Calorimetric analysis of non-crystalline $ TeO_{2} $–$ V_{2} $$ O_{5} $–$ Sb_{2} $$ O_{3} $
Abstract In the present report, thermal and physical characterization of $ 40TeO_{2} $–(60 − x)$ V_{2} $$ O_{5} $–x$ Sb_{2} $$ O_{3} $ glasses, prepared by melt quenching method, has been investigated by differential scanning calorimetry (DSC) and so discussed in the compositional range 0 ≤ x ≤ 10 m...
Ausführliche Beschreibung
Autor*in: |
Souri, Dariush [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Akadémiai Kiadó, Budapest, Hungary 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of thermal analysis and calorimetry - Springer Netherlands, 1998, 129(2017), 1 vom: 18. Feb., Seite 601-607 |
---|---|
Übergeordnetes Werk: |
volume:129 ; year:2017 ; number:1 ; day:18 ; month:02 ; pages:601-607 |
Links: |
---|
DOI / URN: |
10.1007/s10973-017-6151-5 |
---|
Katalog-ID: |
OLC2049853998 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2049853998 | ||
003 | DE-627 | ||
005 | 20230503170232.0 | ||
007 | tu | ||
008 | 200820s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10973-017-6151-5 |2 doi | |
035 | |a (DE-627)OLC2049853998 | ||
035 | |a (DE-He213)s10973-017-6151-5-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q VZ |
100 | 1 | |a Souri, Dariush |e verfasserin |4 aut | |
245 | 1 | 0 | |a Calorimetric analysis of non-crystalline $ TeO_{2} $–$ V_{2} $$ O_{5} $–$ Sb_{2} $$ O_{3} $ |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Akadémiai Kiadó, Budapest, Hungary 2017 | ||
520 | |a Abstract In the present report, thermal and physical characterization of $ 40TeO_{2} $–(60 − x)$ V_{2} $$ O_{5} $–x$ Sb_{2} $$ O_{3} $ glasses, prepared by melt quenching method, has been investigated by differential scanning calorimetry (DSC) and so discussed in the compositional range 0 ≤ x ≤ 10 mol%. DSC plots of these ternary glasses have been studied within the temperature range of 150–500 °C at the heating rates φ = 3, 6, 9, 10 and 13 K $ min^{−1} $. In this work, thermal stability, glass-forming tendency, the temperature corresponding to the onset of crystallization (Tx), the crystallization temperature (TCr), the glass transition temperature (Tg), the activation energy of crystallization by using Ozawa and Kissinger methods, and the crystallization activation energy using Avrami index (n) have been measured and reported, to determine the relationship between $ Sb_{2} $$ O_{3} $ content and the thermal stability in order to interpret the structure of glass. In conclusion, from the obtained data, it was found that characteristic temperatures Tg, Tx and Tcr are increasing with increasing the antimony oxide content and also with increasing the heating rate; glass with x = 10 has the highest thermal stability and glass-forming tendency and so has very good resistance against thermal attacks; the sample S5 shows a sharp decrease in the crystallization activation energy, which can be resulted by the increase in non-bridging oxygens; the crystallization activation energy calculated from Kissinger’s model is more accurate, and the trend of activation energy values is similar in all of Ozawa, Kissinger and Avrami methods; also the obtained values of n show that it fluctuates around n ≈ 1, which can be attributed to surface or one-dimensional crystal growth of crystals. | ||
650 | 4 | |a Amorphous materials | |
650 | 4 | |a Ozawa method | |
650 | 4 | |a Kissinger method | |
650 | 4 | |a Avrami index | |
650 | 4 | |a Crystallization activation energy | |
700 | 1 | |a Shahmoradi, Yazdan |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of thermal analysis and calorimetry |d Springer Netherlands, 1998 |g 129(2017), 1 vom: 18. Feb., Seite 601-607 |w (DE-627)244148767 |w (DE-600)1429493-X |w (DE-576)066397693 |x 1388-6150 |7 nnns |
773 | 1 | 8 | |g volume:129 |g year:2017 |g number:1 |g day:18 |g month:02 |g pages:601-607 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10973-017-6151-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 129 |j 2017 |e 1 |b 18 |c 02 |h 601-607 |
author_variant |
d s ds y s ys |
---|---|
matchkey_str |
