An advanced reaction model determination methodology in solid-state kinetics based on Arrhenius parameters variation
Abstract The Arrhenius parameters variation with the conversion degree of reaction is generally due to the overlapping of parallel or consecutive reactions, and the solution of the problem must imply the deconvolution of the overlapping reaction rather than fitting the experimental curve by assuming...
Ausführliche Beschreibung
Autor*in: |
Shahcheraghi, Seyed Hadi [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Akadémiai Kiadó, Budapest, Hungary 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of thermal analysis and calorimetry - Springer Netherlands, 1998, 126(2016), 2 vom: 28. Apr., Seite 981-993 |
---|---|
Übergeordnetes Werk: |
volume:126 ; year:2016 ; number:2 ; day:28 ; month:04 ; pages:981-993 |
Links: |
---|
DOI / URN: |
10.1007/s10973-016-5473-z |
---|
Katalog-ID: |
OLC2049848005 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2049848005 | ||
003 | DE-627 | ||
005 | 20230503170148.0 | ||
007 | tu | ||
008 | 200820s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10973-016-5473-z |2 doi | |
035 | |a (DE-627)OLC2049848005 | ||
035 | |a (DE-He213)s10973-016-5473-z-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q VZ |
100 | 1 | |a Shahcheraghi, Seyed Hadi |e verfasserin |4 aut | |
245 | 1 | 0 | |a An advanced reaction model determination methodology in solid-state kinetics based on Arrhenius parameters variation |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Akadémiai Kiadó, Budapest, Hungary 2016 | ||
520 | |a Abstract The Arrhenius parameters variation with the conversion degree of reaction is generally due to the overlapping of parallel or consecutive reactions, and the solution of the problem must imply the deconvolution of the overlapping reaction rather than fitting the experimental curve by assuming variable kinetic parameters. The reaction model determination methods are based on the choice of constant Arrhenius parameters and the use of approximations. To solve this major limitation, a new method for the determination of reaction model based on the Arrhenius parameters variation was proposed. This method appears to accurately simulate single-step as well as multi-step reactions kinetics. The proposed method is based on the general rate equation. The method was validated on artificial data calculated for the various dependences of kinetic parameters on conversion. Then, the method was applied for the non-isothermal crystallization kinetics of the amorphous dehydrated $ Cu_{4} $$ SO_{4} $(OH)6, i.e., $ Cu_{4} $$ SO_{4} $$ O_{3} $ to CuO and CuO·$ CuSO_{4} $ in the nano–scale range. The results were compared with the well-known reaction model determination methods and interpreted. | ||
650 | 4 | |a Thermal crystallization | |
650 | 4 | |a Reaction model | |
650 | 4 | |a Solid-state kinetics | |
650 | 4 | |a Multi-step reactions kinetics | |
650 | 4 | |a Tenorite nanoparticles | |
700 | 1 | |a Khayati, Gholam Reza |4 aut | |
700 | 1 | |a Ranjbar, Mohammad |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of thermal analysis and calorimetry |d Springer Netherlands, 1998 |g 126(2016), 2 vom: 28. Apr., Seite 981-993 |w (DE-627)244148767 |w (DE-600)1429493-X |w (DE-576)066397693 |x 1388-6150 |7 nnns |
773 | 1 | 8 | |g volume:126 |g year:2016 |g number:2 |g day:28 |g month:04 |g pages:981-993 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10973-016-5473-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 126 |j 2016 |e 2 |b 28 |c 04 |h 981-993 |
author_variant |
s h s sh shs g r k gr grk m r mr |
---|---|
matchkey_str |
article:13886150:2016----::ndacdecinoedtriainehdlgisldttkntcbsdn |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1007/s10973-016-5473-z doi (DE-627)OLC2049848005 (DE-He213)s10973-016-5473-z-p DE-627 ger DE-627 rakwb eng 660 VZ Shahcheraghi, Seyed Hadi verfasserin aut An advanced reaction model determination methodology in solid-state kinetics based on Arrhenius parameters variation 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2016 Abstract The Arrhenius parameters variation with the conversion degree of reaction is generally due to the overlapping of parallel or consecutive reactions, and the solution of the problem must imply the deconvolution of the overlapping reaction rather than fitting the experimental curve by assuming variable kinetic parameters. The reaction model determination methods are based on the choice of constant Arrhenius parameters and the use of approximations. To solve this major limitation, a new method for the determination of reaction model based on the Arrhenius parameters variation was proposed. This method appears to accurately simulate single-step as well as multi-step reactions