Thermal decomposition characteristics of expired single-based propellant using a lab-scale tube furnace and a thermo-gravimetric analysis reactor
Abstract The Republic of Korea has a plan to construct an incineration facility for expired propellant from munitions including 155, 105 mm, and 8 in. howitzer shells. It is important to understand thermal characteristics of the propellant before designing the incineration facility. In this study, t...
Ausführliche Beschreibung
Autor*in: |
Park, Sang Shin [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Akadémiai Kiadó, Budapest, Hungary 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of thermal analysis and calorimetry - Springer Netherlands, 1998, 124(2016), 2 vom: 18. Jan., Seite 657-665 |
---|---|
Übergeordnetes Werk: |
volume:124 ; year:2016 ; number:2 ; day:18 ; month:01 ; pages:657-665 |
Links: |
---|
DOI / URN: |
10.1007/s10973-015-5231-7 |
---|
Katalog-ID: |
OLC2049845189 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2049845189 | ||
003 | DE-627 | ||
005 | 20230503170132.0 | ||
007 | tu | ||
008 | 200820s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10973-015-5231-7 |2 doi | |
035 | |a (DE-627)OLC2049845189 | ||
035 | |a (DE-He213)s10973-015-5231-7-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q VZ |
100 | 1 | |a Park, Sang Shin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Thermal decomposition characteristics of expired single-based propellant using a lab-scale tube furnace and a thermo-gravimetric analysis reactor |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Akadémiai Kiadó, Budapest, Hungary 2016 | ||
520 | |a Abstract The Republic of Korea has a plan to construct an incineration facility for expired propellant from munitions including 155, 105 mm, and 8 in. howitzer shells. It is important to understand thermal characteristics of the propellant before designing the incineration facility. In this study, the ingredients of a propellant sample were analyzed using liquid chromatography–mass spectrometry, and the temporal mass loss of the sample was measured using thermo-gravimetric analysis in an argon atmosphere up to a temperature of 350 °C at different heating rates of 10, 20, and 30 °C $ min^{−1} $. The mass of the sample started decreasing at a temperature of about 180 °C and was fully decomposed when the temperature reached about 210 °C. Using a first-order model to describe the reaction kinetics, we obtained a pre-exponential factor of 2.09 × $ 10^{39} $ $ min^{−1} $ and an activation energy of 335.77 kJ $ mol^{−1} $ for the sample. In order to understand product gas compositions, another thermal decomposition experiment was carried out using a lab-scale tube furnace under an argon atmosphere up to a temperature of 350 °C. Gas compositions were analyzed using gas chromatography and gas detecting tubes. Residual ash compounds were analyzed using X-ray fluorescence. | ||
650 | 4 | |a Thermal decomposition | |
650 | 4 | |a Single-based solid propellant | |
650 | 4 | |a TG | |
650 | 4 | |a Reactivity | |
650 | 4 | |a Kinetic constant | |
650 | 4 | |a Nitrocellulose | |
700 | 1 | |a Hwang, In Sik |4 aut | |
700 | 1 | |a Kang, Myung Soo |4 aut | |
700 | 1 | |a Jeong, Hyo Jae |4 aut | |
700 | 1 | |a Hwang, Jungho |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of thermal analysis and calorimetry |d Springer Netherlands, 1998 |g 124(2016), 2 vom: 18. Jan., Seite 657-665 |w (DE-627)244148767 |w (DE-600)1429493-X |w (DE-576)066397693 |x 1388-6150 |7 nnns |
773 | 1 | 8 | |g volume:124 |g year:2016 |g number:2 |g day:18 |g month:01 |g pages:657-665 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10973-015-5231-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 124 |j 2016 |e 2 |b 18 |c 01 |h 657-665 |
author_variant |
s s p ss ssp i s h is ish m s k ms msk h j j hj hjj j h jh |
---|---|
matchkey_str |