article:13886150:2017----::aoiercnlssfocytliee |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1007/s10973-017-6151-5 doi (DE-627)OLC2049853998 (DE-He213)s10973-017-6151-5-p DE-627 ger DE-627 rakwb eng 660 VZ Souri, Dariush verfasserin aut Calorimetric analysis of non-crystalline $ TeO_{2} $–$ V_{2} $$ O_{5} $–$ Sb_{2} $$ O_{3} $ 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2017 Abstract In the present report, thermal and physical characterization of $ 40TeO_{2} $–(60 − x)$ V_{2} $$ O_{5} $–x$ Sb_{2} $$ O_{3} $ glasses, prepared by melt quenching method, has been investigated by differential scanning calorimetry (DSC) and so discussed in the compositional range 0 ≤ x ≤ 10 mol%. DSC plots of these ternary glasses have been studied within the temperature range of 150–500 °C at the heating rates φ = 3, 6, 9, 10 and 13 K $ min^{−1} $. In this work, thermal stability, glass-forming tendency, the temperature corresponding to the onset of crystallization (Tx), the crystallization temperature (TCr), the glass transition temperature (Tg), the activation energy of crystallization by using Ozawa and Kissinger methods, and the crystallization activation energy using Avrami index (n) have been measured and reported, to determine the relationship between $ Sb_{2} $$ O_{3} $ content and the thermal stability in order to interpret the structure of glass. In conclusion, from the obtained data, it was found that characteristic temperatures Tg, Tx and Tcr are increasing with increasing the antimony oxide content and also with increasing the heating rate; glass with x = 10 has the highest thermal stability and glass-forming tendency and so has very good resistance against thermal attacks; the sample S5 shows a sharp decrease in the crystallization activation energy, which can be resulted by the increase in non-bridging oxygens; the crystallization activation energy calculated from Kissinger’s model is more accurate, and the trend of activation energy values is similar in all of Ozawa, Kissinger and Avrami methods; also the obtained values of n show that it fluctuates around n ≈ 1, which can be attributed to surface or one-dimensional crystal growth of crystals. Amorphous materials Ozawa method Kissinger method Avrami index Crystallization activation energy Shahmoradi, Yazdan aut Enthalten in Journal of thermal analysis and calorimetry Springer Netherlands, 1998 129(2017), 1 vom: 18. Feb., Seite 601-607 (DE-627)244148767 (DE-600)1429493-X (DE-576)066397693 1388-6150 nnns volume:129 year:2017 number:1 day:18 month:02 pages:601-607 https://doi.org/10.1007/s10973-017-6151-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 AR 129 2017 1 18 02 601-607 |
spelling |
10.1007/s10973-017-6151-5 doi (DE-627)OLC2049853998 (DE-He213)s10973-017-6151-5-p DE-627 ger DE-627 rakwb eng 660 VZ Souri, Dariush verfasserin aut Calorimetric analysis of non-crystalline $ TeO_{2} $–$ V_{2} $$ O_{5} $–$ Sb_{2} $$ O_{3} $ 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2017 Abstract In the present report, thermal and physical characterization of $ 40TeO_{2} $–(60 − x)$ V_{2} $$ O_{5} $–x$ Sb_{2} $$ O_{3} $ glasses, prepared by melt quenching method, has been investigated by differential scanning calorimetry (DSC) and so discussed in the compositional range 0 ≤ x ≤ 10 mol%. DSC plots of these ternary glasses have been studied within the temperature range of 150–500 °C at the heating rates φ = 3, 6, 9, 10 and 13 K $ min^{−1} $. In this work, thermal stability, glass-forming tendency, the temperature corresponding to the onset of crystallization (Tx), the crystallization temperature (TCr), the glass transition temperature (Tg), the activation energy of crystallization by using Ozawa and Kissinger methods, and the crystallization activation energy using Avrami index (n) have been measured and reported, to determine the relationship between $ Sb_{2} $$ O_{3} $ content and the thermal stability in order to interpret the structure of glass. In conclusion, from the obtained data, it was found that characteristic temperatures Tg, Tx and Tcr are increasing with increasing the antimony oxide content and also with increasing the heating rate; glass with x = 10 has the highest thermal stability and glass-forming tendency and so has very good resistance against thermal attacks; the sample S5 shows a sharp decrease in the crystallization activation energy, which can be resulted by the increase in non-bridging oxygens; the crystallization activation energy calculated from Kissinger’s model is more accurate, and the trend of activation energy values is similar in all of Ozawa, Kissinger and Avrami methods; also the obtained values of n show that it fluctuates around n ≈ 1, which can be attributed to surface or one-dimensional crystal growth of crystals. Amorphous materials Ozawa method Kissinger method Avrami index Crystallization activation energy Shahmoradi, Yazdan aut Enthalten in Journal of thermal analysis and calorimetry Springer Netherlands, 1998 129(2017), 1 vom: 18. Feb., Seite 601-607 (DE-627)244148767 (DE-600)1429493-X (DE-576)066397693 1388-6150 nnns volume:129 year:2017 number:1 day:18 month:02 pages:601-607 https://doi.org/10.1007/s10973-017-6151-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 AR 129 2017 1 18 02 601-607 |
allfields_unstemmed |