kinetics. The proposed method is based on the general rate equation. The method was validated on artificial data calculated for the various dependences of kinetic parameters on conversion. Then, the method was applied for the non-isothermal crystallization kinetics of the amorphous dehydrated $ Cu_{4} $$ SO_{4} $(OH)6, i.e., $ Cu_{4} $$ SO_{4} $$ O_{3} $ to CuO and CuO·$ CuSO_{4} $ in the nano–scale range. The results were compared with the well-known reaction model determination methods and interpreted. Thermal crystallization Reaction model Solid-state kinetics Multi-step reactions kinetics Tenorite nanoparticles Khayati, Gholam Reza aut Ranjbar, Mohammad aut Enthalten in Journal of thermal analysis and calorimetry Springer Netherlands, 1998 126(2016), 2 vom: 28. Apr., Seite 981-993 (DE-627)244148767 (DE-600)1429493-X (DE-576)066397693 1388-6150 nnns volume:126 year:2016 number:2 day:28 month:04 pages:981-993 https://doi.org/10.1007/s10973-016-5473-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 AR 126 2016 2 28 04 981-993 |
spelling |
10.1007/s10973-016-5473-z doi (DE-627)OLC2049848005 (DE-He213)s10973-016-5473-z-p DE-627 ger DE-627 rakwb eng 660 VZ Shahcheraghi, Seyed Hadi verfasserin aut An advanced reaction model determination methodology in solid-state kinetics based on Arrhenius parameters variation 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2016 Abstract The Arrhenius parameters variation with the conversion degree of reaction is generally due to the overlapping of parallel or consecutive reactions, and the solution of the problem must imply the deconvolution of the overlapping reaction rather than fitting the experimental curve by assuming variable kinetic parameters. The reaction model determination methods are based on the choice of constant Arrhenius parameters and the use of approximations. To solve this major limitation, a new method for the determination of reaction model based on the Arrhenius parameters variation was proposed. This method appears to accurately simulate single-step as well as multi-step reactions kinetics. The proposed method is based on the general rate equation. The method was validated on artificial data calculated for the various dependences of kinetic parameters on conversion. Then, the method was applied for the non-isothermal crystallization kinetics of the amorphous dehydrated $ Cu_{4} $$ SO_{4} $(OH)6, i.e., $ Cu_{4} $$ SO_{4} $$ O_{3} $ to CuO and CuO·$ CuSO_{4} $ in the nano–scale range. The results were compared with the well-known reaction model determination methods and interpreted. Thermal crystallization Reaction model Solid-state kinetics Multi-step reactions kinetics Tenorite nanoparticles Khayati, Gholam Reza aut Ranjbar, Mohammad aut Enthalten in Journal of thermal analysis and calorimetry Springer Netherlands, 1998 126(2016), 2 vom: 28. Apr., Seite 981-993 (DE-627)244148767 (DE-600)1429493-X (DE-576)066397693 1388-6150 nnns volume:126 year:2016 number:2 day:28 month:04 pages:981-993 https://doi.org/10.1007/s10973-016-5473-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 AR 126 2016 2 28 04 981-993 |
allfields_unstemmed |
10.1007/s10973-016-5473-z doi (DE-627)OLC2049848005 (DE-He213)s10973-016-5473-z-p DE-627 ger DE-627 rakwb eng 660 VZ Shahcheraghi, Seyed Hadi verfasserin aut An advanced reaction model determination methodology in solid-state kinetics based on Arrhenius parameters variation 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2016 Abstract The Arrhenius parameters variation with the conversion degree of reaction is generally due to the overlapping of parallel or consecutive reactions, and the solution of the problem must imply the deconvolution of the overlapping reaction rather than fitting the experimental curve by assuming variable kinetic parameters. The reaction model determination methods are based on the choice of constant Arrhenius parameters and the use of approximations. To solve this major limitation, a new method for the determination of reaction model based on the Arrhenius parameters variation was proposed. This method appears to accurately simulate single-step as well as multi-step reactions kinetics. The proposed method is based on the general rate equation. The method was validated on artificial data calculated for the various dependences of kinetic parameters on conversion. Then, the method was applied for the non-isothermal crystallization kinetics of the amorphous dehydrated $ Cu_{4} $$ SO_{4} $(OH)6, i.e., $ Cu_{4} $$ SO_{4} $$ O_{3} $ to CuO and CuO·$ CuSO_{4} $ in the nano–scale range. The results were compared with the well-known reaction model determination methods and interpreted. Thermal crystallization Reaction model Solid-state kinetics Multi-step reactions kinetics Tenorite nanoparticles Khayati, Gholam Reza aut Ranjbar, Mohammad aut Enthalten in Journal of thermal analysis and calorimetry Springer Netherlands, 1998 126(2016), 2 vom: 28. Apr., Seite 981-993 (DE-627)244148767 (DE-600)1429493-X (DE-576)066397693 1388-6150 nnns volume:126 year:2016 number:2 day:28 month:04 pages:981-993 https://doi.org/10.1007/s10973-016-5473-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 AR 126 2016 2 28 04 981-993 |
