DE-600)475-3 (DE-576)014392364 0003-889X nnns volume:86 year:2006 number:1 month:01 pages:79-89 https://doi.org/10.1007/s00013-005-1512-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_120 GBV_ILN_267 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4325 GBV_ILN_4700 31.00 Mathematik: Allgemeines Mathematik: Allgemeines VZ AR 86 2006 1 01 79-89 |
language |
English |
source |
Enthalten in Archiv der Mathematik 86(2006), 1 vom: Jan., Seite 79-89 volume:86 year:2006 number:1 month:01 pages:79-89 |
sourceStr |
Enthalten in Archiv der Mathematik 86(2006), 1 vom: Jan., Seite 79-89 volume:86 year:2006 number:1 month:01 pages:79-89 |
format_phy_str_mv |
Article |
bklname |
Mathematik: Allgemeines |
institution |
findex.gbv.de |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Archiv der Mathematik |
authorswithroles_txt_mv |
Lucia, Marcello @@aut@@ Prashanth, S. @@aut@@ |
publishDateDaySort_date |
2006-01-01T00:00:00Z |
hierarchy_top_id |
129061581 |
dewey-sort |
3510 |
id |
OLC2049228198 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2049228198</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240316005700.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2006 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00013-005-1512-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2049228198</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00013-005-1512-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">050</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lucia, Marcello</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Simplicity of principal eigenvalue for p-Laplace operator with singular indefinite weight</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2006</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Birkhäuser Verlag, Basel 2006</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract. Given a connected open set $$\Omega \subset \mathbb{R}^{N} $$ and a function w ∈LN/p(Ω) if 1 < p < N and w ∈Lr (Ω) for some r ∈(1, ∞) if p ≧ N, with $$w^{+} \not\equiv 0,$$ we prove that the positive principal eigenvalue of the problem $$ - \hbox{div}(|\nabla _{u} |^{{p - 2}} \nabla u) = \lambda w(x)|u|^{{p - 2}} u,\quad u \in \mathcal{D}^{{1,p}}_{0} (\Omega ), $$ is unique and simple. This improves previous works all of which assumed w in a smaller space than LN/p (Ω) to ensure that Harnack’s inequality holds. Our proof does not rely on Harnack’s inequality, which may fail in our case.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prashanth, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Archiv der Mathematik</subfield><subfield code="d">Birkhäuser-Verlag, 1948</subfield><subfield code="g">86(2006), 1 vom: Jan., Seite 79-89</subfield><subfield code="w">(DE-627)129061581</subfield><subfield code="w">(DE-600)475-3</subfield><subfield code="w">(DE-576)014392364</subfield><subfield code="x">0003-889X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:86</subfield><subfield code="g">year:2006</subfield><subfield code="g">number:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:79-89</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00013-005-1512-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">86</subfield><subfield code="j">2006</subfield><subfield code="e">1</subfield><subfield code="c">01</subfield><subfield code="h">79-89</subfield></datafield></record></collection>
|
author |
Lucia, Marcello |
spellingShingle |
Lucia, Marcello ddc 510 ssgn 17,1 bkl 31.00 Simplicity of principal eigenvalue for p-Laplace operator with singular indefinite weight |
authorStr |
Lucia, Marcello |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129061581 |
format |
Article |
dewey-ones |
510 - Mathematics 050 - General serial publications |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0003-889X |
topic_title |
510 050 VZ 17,1 ssgn 31.00 bkl Simplicity of principal eigenvalue for p-Laplace operator with singular indefinite weight |
topic |
ddc 510 ssgn 17,1 bkl 31.00 |
topic_unstemmed |
ddc 510 ssgn 17,1 bkl 31.00 |
topic_browse |
ddc 510 ssgn 17,1 bkl 31.00 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Archiv der Mathematik |
hierarchy_parent_id |
129061581 |
dewey-tens |
510 - Mathematics 050 - Magazines, journals & serials |
hierarchy_top_title |
Archiv der Mathematik |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129061581 (DE-600)475-3 (DE-576)014392364 |
title |
Simplicity of principal eigenvalue for p-Laplace operator with singular indefinite weight |
ctrlnum |
(DE-627)OLC2049228198 (DE-He213)s00013-005-1512-x-p |
title_full |
Simplicity of principal eigenvalue for p-Laplace operator with singular indefinite weight |
author_sort |
Lucia, Marcello |
journal |
Archiv der Mathematik |
journalStr |
Archiv der Mathematik |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2006 |
contenttype_str_mv |
txt |
container_start_page |
79 |
author_browse |
Lucia, Marcello Prashanth, S. |
container_volume |
86 |
class |
510 050 VZ 17,1 ssgn 31.00 bkl |
format_se |
Aufsätze |
author-letter |
Lucia, Marcello |
doi_str_mv |
10.1007/s00013-005-1512-x |
dewey-full |
510 050 |