article:13886150:2016----::hradcmoiinhrceitcoeprdigeaepoelnuiglbcltbfraen |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1007/s10973-015-5231-7 doi (DE-627)OLC2049845189 (DE-He213)s10973-015-5231-7-p DE-627 ger DE-627 rakwb eng 660 VZ Park, Sang Shin verfasserin aut Thermal decomposition characteristics of expired single-based propellant using a lab-scale tube furnace and a thermo-gravimetric analysis reactor 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2016 Abstract The Republic of Korea has a plan to construct an incineration facility for expired propellant from munitions including 155, 105 mm, and 8 in. howitzer shells. It is important to understand thermal characteristics of the propellant before designing the incineration facility. In this study, the ingredients of a propellant sample were analyzed using liquid chromatography–mass spectrometry, and the temporal mass loss of the sample was measured using thermo-gravimetric analysis in an argon atmosphere up to a temperature of 350 °C at different heating rates of 10, 20, and 30 °C $ min^{−1} $. The mass of the sample started decreasing at a temperature of about 180 °C and was fully decomposed when the temperature reached about 210 °C. Using a first-order model to describe the reaction kinetics, we obtained a pre-exponential factor of 2.09 × $ 10^{39} $ $ min^{−1} $ and an activation energy of 335.77 kJ $ mol^{−1} $ for the sample. In order to understand product gas compositions, another thermal decomposition experiment was carried out using a lab-scale tube furnace under an argon atmosphere up to a temperature of 350 °C. Gas compositions were analyzed using gas chromatography and gas detecting tubes. Residual ash compounds were analyzed using X-ray fluorescence. Thermal decomposition Single-based solid propellant TG Reactivity Kinetic constant Nitrocellulose Hwang, In Sik aut Kang, Myung Soo aut Jeong, Hyo Jae aut Hwang, Jungho aut Enthalten in Journal of thermal analysis and calorimetry Springer Netherlands, 1998 124(2016), 2 vom: 18. Jan., Seite 657-665 (DE-627)244148767 (DE-600)1429493-X (DE-576)066397693 1388-6150 nnns volume:124 year:2016 number:2 day:18 month:01 pages:657-665 https://doi.org/10.1007/s10973-015-5231-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 AR 124 2016 2 18 01 657-665 |
spelling |
10.1007/s10973-015-5231-7 doi (DE-627)OLC2049845189 (DE-He213)s10973-015-5231-7-p DE-627 ger DE-627 rakwb eng 660 VZ Park, Sang Shin verfasserin aut Thermal decomposition characteristics of expired single-based propellant using a lab-scale tube furnace and a thermo-gravimetric analysis reactor 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2016 Abstract The Republic of Korea has a plan to construct an incineration facility for expired propellant from munitions including 155, 105 mm, and 8 in. howitzer shells. It is important to understand thermal characteristics of the propellant before designing the incineration facility. In this study, the ingredients of a propellant sample were analyzed using liquid chromatography–mass spectrometry, and the temporal mass loss of the sample was measured using thermo-gravimetric analysis in an argon atmosphere up to a temperature of 350 °C at different heating rates of 10, 20, and 30 °C $ min^{−1} $. The mass of the sample started decreasing at a temperature of about 180 °C and was fully decomposed when the temperature reached about 210 °C. Using a first-order model to describe the reaction kinetics, we obtained a pre-exponential factor of 2.09 × $ 10^{39} $ $ min^{−1} $ and an activation energy of 335.77 kJ $ mol^{−1} $ for the sample. In order to understand product gas compositions, another thermal decomposition experiment was carried out using a lab-scale tube furnace under an argon atmosphere up to a temperature of 350 °C. Gas compositions were analyzed using gas chromatography and gas detecting tubes. Residual ash compounds were analyzed using X-ray fluorescence. Thermal decomposition Single-based solid propellant TG Reactivity Kinetic constant Nitrocellulose Hwang, In Sik aut Kang, Myung Soo aut Jeong, Hyo Jae aut Hwang, Jungho aut Enthalten in Journal of thermal analysis and calorimetry Springer Netherlands, 1998 124(2016), 2 vom: 18. Jan., Seite 657-665 (DE-627)244148767 (DE-600)1429493-X (DE-576)066397693 1388-6150 nnns volume:124 year:2016 number:2 day:18 month:01 pages:657-665 https://doi.org/10.1007/s10973-015-5231-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 AR 124 2016 2 18 01 657-665 |
allfields_unstemmed |