10.1007/s10973-017-6151-5 doi (DE-627)OLC2049853998 (DE-He213)s10973-017-6151-5-p DE-627 ger DE-627 rakwb eng 660 VZ Souri, Dariush verfasserin aut Calorimetric analysis of non-crystalline $ TeO_{2} $–$ V_{2} $$ O_{5} $–$ Sb_{2} $$ O_{3} $ 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2017 Abstract In the present report, thermal and physical characterization of $ 40TeO_{2} $–(60 − x)$ V_{2} $$ O_{5} $–x$ Sb_{2} $$ O_{3} $ glasses, prepared by melt quenching method, has been investigated by differential scanning calorimetry (DSC) and so discussed in the compositional range 0 ≤ x ≤ 10 mol%. DSC plots of these ternary glasses have been studied within the temperature range of 150–500 °C at the heating rates φ = 3, 6, 9, 10 and 13 K $ min^{−1} $. In this work, thermal stability, glass-forming tendency, the temperature corresponding to the onset of crystallization (Tx), the crystallization temperature (TCr), the glass transition temperature (Tg), the activation energy of crystallization by using Ozawa and Kissinger methods, and the crystallization activation energy using Avrami index (n) have been measured and reported, to determine the relationship between $ Sb_{2} $$ O_{3} $ content and the thermal stability in order to interpret the structure of glass. In conclusion, from the obtained data, it was found that characteristic temperatures Tg, Tx and Tcr are increasing with increasing the antimony oxide content and also with increasing the heating rate; glass with x = 10 has the highest thermal stability and glass-forming tendency and so has very good resistance against thermal attacks; the sample S5 shows a sharp decrease in the crystallization activation energy, which can be resulted by the increase in non-bridging oxygens; the crystallization activation energy calculated from Kissinger’s model is more accurate, and the trend of activation energy values is similar in all of Ozawa, Kissinger and Avrami methods; also the obtained values of n show that it fluctuates around n ≈ 1, which can be attributed to surface or one-dimensional crystal growth of crystals. Amorphous materials Ozawa method Kissinger method Avrami index Crystallization activation energy Shahmoradi, Yazdan aut Enthalten in Journal of thermal analysis and calorimetry Springer Netherlands, 1998 129(2017), 1 vom: 18. Feb., Seite 601-607 (DE-627)244148767 (DE-600)1429493-X (DE-576)066397693 1388-6150 nnns volume:129 year:2017 number:1 day:18 month:02 pages:601-607 https://doi.org/10.1007/s10973-017-6151-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 AR 129 2017 1 18 02 601-607 |
allfieldsGer |
10.1007/s10973-017-6151-5 doi (DE-627)OLC2049853998 (DE-He213)s10973-017-6151-5-p DE-627 ger DE-627 rakwb eng 660 VZ Souri, Dariush verfasserin aut Calorimetric analysis of non-crystalline $ TeO_{2} $–$ V_{2} $$ O_{5} $–$ Sb_{2} $$ O_{3} $ 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2017 Abstract In the present report, thermal and physical characterization of $ 40TeO_{2} $–(60 − x)$ V_{2} $$ O_{5} $–x$ Sb_{2} $$ O_{3} $ glasses, prepared by melt quenching method, has been investigated by differential scanning calorimetry (DSC) and so discussed in the compositional range 0 ≤ x ≤ 10 mol%. DSC plots of these ternary glasses have been studied within the temperature range of 150–500 °C at the heating rates φ = 3, 6, 9, 10 and 13 K $ min^{−1} $. In this work, thermal stability, glass-forming tendency, the temperature corresponding to the onset of crystallization (Tx), the crystallization temperature (TCr), the glass transition temperature (Tg), the activation energy of crystallization by using Ozawa and Kissinger methods, and the crystallization activation energy using Avrami index (n) have been measured and reported, to determine the relationship between $ Sb_{2} $$ O_{3} $ content and the thermal stability in order to interpret the structure of glass. In conclusion, from the obtained data, it was found that characteristic temperatures Tg, Tx and Tcr are increasing with increasing the antimony oxide content and also with increasing the heating rate; glass with x = 10 has the highest thermal stability and glass-forming tendency and so has very good resistance against thermal attacks; the sample S5 shows a sharp decrease in the crystallization activation energy, which can be resulted by the increase in non-bridging oxygens; the crystallization activation energy calculated from Kissinger’s model is more accurate, and the trend of activation energy values is similar in all of Ozawa, Kissinger and Avrami methods; also the obtained values of n show that it fluctuates around n ≈ 1, which can be attributed to surface or one-dimensional crystal growth of crystals. Amorphous materials Ozawa method Kissinger method Avrami index Crystallization activation energy Shahmoradi, Yazdan aut Enthalten in Journal of thermal analysis and calorimetry Springer Netherlands, 1998 129(2017), 1 vom: 18. Feb., Seite 601-607 (DE-627)244148767 (DE-600)1429493-X (DE-576)066397693 1388-6150 nnns volume:129 year:2017 number:1 day:18 month:02 pages:601-607 https://doi.org/10.1007/s10973-017-6151-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 AR 129 2017 1 18 02 601-607 |