title_sort |
simplicity of principal eigenvalue for p-laplace operator with singular indefinite weight |
title_auth |
Simplicity of principal eigenvalue for p-Laplace operator with singular indefinite weight |
abstract |
Abstract. Given a connected open set $$\Omega \subset \mathbb{R}^{N} $$ and a function w ∈LN/p(Ω) if 1 < p < N and w ∈Lr (Ω) for some r ∈(1, ∞) if p ≧ N, with $$w^{+} \not\equiv 0,$$ we prove that the positive principal eigenvalue of the problem $$ - \hbox{div}(|\nabla _{u} |^{{p - 2}} \nabla u) = \lambda w(x)|u|^{{p - 2}} u,\quad u \in \mathcal{D}^{{1,p}}_{0} (\Omega ), $$ is unique and simple. This improves previous works all of which assumed w in a smaller space than LN/p (Ω) to ensure that Harnack’s inequality holds. Our proof does not rely on Harnack’s inequality, which may fail in our case. © Birkhäuser Verlag, Basel 2006 |
abstractGer |
Abstract. Given a connected open set $$\Omega \subset \mathbb{R}^{N} $$ and a function w ∈LN/p(Ω) if 1 < p < N and w ∈Lr (Ω) for some r ∈(1, ∞) if p ≧ N, with $$w^{+} \not\equiv 0,$$ we prove that the positive principal eigenvalue of the problem $$ - \hbox{div}(|\nabla _{u} |^{{p - 2}} \nabla u) = \lambda w(x)|u|^{{p - 2}} u,\quad u \in \mathcal{D}^{{1,p}}_{0} (\Omega ), $$ is unique and simple. This improves previous works all of which assumed w in a smaller space than LN/p (Ω) to ensure that Harnack’s inequality holds. Our proof does not rely on Harnack’s inequality, which may fail in our case. © Birkhäuser Verlag, Basel 2006 |
abstract_unstemmed |
Abstract. Given a connected open set $$\Omega \subset \mathbb{R}^{N} $$ and a function w ∈LN/p(Ω) if 1 < p < N and w ∈Lr (Ω) for some r ∈(1, ∞) if p ≧ N, with $$w^{+} \not\equiv 0,$$ we prove that the positive principal eigenvalue of the problem $$ - \hbox{div}(|\nabla _{u} |^{{p - 2}} \nabla u) = \lambda w(x)|u|^{{p - 2}} u,\quad u \in \mathcal{D}^{{1,p}}_{0} (\Omega ), $$ is unique and simple. This improves previous works all of which assumed w in a smaller space than LN/p (Ω) to ensure that Harnack’s inequality holds. Our proof does not rely on Harnack’s inequality, which may fail in our case. © Birkhäuser Verlag, Basel 2006 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_120 GBV_ILN_267 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4325 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Simplicity of principal eigenvalue for p-Laplace operator with singular indefinite weight |
url |
https://doi.org/10.1007/s00013-005-1512-x |
remote_bool |
false |
author2 |
Prashanth, S. |
author2Str |
Prashanth, S. |
ppnlink |
129061581 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00013-005-1512-x |
up_date |
2024-07-03T21:58:59.798Z |
_version_ |
1803596794217627648 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2049228198</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240316005700.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2006 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00013-005-1512-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2049228198</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00013-005-1512-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">050</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lucia, Marcello</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Simplicity of principal eigenvalue for p-Laplace operator with singular indefinite weight</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2006</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Birkhäuser Verlag, Basel 2006</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract. Given a connected open set $$\Omega \subset \mathbb{R}^{N} $$ and a function w ∈LN/p(Ω) if 1 < p < N and w ∈Lr (Ω) for some r ∈(1, ∞) if p ≧ N, with $$w^{+} \not\equiv 0,$$ we prove that the positive principal eigenvalue of the problem $$ - \hbox{div}(|\nabla _{u} |^{{p - 2}} \nabla u) = \lambda w(x)|u|^{{p - 2}} u,\quad u \in \mathcal{D}^{{1,p}}_{0} (\Omega ), $$ is unique and simple. This improves previous works all of which assumed w in a smaller space than LN/p (Ω) to ensure that Harnack’s inequality holds. Our proof does not rely on Harnack’s inequality, which may fail in our case.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prashanth, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Archiv der Mathematik</subfield><subfield code="d">Birkhäuser-Verlag, 1948</subfield><subfield code="g">86(2006), 1 vom: Jan., Seite 79-89</subfield><subfield code="w">(DE-627)129061581</subfield><subfield code="w">(DE-600)475-3</subfield><subfield code="w">(DE-576)014392364</subfield><subfield code="x">0003-889X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:86</subfield><subfield code="g">year:2006</subfield><subfield code="g">number:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:79-89</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00013-005-1512-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">86</subfield><subfield code="j">2006</subfield><subfield code="e">1</subfield><subfield code="c">01</subfield><subfield code="h">79-89</subfield></datafield></record></collection>
|
score |
7.402669 |