10.1007/s10973-015-5231-7 doi (DE-627)OLC2049845189 (DE-He213)s10973-015-5231-7-p DE-627 ger DE-627 rakwb eng 660 VZ Park, Sang Shin verfasserin aut Thermal decomposition characteristics of expired single-based propellant using a lab-scale tube furnace and a thermo-gravimetric analysis reactor 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2016 Abstract The Republic of Korea has a plan to construct an incineration facility for expired propellant from munitions including 155, 105 mm, and 8 in. howitzer shells. It is important to understand thermal characteristics of the propellant before designing the incineration facility. In this study, the ingredients of a propellant sample were analyzed using liquid chromatography–mass spectrometry, and the temporal mass loss of the sample was measured using thermo-gravimetric analysis in an argon atmosphere up to a temperature of 350 °C at different heating rates of 10, 20, and 30 °C $ min^{−1} $. The mass of the sample started decreasing at a temperature of about 180 °C and was fully decomposed when the temperature reached about 210 °C. Using a first-order model to describe the reaction kinetics, we obtained a pre-exponential factor of 2.09 × $ 10^{39} $ $ min^{−1} $ and an activation energy of 335.77 kJ $ mol^{−1} $ for the sample. In order to understand product gas compositions, another thermal decomposition experiment was carried out using a lab-scale tube furnace under an argon atmosphere up to a temperature of 350 °C. Gas compositions were analyzed using gas chromatography and gas detecting tubes. Residual ash compounds were analyzed using X-ray fluorescence. Thermal decomposition Single-based solid propellant TG Reactivity Kinetic constant Nitrocellulose Hwang, In Sik aut Kang, Myung Soo aut Jeong, Hyo Jae aut Hwang, Jungho aut Enthalten in Journal of thermal analysis and calorimetry Springer Netherlands, 1998 124(2016), 2 vom: 18. Jan., Seite 657-665 (DE-627)244148767 (DE-600)1429493-X (DE-576)066397693 1388-6150 nnns volume:124 year:2016 number:2 day:18 month:01 pages:657-665 https://doi.org/10.1007/s10973-015-5231-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 AR 124 2016 2 18 01 657-665 |
allfieldsGer |
10.1007/s10973-015-5231-7 doi (DE-627)OLC2049845189 (DE-He213)s10973-015-5231-7-p DE-627 ger DE-627 rakwb eng 660 VZ Park, Sang Shin verfasserin aut Thermal decomposition characteristics of expired single-based propellant using a lab-scale tube furnace and a thermo-gravimetric analysis reactor 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2016 Abstract The Republic of Korea has a plan to construct an incineration facility for expired propellant from munitions including 155, 105 mm, and 8 in. howitzer shells. It is important to understand thermal characteristics of the propellant before designing the incineration facility. In this study, the ingredients of a propellant sample were analyzed using liquid chromatography–mass spectrometry, and the temporal mass loss of the sample was measured using thermo-gravimetric analysis in an argon atmosphere up to a temperature of 350 °C at different heating rates of 10, 20, and 30 °C $ min^{−1} $. The mass of the sample started decreasing at a temperature of about 180 °C and was fully decomposed when the temperature reached about 210 °C. Using a first-order model to describe the reaction kinetics, we obtained a pre-exponential factor of 2.09 × $ 10^{39} $ $ min^{−1} $ and an activation energy of 335.77 kJ $ mol^{−1} $ for the sample. In order to understand product gas compositions, another thermal decomposition experiment was carried out using a lab-scale tube furnace under an argon atmosphere up to a temperature of 350 °C. Gas compositions were analyzed using gas chromatography and gas detecting tubes. Residual ash compounds were analyzed using X-ray fluorescence. Thermal decomposition Single-based solid propellant TG Reactivity Kinetic constant Nitrocellulose Hwang, In Sik aut Kang, Myung Soo aut Jeong, Hyo Jae aut Hwang, Jungho aut Enthalten in Journal of thermal analysis and calorimetry Springer Netherlands, 1998 124(2016), 2 vom: 18. Jan., Seite 657-665 (DE-627)244148767 (DE-600)1429493-X (DE-576)066397693 1388-6150 nnns volume:124 year:2016 number:2 day:18 month:01 pages:657-665 https://doi.org/10.1007/s10973-015-5231-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 AR 124 2016 2 18 01 657-665 |
allfieldsSound |