allfieldsGer |
10.1007/s10973-016-5473-z doi (DE-627)OLC2049848005 (DE-He213)s10973-016-5473-z-p DE-627 ger DE-627 rakwb eng 660 VZ Shahcheraghi, Seyed Hadi verfasserin aut An advanced reaction model determination methodology in solid-state kinetics based on Arrhenius parameters variation 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2016 Abstract The Arrhenius parameters variation with the conversion degree of reaction is generally due to the overlapping of parallel or consecutive reactions, and the solution of the problem must imply the deconvolution of the overlapping reaction rather than fitting the experimental curve by assuming variable kinetic parameters. The reaction model determination methods are based on the choice of constant Arrhenius parameters and the use of approximations. To solve this major limitation, a new method for the determination of reaction model based on the Arrhenius parameters variation was proposed. This method appears to accurately simulate single-step as well as multi-step reactions kinetics. The proposed method is based on the general rate equation. The method was validated on artificial data calculated for the various dependences of kinetic parameters on conversion. Then, the method was applied for the non-isothermal crystallization kinetics of the amorphous dehydrated $ Cu_{4} $$ SO_{4} $(OH)6, i.e., $ Cu_{4} $$ SO_{4} $$ O_{3} $ to CuO and CuO·$ CuSO_{4} $ in the nano–scale range. The results were compared with the well-known reaction model determination methods and interpreted. Thermal crystallization Reaction model Solid-state kinetics Multi-step reactions kinetics Tenorite nanoparticles Khayati, Gholam Reza aut Ranjbar, Mohammad aut Enthalten in Journal of thermal analysis and calorimetry Springer Netherlands, 1998 126(2016), 2 vom: 28. Apr., Seite 981-993 (DE-627)244148767 (DE-600)1429493-X (DE-576)066397693 1388-6150 nnns volume:126 year:2016 number:2 day:28 month:04 pages:981-993 https://doi.org/10.1007/s10973-016-5473-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 AR 126 2016 2 28 04 981-993 |
allfieldsSound |
10.1007/s10973-016-5473-z doi (DE-627)OLC2049848005 (DE-He213)s10973-016-5473-z-p DE-627 ger DE-627 rakwb eng 660 VZ Shahcheraghi, Seyed Hadi verfasserin aut An advanced reaction model determination methodology in solid-state kinetics based on Arrhenius parameters variation 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2016 Abstract The Arrhenius parameters variation with the conversion degree of reaction is generally due to the overlapping of parallel or consecutive reactions, and the solution of the problem must imply the deconvolution of the overlapping reaction rather than fitting the experimental curve by assuming variable kinetic parameters. The reaction model determination methods are based on the choice of constant Arrhenius parameters and the use of approximations. To solve this major limitation, a new method for the determination of reaction model based on the Arrhenius parameters variation was proposed. This method appears to accurately simulate single-step as well as multi-step reactions kinetics. The proposed method is based on the general rate equation. The method was validated on artificial data calculated for the various dependences of kinetic parameters on conversion. Then, the method was applied for the non-isothermal crystallization kinetics of the amorphous dehydrated $ Cu_{4} $$ SO_{4} $(OH)6, i.e., $ Cu_{4} $$ SO_{4} $$ O_{3} $ to CuO and CuO·$ CuSO_{4} $ in the nano–scale range. The results were compared with the well-known reaction model determination methods and interpreted. Thermal crystallization Reaction model Solid-state kinetics Multi-step reactions kinetics Tenorite nanoparticles Khayati, Gholam Reza aut Ranjbar, Mohammad aut Enthalten in Journal of thermal analysis and calorimetry Springer Netherlands, 1998 126(2016), 2 vom: 28. Apr., Seite 981-993 (DE-627)244148767 (DE-600)1429493-X (DE-576)066397693 1388-6150 nnns volume:126 year:2016 number:2 day:28 month:04 pages:981-993 https://doi.org/10.1007/s10973-016-5473-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 AR 126 2016 2 28 04 981-993 |
language |
English |
source |
Enthalten in Journal of thermal analysis and calorimetry 126(2016), 2 vom: 28. Apr., Seite 981-993 volume:126 year:2016 number:2 day:28 month:04 pages:981-993 |
