Feynman formulas for solutions of evolution equations on ramified surfaces
Abstract We obtain a representation, using a Feynman formula, for the operator semigroup generated by a second-order parabolic differential equation with respect to functions defined on the Cartesian product of the line ℝ and a graph consisting of n rays issuing from a common vertex.
Autor*in: |
Dubravina, V. A. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Pleiades Publishing, Ltd. 2014 |
---|
Übergeordnetes Werk: |
Enthalten in: Russian journal of mathematical physics - Pleiades Publishing, 1993, 21(2014), 2 vom: Apr., Seite 285-288 |
---|---|
Übergeordnetes Werk: |
volume:21 ; year:2014 ; number:2 ; month:04 ; pages:285-288 |
Links: |
---|
DOI / URN: |
10.1134/S1061920814020113 |
---|
Katalog-ID: |
OLC2049272324 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2049272324 | ||
003 | DE-627 | ||
005 | 20230401085122.0 | ||
007 | tu | ||
008 | 200819s2014 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1134/S1061920814020113 |2 doi | |
035 | |a (DE-627)OLC2049272324 | ||
035 | |a (DE-He213)S1061920814020113-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 510 |q VZ |
100 | 1 | |a Dubravina, V. A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Feynman formulas for solutions of evolution equations on ramified surfaces |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Pleiades Publishing, Ltd. 2014 | ||
520 | |a Abstract We obtain a representation, using a Feynman formula, for the operator semigroup generated by a second-order parabolic differential equation with respect to functions defined on the Cartesian product of the line ℝ and a graph consisting of n rays issuing from a common vertex. | ||
650 | 4 | |a Cauchy Problem | |
650 | 4 | |a Evolution Equation | |
650 | 4 | |a Common Vertex | |
650 | 4 | |a Common Line | |
650 | 4 | |a Strong Operator Topology | |
773 | 0 | 8 | |i Enthalten in |t Russian journal of mathematical physics |d Pleiades Publishing, 1993 |g 21(2014), 2 vom: Apr., Seite 285-288 |w (DE-627)190282460 |w (DE-600)1291704-7 |w (DE-576)285631713 |x 1061-9208 |7 nnns |
773 | 1 | 8 | |g volume:21 |g year:2014 |g number:2 |g month:04 |g pages:285-288 |
856 | 4 | 1 | |u https://doi.org/10.1134/S1061920814020113 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 21 |j 2014 |e 2 |c 04 |h 285-288 |
author_variant |
v a d va vad |
---|---|
matchkey_str |
article:10619208:2014----::enafruafrouinoeouinqaino |
hierarchy_sort_str |
2014 |
publishDate |
2014 |
allfields |
10.1134/S1061920814020113 doi (DE-627)OLC2049272324 (DE-He213)S1061920814020113-p DE-627 ger DE-627 rakwb eng 530 510 VZ Dubravina, V. A. verfasserin aut Feynman formulas for solutions of evolution equations on ramified surfaces 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2014 Abstract We obtain a representation, using a Feynman formula, for the operator semigroup generated by a second-order parabolic differential equation with respect to functions defined on the Cartesian product of the line ℝ and a graph consisting of n rays issuing from a common vertex. Cauchy Problem Evolution Equation Common Vertex Common Line Strong Operator Topology Enthalten in Russian journal of mathematical physics Pleiades Publishing, 1993 21(2014), 2 vom: Apr., Seite 285-288 (DE-627)190282460 (DE-600)1291704-7 (DE-576)285631713 1061-9208 nnns volume:21 year:2014 number:2 month:04 pages:285-288 https://doi.org/10.1134/S1061920814020113 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT GBV_ILN_70 AR 21 2014 2 04 285-288 |
spelling |
10.1134/S1061920814020113 doi (DE-627)OLC2049272324 (DE-He213)S1061920814020113-p DE-627 ger DE-627 rakwb eng 530 510 VZ Dubravina, V. A. verfasserin aut Feynman formulas for solutions of evolution equations on ramified surfaces 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2014 Abstract We obtain a representation, using a Feynman formula, for the operator semigroup generated by a second-order parabolic differential equation with respect to functions defined on the Cartesian product of the line ℝ and a graph consisting of n rays issuing from a common vertex. Cauchy Problem Evolution Equation Common Vertex Common Line Strong Operator Topology Enthalten in Russian journal of mathematical physics Pleiades Publishing, 1993 21(2014), 2 vom: Apr., Seite 285-288 (DE-627)190282460 (DE-600)1291704-7 (DE-576)285631713 1061-9208 nnns volume:21 year:2014 number:2 month:04 pages:285-288 https://doi.org/10.1134/S1061920814020113 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT GBV_ILN_70 AR 21 2014 2 04 285-288 |
allfields_unstemmed |
10.1134/S1061920814020113 doi (DE-627)OLC2049272324 (DE-He213)S1061920814020113-p DE-627 ger DE-627 rakwb eng 530 510 VZ Dubravina, V. A. verfasserin aut Feynman formulas for solutions of evolution equations on ramified surfaces 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2014 Abstract We obtain a representation, using a Feynman formula, for the operator semigroup generated by a second-order parabolic differential equation with respect to functions defined on the Cartesian product of the line ℝ and a graph consisting of n rays issuing from a common vertex. Cauchy Problem Evolution Equation Common Vertex Common Line Strong Operator Topology Enthalten in Russian journal of mathematical physics Pleiades Publishing, 1993 21(2014), 2 vom: Apr., Seite 285-288 (DE-627)190282460 (DE-600)1291704-7 (DE-576)285631713 1061-9208 nnns volume:21 year:2014 number:2 month:04 pages:285-288 https://doi.org/10.1134/S1061920814020113 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT GBV_ILN_70 AR 21 2014 2 04 285-288 |