10.1007/s10973-015-5231-7 doi (DE-627)OLC2049845189 (DE-He213)s10973-015-5231-7-p DE-627 ger DE-627 rakwb eng 660 VZ Park, Sang Shin verfasserin aut Thermal decomposition characteristics of expired single-based propellant using a lab-scale tube furnace and a thermo-gravimetric analysis reactor 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2016 Abstract The Republic of Korea has a plan to construct an incineration facility for expired propellant from munitions including 155, 105 mm, and 8 in. howitzer shells. It is important to understand thermal characteristics of the propellant before designing the incineration facility. In this study, the ingredients of a propellant sample were analyzed using liquid chromatography–mass spectrometry, and the temporal mass loss of the sample was measured using thermo-gravimetric analysis in an argon atmosphere up to a temperature of 350 °C at different heating rates of 10, 20, and 30 °C $ min^{−1} $. The mass of the sample started decreasing at a temperature of about 180 °C and was fully decomposed when the temperature reached about 210 °C. Using a first-order model to describe the reaction kinetics, we obtained a pre-exponential factor of 2.09 × $ 10^{39} $ $ min^{−1} $ and an activation energy of 335.77 kJ $ mol^{−1} $ for the sample. In order to understand product gas compositions, another thermal decomposition experiment was carried out using a lab-scale tube furnace under an argon atmosphere up to a temperature of 350 °C. Gas compositions were analyzed using gas chromatography and gas detecting tubes. Residual ash compounds were analyzed using X-ray fluorescence. Thermal decomposition Single-based solid propellant TG Reactivity Kinetic constant Nitrocellulose Hwang, In Sik aut Kang, Myung Soo aut Jeong, Hyo Jae aut Hwang, Jungho aut Enthalten in Journal of thermal analysis and calorimetry Springer Netherlands, 1998 124(2016), 2 vom: 18. Jan., Seite 657-665 (DE-627)244148767 (DE-600)1429493-X (DE-576)066397693 1388-6150 nnns volume:124 year:2016 number:2 day:18 month:01 pages:657-665 https://doi.org/10.1007/s10973-015-5231-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 AR 124 2016 2 18 01 657-665 |
language |
English |
source |
Enthalten in Journal of thermal analysis and calorimetry 124(2016), 2 vom: 18. Jan., Seite 657-665 volume:124 year:2016 number:2 day:18 month:01 pages:657-665 |
sourceStr |
Enthalten in Journal of thermal analysis and calorimetry 124(2016), 2 vom: 18. Jan., Seite 657-665 volume:124 year:2016 number:2 day:18 month:01 pages:657-665 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Thermal decomposition Single-based solid propellant TG Reactivity Kinetic constant Nitrocellulose |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Journal of thermal analysis and calorimetry |
authorswithroles_txt_mv |
Park, Sang Shin @@aut@@ Hwang, In Sik @@aut@@ Kang, Myung Soo @@aut@@ Jeong, Hyo Jae @@aut@@ Hwang, Jungho @@aut@@ |
publishDateDaySort_date |
2016-01-18T00:00:00Z |
hierarchy_top_id |
244148767 |
dewey-sort |
3660 |
id |
OLC2049845189 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2049845189</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503170132.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10973-015-5231-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2049845189</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10973-015-5231-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Park, Sang Shin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermal decomposition characteristics of expired single-based propellant using a lab-scale tube furnace and a thermo-gravimetric analysis reactor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Akadémiai Kiadó, Budapest, Hungary 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The Republic of Korea has a plan to construct an incineration facility for expired propellant from munitions including 155, 105 mm, and 8 in. howitzer shells. It is important to understand thermal characteristics of the propellant before designing the incineration facility. In this study, the ingredients of a propellant sample were analyzed using liquid chromatography–mass spectrometry, and the temporal mass loss of the sample was measured using thermo-gravimetric analysis in an argon atmosphere up to a temperature of 350 °C at different heating rates of 10, 20, and 30 °C $ min^{−1} $. The mass of the sample started decreasing at a temperature of about 180 °C and was fully decomposed when the temperature reached about 210 °C. Using a first-order model to describe the reaction kinetics, we obtained a pre-exponential factor of 2.09 × $ 10^{39} $ $ min^{−1} $ and an activation energy of 335.77 kJ $ mol^{−1} $ for the sample. In order to understand product gas compositions, another thermal decomposition experiment was carried out using a lab-scale tube furnace under an argon atmosphere up to a temperature of 350 °C. Gas compositions were analyzed using gas chromatography and gas detecting tubes. Residual ash compounds were analyzed using X-ray fluorescence.