sourceStr |
Enthalten in Journal of thermal analysis and calorimetry 126(2016), 2 vom: 28. Apr., Seite 981-993 volume:126 year:2016 number:2 day:28 month:04 pages:981-993 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Thermal crystallization Reaction model Solid-state kinetics Multi-step reactions kinetics Tenorite nanoparticles |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Journal of thermal analysis and calorimetry |
authorswithroles_txt_mv |
Shahcheraghi, Seyed Hadi @@aut@@ Khayati, Gholam Reza @@aut@@ Ranjbar, Mohammad @@aut@@ |
publishDateDaySort_date |
2016-04-28T00:00:00Z |
hierarchy_top_id |
244148767 |
dewey-sort |
3660 |
id |
OLC2049848005 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2049848005</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503170148.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10973-016-5473-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2049848005</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10973-016-5473-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shahcheraghi, Seyed Hadi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An advanced reaction model determination methodology in solid-state kinetics based on Arrhenius parameters variation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Akadémiai Kiadó, Budapest, Hungary 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The Arrhenius parameters variation with the conversion degree of reaction is generally due to the overlapping of parallel or consecutive reactions, and the solution of the problem must imply the deconvolution of the overlapping reaction rather than fitting the experimental curve by assuming variable kinetic parameters. The reaction model determination methods are based on the choice of constant Arrhenius parameters and the use of approximations. To solve this major limitation, a new method for the determination of reaction model based on the Arrhenius parameters variation was proposed. This method appears to accurately simulate single-step as well as multi-step reactions kinetics. The proposed method is based on the general rate equation. The method was validated on artificial data calculated for the various dependences of kinetic parameters on conversion. Then, the method was applied for the non-isothermal crystallization kinetics of the amorphous dehydrated $ Cu_{4} $$ SO_{4} $(OH)6, i.e., $ Cu_{4} $$ SO_{4} $$ O_{3} $ to CuO and CuO·$ CuSO_{4} $ in the nano–scale range. The results were compared with the well-known reaction model determination methods and interpreted.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal crystallization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reaction model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solid-state kinetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-step reactions kinetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tenorite nanoparticles</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khayati, Gholam Reza</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ranjbar, Mohammad</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of thermal analysis and calorimetry</subfield><subfield code="d">Springer Netherlands, 1998</subfield><subfield code="g">126(2016), 2 vom: 28. Apr., Seite 981-993</subfield><subfield code="w">(DE-627)244148767</subfield><subfield code="w">(DE-600)1429493-X</subfield><subfield code="w">(DE-576)066397693</subfield><subfield code="x">1388-6150</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:126</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:2</subfield><subfield code="g">day:28</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:981-993</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10973-016-5473-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">126</subfield><subfield code="j">2016</subfield><subfield code="e">2</subfield><subfield code="b">28</subfield><subfield code="c">04</subfield><subfield code="h">981-993</subfield></datafield></record></collection>
|
author |
Shahcheraghi, Seyed Hadi |
spellingShingle |
Shahcheraghi, Seyed Hadi ddc 660 misc Thermal crystallization misc Reaction model misc Solid-state kinetics misc Multi-step reactions kinetics misc Tenorite nanoparticles An advanced reaction model determination methodology in solid-state kinetics based on Arrhenius parameters variation |
authorStr |
Shahcheraghi, Seyed Hadi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)244148767 |
format |
Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1388-6150 |
topic_title |
660 VZ An advanced reaction model determination methodology in solid-state kinetics based on Arrhenius parameters variation Thermal crystallization Reaction model Solid-state kinetics Multi-step reactions kinetics Tenorite nanoparticles |