allfieldsGer |
10.1134/S1061920814020113 doi (DE-627)OLC2049272324 (DE-He213)S1061920814020113-p DE-627 ger DE-627 rakwb eng 530 510 VZ Dubravina, V. A. verfasserin aut Feynman formulas for solutions of evolution equations on ramified surfaces 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2014 Abstract We obtain a representation, using a Feynman formula, for the operator semigroup generated by a second-order parabolic differential equation with respect to functions defined on the Cartesian product of the line ℝ and a graph consisting of n rays issuing from a common vertex. Cauchy Problem Evolution Equation Common Vertex Common Line Strong Operator Topology Enthalten in Russian journal of mathematical physics Pleiades Publishing, 1993 21(2014), 2 vom: Apr., Seite 285-288 (DE-627)190282460 (DE-600)1291704-7 (DE-576)285631713 1061-9208 nnns volume:21 year:2014 number:2 month:04 pages:285-288 https://doi.org/10.1134/S1061920814020113 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT GBV_ILN_70 AR 21 2014 2 04 285-288 |
allfieldsSound |
10.1134/S1061920814020113 doi (DE-627)OLC2049272324 (DE-He213)S1061920814020113-p DE-627 ger DE-627 rakwb eng 530 510 VZ Dubravina, V. A. verfasserin aut Feynman formulas for solutions of evolution equations on ramified surfaces 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2014 Abstract We obtain a representation, using a Feynman formula, for the operator semigroup generated by a second-order parabolic differential equation with respect to functions defined on the Cartesian product of the line ℝ and a graph consisting of n rays issuing from a common vertex. Cauchy Problem Evolution Equation Common Vertex Common Line Strong Operator Topology Enthalten in Russian journal of mathematical physics Pleiades Publishing, 1993 21(2014), 2 vom: Apr., Seite 285-288 (DE-627)190282460 (DE-600)1291704-7 (DE-576)285631713 1061-9208 nnns volume:21 year:2014 number:2 month:04 pages:285-288 https://doi.org/10.1134/S1061920814020113 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT GBV_ILN_70 AR 21 2014 2 04 285-288 |
language |
English |
source |
Enthalten in Russian journal of mathematical physics 21(2014), 2 vom: Apr., Seite 285-288 volume:21 year:2014 number:2 month:04 pages:285-288 |
sourceStr |
Enthalten in Russian journal of mathematical physics 21(2014), 2 vom: Apr., Seite 285-288 volume:21 year:2014 number:2 month:04 pages:285-288 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Cauchy Problem Evolution Equation Common Vertex Common Line Strong Operator Topology |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Russian journal of mathematical physics |
authorswithroles_txt_mv |
Dubravina, V. A. @@aut@@ |
publishDateDaySort_date |
2014-04-01T00:00:00Z |
hierarchy_top_id |
190282460 |
dewey-sort |
3530 |
id |
OLC2049272324 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2049272324</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401085122.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S1061920814020113</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2049272324</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S1061920814020113-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dubravina, V. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Feynman formulas for solutions of evolution equations on ramified surfaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We obtain a representation, using a Feynman formula, for the operator semigroup generated by a second-order parabolic differential equation with respect to functions defined on the Cartesian product of the line ℝ and a graph consisting of n rays issuing from a common vertex.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cauchy Problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evolution Equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Common Vertex</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Common Line</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strong Operator Topology</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Russian journal of mathematical physics</subfield><subfield code="d">Pleiades Publishing, 1993</subfield><subfield code="g">21(2014), 2 vom: Apr., Seite 285-288</subfield><subfield code="w">(DE-627)190282460</subfield><subfield code="w">(DE-600)1291704-7</subfield><subfield code="w">(DE-576)285631713</subfield><subfield code="x">1061-9208</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:2</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:285-288</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S1061920814020113</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2014</subfield><subfield code="e">2</subfield><subfield code="c">04</subfield><subfield code="h">285-288</subfield></datafield></record></collection>
|
author |
Dubravina, V. A. |
spellingShingle |
Dubravina, V. A. ddc 530 misc Cauchy Problem misc Evolution Equation misc Common Vertex misc Common Line misc Strong Operator Topology Feynman formulas for solutions of evolution equations on ramified surfaces |
authorStr |