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal decomposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Single-based solid propellant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TG</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reactivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kinetic constant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nitrocellulose</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hwang, In Sik</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kang, Myung Soo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jeong, Hyo Jae</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hwang, Jungho</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of thermal analysis and calorimetry</subfield><subfield code="d">Springer Netherlands, 1998</subfield><subfield code="g">124(2016), 2 vom: 18. Jan., Seite 657-665</subfield><subfield code="w">(DE-627)244148767</subfield><subfield code="w">(DE-600)1429493-X</subfield><subfield code="w">(DE-576)066397693</subfield><subfield code="x">1388-6150</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:124</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:2</subfield><subfield code="g">day:18</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:657-665</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10973-015-5231-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">124</subfield><subfield code="j">2016</subfield><subfield code="e">2</subfield><subfield code="b">18</subfield><subfield code="c">01</subfield><subfield code="h">657-665</subfield></datafield></record></collection>
|
author |
Park, Sang Shin |
spellingShingle |
Park, Sang Shin ddc 660 misc Thermal decomposition misc Single-based solid propellant misc TG misc Reactivity misc Kinetic constant misc Nitrocellulose Thermal decomposition characteristics of expired single-based propellant using a lab-scale tube furnace and a thermo-gravimetric analysis reactor |
authorStr |
Park, Sang Shin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)244148767 |
format |
Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1388-6150 |
topic_title |
660 VZ Thermal decomposition characteristics of expired single-based propellant using a lab-scale tube furnace and a thermo-gravimetric analysis reactor Thermal decomposition Single-based solid propellant TG Reactivity Kinetic constant Nitrocellulose |
topic |
ddc 660 misc Thermal decomposition misc Single-based solid propellant misc TG misc Reactivity misc Kinetic constant misc Nitrocellulose |
topic_unstemmed |
ddc 660 misc Thermal decomposition misc Single-based solid propellant misc TG misc Reactivity misc Kinetic constant misc Nitrocellulose |
topic_browse |
ddc 660 misc Thermal decomposition misc Single-based solid propellant misc TG misc Reactivity misc Kinetic constant misc Nitrocellulose |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of thermal analysis and calorimetry |
hierarchy_parent_id |
244148767 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
Journal of thermal analysis and calorimetry |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)244148767 (DE-600)1429493-X (DE-576)066397693 |
title |
Thermal decomposition characteristics of expired single-based propellant using a lab-scale tube furnace and a thermo-gravimetric analysis reactor |
ctrlnum |
(DE-627)OLC2049845189 (DE-He213)s10973-015-5231-7-p |
title_full |
Thermal decomposition characteristics of expired single-based propellant using a lab-scale tube furnace and a thermo-gravimetric analysis reactor |
author_sort |
Park, Sang Shin |
journal |
Journal of thermal analysis and calorimetry |
journalStr |
Journal of thermal analysis and calorimetry |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
657 |
author_browse |
Park, Sang Shin Hwang, In Sik Kang, Myung Soo Jeong, Hyo Jae Hwang, Jungho |
container_volume |
124 |
class |
660 VZ |
format_se |