topic |
ddc 660 misc Thermal crystallization misc Reaction model misc Solid-state kinetics misc Multi-step reactions kinetics misc Tenorite nanoparticles |
topic_unstemmed |
ddc 660 misc Thermal crystallization misc Reaction model misc Solid-state kinetics misc Multi-step reactions kinetics misc Tenorite nanoparticles |
topic_browse |
ddc 660 misc Thermal crystallization misc Reaction model misc Solid-state kinetics misc Multi-step reactions kinetics misc Tenorite nanoparticles |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of thermal analysis and calorimetry |
hierarchy_parent_id |
244148767 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
Journal of thermal analysis and calorimetry |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)244148767 (DE-600)1429493-X (DE-576)066397693 |
title |
An advanced reaction model determination methodology in solid-state kinetics based on Arrhenius parameters variation |
ctrlnum |
(DE-627)OLC2049848005 (DE-He213)s10973-016-5473-z-p |
title_full |
An advanced reaction model determination methodology in solid-state kinetics based on Arrhenius parameters variation |
author_sort |
Shahcheraghi, Seyed Hadi |
journal |
Journal of thermal analysis and calorimetry |
journalStr |
Journal of thermal analysis and calorimetry |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
981 |
author_browse |
Shahcheraghi, Seyed Hadi Khayati, Gholam Reza Ranjbar, Mohammad |
container_volume |
126 |
class |
660 VZ |
format_se |
Aufsätze |
author-letter |
Shahcheraghi, Seyed Hadi |
doi_str_mv |
10.1007/s10973-016-5473-z |
dewey-full |
660 |
title_sort |
an advanced reaction model determination methodology in solid-state kinetics based on arrhenius parameters variation |
title_auth |
An advanced reaction model determination methodology in solid-state kinetics based on Arrhenius parameters variation |
abstract |
Abstract The Arrhenius parameters variation with the conversion degree of reaction is generally due to the overlapping of parallel or consecutive reactions, and the solution of the problem must imply the deconvolution of the overlapping reaction rather than fitting the experimental curve by assuming variable kinetic parameters. The reaction model determination methods are based on the choice of constant Arrhenius parameters and the use of approximations. To solve this major limitation, a new method for the determination of reaction model based on the Arrhenius parameters variation was proposed. This method appears to accurately simulate single-step as well as multi-step reactions kinetics. The proposed method is based on the general rate equation. The method was validated on artificial data calculated for the various dependences of kinetic parameters on conversion. Then, the method was applied for the non-isothermal crystallization kinetics of the amorphous dehydrated $ Cu_{4} $$ SO_{4} $(OH)6, i.e., $ Cu_{4} $$ SO_{4} $$ O_{3} $ to CuO and CuO·$ CuSO_{4} $ in the nano–scale range. The results were compared with the well-known reaction model determination methods and interpreted. © Akadémiai Kiadó, Budapest, Hungary 2016 |
abstractGer |
Abstract The Arrhenius parameters variation with the conversion degree of reaction is generally due to the overlapping of parallel or consecutive reactions, and the solution of the problem must imply the deconvolution of the overlapping reaction rather than fitting the experimental curve by assuming variable kinetic parameters. The reaction model determination methods are based on the choice of constant Arrhenius parameters and the use of approximations. To solve this major limitation, a new method for the determination of reaction model based on the Arrhenius parameters variation was proposed. This method appears to accurately simulate single-step as well as multi-step reactions kinetics. The proposed method is based on the general rate equation. The method was validated on artificial data calculated for the various dependences of kinetic parameters on conversion. Then, the method was applied for the non-isothermal crystallization kinetics of the amorphous dehydrated $ Cu_{4} $$ SO_{4} $(OH)6, i.e., $ Cu_{4} $$ SO_{4} $$ O_{3} $ to CuO and CuO·$ CuSO_{4} $ in the nano–scale range. The results were compared with the well-known reaction model determination methods and interpreted. © Akadémiai Kiadó, Budapest, Hungary 2016 |
abstract_unstemmed |