allfieldsSound |
10.1007/s10973-017-6151-5 doi (DE-627)OLC2049853998 (DE-He213)s10973-017-6151-5-p DE-627 ger DE-627 rakwb eng 660 VZ Souri, Dariush verfasserin aut Calorimetric analysis of non-crystalline $ TeO_{2} $–$ V_{2} $$ O_{5} $–$ Sb_{2} $$ O_{3} $ 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2017 Abstract In the present report, thermal and physical characterization of $ 40TeO_{2} $–(60 − x)$ V_{2} $$ O_{5} $–x$ Sb_{2} $$ O_{3} $ glasses, prepared by melt quenching method, has been investigated by differential scanning calorimetry (DSC) and so discussed in the compositional range 0 ≤ x ≤ 10 mol%. DSC plots of these ternary glasses have been studied within the temperature range of 150–500 °C at the heating rates φ = 3, 6, 9, 10 and 13 K $ min^{−1} $. In this work, thermal stability, glass-forming tendency, the temperature corresponding to the onset of crystallization (Tx), the crystallization temperature (TCr), the glass transition temperature (Tg), the activation energy of crystallization by using Ozawa and Kissinger methods, and the crystallization activation energy using Avrami index (n) have been measured and reported, to determine the relationship between $ Sb_{2} $$ O_{3} $ content and the thermal stability in order to interpret the structure of glass. In conclusion, from the obtained data, it was found that characteristic temperatures Tg, Tx and Tcr are increasing with increasing the antimony oxide content and also with increasing the heating rate; glass with x = 10 has the highest thermal stability and glass-forming tendency and so has very good resistance against thermal attacks; the sample S5 shows a sharp decrease in the crystallization activation energy, which can be resulted by the increase in non-bridging oxygens; the crystallization activation energy calculated from Kissinger’s model is more accurate, and the trend of activation energy values is similar in all of Ozawa, Kissinger and Avrami methods; also the obtained values of n show that it fluctuates around n ≈ 1, which can be attributed to surface or one-dimensional crystal growth of crystals. Amorphous materials Ozawa method Kissinger method Avrami index Crystallization activation energy Shahmoradi, Yazdan aut Enthalten in Journal of thermal analysis and calorimetry Springer Netherlands, 1998 129(2017), 1 vom: 18. Feb., Seite 601-607 (DE-627)244148767 (DE-600)1429493-X (DE-576)066397693 1388-6150 nnns volume:129 year:2017 number:1 day:18 month:02 pages:601-607 https://doi.org/10.1007/s10973-017-6151-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 AR 129 2017 1 18 02 601-607 |
language |
English |
source |
Enthalten in Journal of thermal analysis and calorimetry 129(2017), 1 vom: 18. Feb., Seite 601-607 volume:129 year:2017 number:1 day:18 month:02 pages:601-607 |
sourceStr |
Enthalten in Journal of thermal analysis and calorimetry 129(2017), 1 vom: 18. Feb., Seite 601-607 volume:129 year:2017 number:1 day:18 month:02 pages:601-607 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Amorphous materials Ozawa method Kissinger method Avrami index Crystallization activation energy |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Journal of thermal analysis and calorimetry |
authorswithroles_txt_mv |
Souri, Dariush @@aut@@ Shahmoradi, Yazdan @@aut@@ |
publishDateDaySort_date |
2017-02-18T00:00:00Z |
hierarchy_top_id |
244148767 |
dewey-sort |
3660 |
id |
OLC2049853998 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2049853998</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503170232.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10973-017-6151-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2049853998</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10973-017-6151-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Souri, Dariush</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Calorimetric analysis of non-crystalline $ TeO_{2} $–$ V_{2} $$ O_{5} $–$ Sb_{2} $$ O_{3} $</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Akadémiai Kiadó, Budapest, Hungary 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In the present report, thermal and physical characterization of $ 40TeO_{2} $–(60 − x)$ V_{2} $$ O_{5} $–x$ Sb_{2} $$ O_{3} $ glasses, prepared by melt quenching method, has been investigated by differential scanning calorimetry (DSC) and so discussed in the compositional range 0 ≤ x ≤ 10 mol%. DSC plots of these ternary glasses