Aufsätze |
author-letter |
Park, Sang Shin |
doi_str_mv |
10.1007/s10973-015-5231-7 |
dewey-full |
660 |
title_sort |
thermal decomposition characteristics of expired single-based propellant using a lab-scale tube furnace and a thermo-gravimetric analysis reactor |
title_auth |
Thermal decomposition characteristics of expired single-based propellant using a lab-scale tube furnace and a thermo-gravimetric analysis reactor |
abstract |
Abstract The Republic of Korea has a plan to construct an incineration facility for expired propellant from munitions including 155, 105 mm, and 8 in. howitzer shells. It is important to understand thermal characteristics of the propellant before designing the incineration facility. In this study, the ingredients of a propellant sample were analyzed using liquid chromatography–mass spectrometry, and the temporal mass loss of the sample was measured using thermo-gravimetric analysis in an argon atmosphere up to a temperature of 350 °C at different heating rates of 10, 20, and 30 °C $ min^{−1} $. The mass of the sample started decreasing at a temperature of about 180 °C and was fully decomposed when the temperature reached about 210 °C. Using a first-order model to describe the reaction kinetics, we obtained a pre-exponential factor of 2.09 × $ 10^{39} $ $ min^{−1} $ and an activation energy of 335.77 kJ $ mol^{−1} $ for the sample. In order to understand product gas compositions, another thermal decomposition experiment was carried out using a lab-scale tube furnace under an argon atmosphere up to a temperature of 350 °C. Gas compositions were analyzed using gas chromatography and gas detecting tubes. Residual ash compounds were analyzed using X-ray fluorescence. © Akadémiai Kiadó, Budapest, Hungary 2016 |
abstractGer |
Abstract The Republic of Korea has a plan to construct an incineration facility for expired propellant from munitions including 155, 105 mm, and 8 in. howitzer shells. It is important to understand thermal characteristics of the propellant before designing the incineration facility. In this study, the ingredients of a propellant sample were analyzed using liquid chromatography–mass spectrometry, and the temporal mass loss of the sample was measured using thermo-gravimetric analysis in an argon atmosphere up to a temperature of 350 °C at different heating rates of 10, 20, and 30 °C $ min^{−1} $. The mass of the sample started decreasing at a temperature of about 180 °C and was fully decomposed when the temperature reached about 210 °C. Using a first-order model to describe the reaction kinetics, we obtained a pre-exponential factor of 2.09 × $ 10^{39} $ $ min^{−1} $ and an activation energy of 335.77 kJ $ mol^{−1} $ for the sample. In order to understand product gas compositions, another thermal decomposition experiment was carried out using a lab-scale tube furnace under an argon atmosphere up to a temperature of 350 °C. Gas compositions were analyzed using gas chromatography and gas detecting tubes. Residual ash compounds were analyzed using X-ray fluorescence. © Akadémiai Kiadó, Budapest, Hungary 2016 |
abstract_unstemmed |
Abstract The Republic of Korea has a plan to construct an incineration facility for expired propellant from munitions including 155, 105 mm, and 8 in. howitzer shells. It is important to understand thermal characteristics of the propellant before designing the incineration facility. In this study, the ingredients of a propellant sample were analyzed using liquid chromatography–mass spectrometry, and the temporal mass loss of the sample was measured using thermo-gravimetric analysis in an argon atmosphere up to a temperature of 350 °C at different heating rates of 10, 20, and 30 °C $ min^{−1} $. The mass of the sample started decreasing at a temperature of about 180 °C and was fully decomposed when the temperature reached about 210 °C. Using a first-order model to describe the reaction kinetics, we obtained a pre-exponential factor of 2.09 × $ 10^{39} $ $ min^{−1} $ and an activation energy of 335.77 kJ $ mol^{−1} $ for the sample. In order to understand product gas compositions, another thermal decomposition experiment was carried out using a lab-scale tube furnace under an argon atmosphere up to a temperature of 350 °C. Gas compositions were analyzed using gas chromatography and gas detecting tubes. Residual ash compounds were analyzed using X-ray fluorescence. © Akadémiai Kiadó, Budapest, Hungary 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 |