Dubravina, V. A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)190282460 |
format |
Article |
dewey-ones |
530 - Physics 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1061-9208 |
topic_title |
530 510 VZ Feynman formulas for solutions of evolution equations on ramified surfaces Cauchy Problem Evolution Equation Common Vertex Common Line Strong Operator Topology |
topic |
ddc 530 misc Cauchy Problem misc Evolution Equation misc Common Vertex misc Common Line misc Strong Operator Topology |
topic_unstemmed |
ddc 530 misc Cauchy Problem misc Evolution Equation misc Common Vertex misc Common Line misc Strong Operator Topology |
topic_browse |
ddc 530 misc Cauchy Problem misc Evolution Equation misc Common Vertex misc Common Line misc Strong Operator Topology |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Russian journal of mathematical physics |
hierarchy_parent_id |
190282460 |
dewey-tens |
530 - Physics 510 - Mathematics |
hierarchy_top_title |
Russian journal of mathematical physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)190282460 (DE-600)1291704-7 (DE-576)285631713 |
title |
Feynman formulas for solutions of evolution equations on ramified surfaces |
ctrlnum |
(DE-627)OLC2049272324 (DE-He213)S1061920814020113-p |
title_full |
Feynman formulas for solutions of evolution equations on ramified surfaces |
author_sort |
Dubravina, V. A. |
journal |
Russian journal of mathematical physics |
journalStr |
Russian journal of mathematical physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
container_start_page |
285 |
author_browse |
Dubravina, V. A. |
container_volume |
21 |
class |
530 510 VZ |
format_se |
Aufsätze |
author-letter |
Dubravina, V. A. |
doi_str_mv |
10.1134/S1061920814020113 |
dewey-full |
530 510 |
title_sort |
feynman formulas for solutions of evolution equations on ramified surfaces |
title_auth |
Feynman formulas for solutions of evolution equations on ramified surfaces |
abstract |
Abstract We obtain a representation, using a Feynman formula, for the operator semigroup generated by a second-order parabolic differential equation with respect to functions defined on the Cartesian product of the line ℝ and a graph consisting of n rays issuing from a common vertex. © Pleiades Publishing, Ltd. 2014 |
abstractGer |
Abstract We obtain a representation, using a Feynman formula, for the operator semigroup generated by a second-order parabolic differential equation with respect to functions defined on the Cartesian product of the line ℝ and a graph consisting of n rays issuing from a common vertex. © Pleiades Publishing, Ltd. 2014 |
abstract_unstemmed |
Abstract We obtain a representation, using a Feynman formula, for the operator semigroup generated by a second-order parabolic differential equation with respect to functions defined on the Cartesian product of the line ℝ and a graph consisting of n rays issuing from a common vertex. © Pleiades Publishing, Ltd. 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT GBV_ILN_70 |
container_issue |
2 |
title_short |
Feynman formulas for solutions of evolution equations on ramified surfaces |
url |
https://doi.org/10.1134/S1061920814020113 |
remote_bool |
false |
ppnlink |
190282460 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1134/S1061920814020113 |
up_date |
2024-07-03T22:07:34.994Z |
_version_ |
1803597334441885697 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2049272324</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401085122.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S1061920814020113</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2049272324</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S1061920814020113-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dubravina, V. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Feynman formulas for solutions of evolution equations on ramified surfaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We obtain a representation, using a Feynman formula, for the operator semigroup generated by a second-order parabolic differential equation with respect to functions defined on the Cartesian product of the line ℝ and a graph consisting of n rays issuing from a common vertex.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cauchy Problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evolution Equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Common Vertex</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Common Line</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strong Operator Topology</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Russian journal of mathematical physics</subfield><subfield code="d">Pleiades Publishing, 1993</subfield><subfield code="g">21(2014), 2 vom: Apr., Seite 285-288</subfield><subfield code="w">(DE-627)190282460</subfield><subfield code="w">(DE-600)1291704-7</subfield><subfield code="w">(DE-576)285631713</subfield><subfield code="x">1061-9208</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:2</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:285-288</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S1061920814020113</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2014</subfield><subfield code="e">2</subfield><subfield code="c">04</subfield><subfield code="h">285-288</subfield></datafield></record></collection>
|
score |
7.4003134 |