Abstract The Arrhenius parameters variation with the conversion degree of reaction is generally due to the overlapping of parallel or consecutive reactions, and the solution of the problem must imply the deconvolution of the overlapping reaction rather than fitting the experimental curve by assuming variable kinetic parameters. The reaction model determination methods are based on the choice of constant Arrhenius parameters and the use of approximations. To solve this major limitation, a new method for the determination of reaction model based on the Arrhenius parameters variation was proposed. This method appears to accurately simulate single-step as well as multi-step reactions kinetics. The proposed method is based on the general rate equation. The method was validated on artificial data calculated for the various dependences of kinetic parameters on conversion. Then, the method was applied for the non-isothermal crystallization kinetics of the amorphous dehydrated $ Cu_{4} $$ SO_{4} $(OH)6, i.e., $ Cu_{4} $$ SO_{4} $$ O_{3} $ to CuO and CuO·$ CuSO_{4} $ in the nano–scale range. The results were compared with the well-known reaction model determination methods and interpreted. © Akadémiai Kiadó, Budapest, Hungary 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 |
container_issue |
2 |
title_short |
An advanced reaction model determination methodology in solid-state kinetics based on Arrhenius parameters variation |
url |
https://doi.org/10.1007/s10973-016-5473-z |
remote_bool |
false |
author2 |
Khayati, Gholam Reza Ranjbar, Mohammad |
author2Str |
Khayati, Gholam Reza Ranjbar, Mohammad |
ppnlink |
244148767 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10973-016-5473-z |
up_date |
2024-07-04T00:14:54.813Z |
_version_ |
1803605345375879169 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2049848005</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503170148.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10973-016-5473-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2049848005</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10973-016-5473-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shahcheraghi, Seyed Hadi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An advanced reaction model determination methodology in solid-state kinetics based on Arrhenius parameters variation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Akadémiai Kiadó, Budapest, Hungary 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The Arrhenius parameters variation with the conversion degree of reaction is generally due to the overlapping of parallel or consecutive reactions, and the solution of the problem must imply the deconvolution of the overlapping reaction rather than fitting the experimental curve by assuming variable kinetic parameters. The reaction model determination methods are based on the choice of constant Arrhenius parameters and the use of approximations. To solve this major limitation, a new method for the determination of reaction model based on the Arrhenius parameters variation was proposed. This method appears to accurately simulate single-step as well as multi-step reactions kinetics. The proposed method is based on the general rate equation. The method was validated on artificial data calculated for the various dependences of kinetic parameters on conversion. Then, the method was applied for the non-isothermal crystallization kinetics of the amorphous dehydrated $ Cu_{4} $$ SO_{4} $(OH)6, i.e., $ Cu_{4} $$ SO_{4} $$ O_{3} $ to CuO and CuO·$ CuSO_{4} $ in the nano–scale range. The results were compared with the well-known reaction model determination methods and interpreted.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal crystallization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reaction model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solid-state kinetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-step reactions kinetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tenorite nanoparticles</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khayati, Gholam Reza</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ranjbar, Mohammad</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of thermal analysis and calorimetry</subfield><subfield code="d">Springer Netherlands, 1998</subfield><subfield code="g">126(2016), 2 vom: 28. Apr., Seite 981-993</subfield><subfield code="w">(DE-627)244148767</subfield><subfield code="w">(DE-600)1429493-X</subfield><subfield code="w">(DE-576)066397693</subfield><subfield code="x">1388-6150</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:126</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:2</subfield><subfield code="g">day:28</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:981-993</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10973-016-5473-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">126</subfield><subfield code="j">2016</subfield><subfield code="e">2</subfield><subfield code="b">28</subfield><subfield code="c">04</subfield><subfield code="h">981-993</subfield></datafield></record></collection>
|
score |
7.4019356 |