container_issue |
2 |
title_short |
Thermal decomposition characteristics of expired single-based propellant using a lab-scale tube furnace and a thermo-gravimetric analysis reactor |
url |
https://doi.org/10.1007/s10973-015-5231-7 |
remote_bool |
false |
author2 |
Hwang, In Sik Kang, Myung Soo Jeong, Hyo Jae Hwang, Jungho |
author2Str |
Hwang, In Sik Kang, Myung Soo Jeong, Hyo Jae Hwang, Jungho |
ppnlink |
244148767 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10973-015-5231-7 |
up_date |
2024-07-04T00:14:15.055Z |
_version_ |
1803605303683448832 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2049845189</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503170132.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10973-015-5231-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2049845189</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10973-015-5231-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Park, Sang Shin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermal decomposition characteristics of expired single-based propellant using a lab-scale tube furnace and a thermo-gravimetric analysis reactor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Akadémiai Kiadó, Budapest, Hungary 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The Republic of Korea has a plan to construct an incineration facility for expired propellant from munitions including 155, 105 mm, and 8 in. howitzer shells. It is important to understand thermal characteristics of the propellant before designing the incineration facility. In this study, the ingredients of a propellant sample were analyzed using liquid chromatography–mass spectrometry, and the temporal mass loss of the sample was measured using thermo-gravimetric analysis in an argon atmosphere up to a temperature of 350 °C at different heating rates of 10, 20, and 30 °C $ min^{−1} $. The mass of the sample started decreasing at a temperature of about 180 °C and was fully decomposed when the temperature reached about 210 °C. Using a first-order model to describe the reaction kinetics, we obtained a pre-exponential factor of 2.09 × $ 10^{39} $ $ min^{−1} $ and an activation energy of 335.77 kJ $ mol^{−1} $ for the sample. In order to understand product gas compositions, another thermal decomposition experiment was carried out using a lab-scale tube furnace under an argon atmosphere up to a temperature of 350 °C. Gas compositions were analyzed using gas chromatography and gas detecting tubes. Residual ash compounds were analyzed using X-ray fluorescence.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal decomposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Single-based solid propellant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TG</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reactivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kinetic constant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nitrocellulose</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hwang, In Sik</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kang, Myung Soo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jeong, Hyo Jae</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hwang, Jungho</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of thermal analysis and calorimetry</subfield><subfield code="d">Springer Netherlands, 1998</subfield><subfield code="g">124(2016), 2 vom: 18. Jan., Seite 657-665</subfield><subfield code="w">(DE-627)244148767</subfield><subfield code="w">(DE-600)1429493-X</subfield><subfield code="w">(DE-576)066397693</subfield><subfield code="x">1388-6150</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:124</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:2</subfield><subfield code="g">day:18</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:657-665</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10973-015-5231-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">124</subfield><subfield code="j">2016</subfield><subfield code="e">2</subfield><subfield code="b">18</subfield><subfield code="c">01</subfield><subfield code="h">657-665</subfield></datafield></record></collection>
|
score |
7.4018183 |