have been studied within the temperature range of 150–500 °C at the heating rates φ = 3, 6, 9, 10 and 13 K $ min^{−1} $. In this work, thermal stability, glass-forming tendency, the temperature corresponding to the onset of crystallization (Tx), the crystallization temperature (TCr), the glass transition temperature (Tg), the activation energy of crystallization by using Ozawa and Kissinger methods, and the crystallization activation energy using Avrami index (n) have been measured and reported, to determine the relationship between $ Sb_{2} $$ O_{3} $ content and the thermal stability in order to interpret the structure of glass. In conclusion, from the obtained data, it was found that characteristic temperatures Tg, Tx and Tcr are increasing with increasing the antimony oxide content and also with increasing the heating rate; glass with x = 10 has the highest thermal stability and glass-forming tendency and so has very good resistance against thermal attacks; the sample S5 shows a sharp decrease in the crystallization activation energy, which can be resulted by the increase in non-bridging oxygens; the crystallization activation energy calculated from Kissinger’s model is more accurate, and the trend of activation energy values is similar in all of Ozawa, Kissinger and Avrami methods; also the obtained values of n show that it fluctuates around n ≈ 1, which can be attributed to surface or one-dimensional crystal growth of crystals.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amorphous materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ozawa method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kissinger method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Avrami index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crystallization activation energy</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shahmoradi, Yazdan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of thermal analysis and calorimetry</subfield><subfield code="d">Springer Netherlands, 1998</subfield><subfield code="g">129(2017), 1 vom: 18. Feb., Seite 601-607</subfield><subfield code="w">(DE-627)244148767</subfield><subfield code="w">(DE-600)1429493-X</subfield><subfield code="w">(DE-576)066397693</subfield><subfield code="x">1388-6150</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:129</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">day:18</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:601-607</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10973-017-6151-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">129</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="b">18</subfield><subfield code="c">02</subfield><subfield code="h">601-607</subfield></datafield></record></collection>
|
author |
Souri, Dariush |
spellingShingle |
Souri, Dariush ddc 660 misc Amorphous materials misc Ozawa method misc Kissinger method misc Avrami index misc Crystallization activation energy Calorimetric analysis of non-crystalline $ TeO_{2} $–$ V_{2} $$ O_{5} $–$ Sb_{2} $$ O_{3} $ |
authorStr |
Souri, Dariush |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)244148767 |
format |
Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1388-6150 |
topic_title |
660 VZ Calorimetric analysis of non-crystalline $ TeO_{2} $–$ V_{2} $$ O_{5} $–$ Sb_{2} $$ O_{3} $ Amorphous materials Ozawa method Kissinger method Avrami index Crystallization activation energy |
topic |
ddc 660 misc Amorphous materials misc Ozawa method misc Kissinger method misc Avrami index misc Crystallization activation energy |
topic_unstemmed |
ddc 660 misc Amorphous materials misc Ozawa method misc Kissinger method misc Avrami index misc Crystallization activation energy |
topic_browse |
ddc 660 misc Amorphous materials misc Ozawa method misc Kissinger method misc Avrami index misc Crystallization activation energy |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of thermal analysis and calorimetry |
hierarchy_parent_id |
244148767 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
Journal of thermal analysis and calorimetry |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)244148767 (DE-600)1429493-X (DE-576)066397693 |
title |
Calorimetric analysis of non-crystalline $ TeO_{2} $–$ V_{2} $$ O_{5} $–$ Sb_{2} $$ O_{3} $ |
ctrlnum |
(DE-627)OLC2049853998 (DE-He213)s10973-017-6151-5-p |
title_full |
Calorimetric analysis of non-crystalline $ TeO_{2} $–$ V_{2} $$ O_{5} $–$ Sb_{2} $$ O_{3} $ |
author_sort |
Souri, Dariush |
journal |
Journal of thermal analysis and calorimetry |
journalStr |
Journal of thermal analysis and calorimetry |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
601 |
author_browse |
Souri, Dariush Shahmoradi, Yazdan |
container_volume |
129 |
class |
660 VZ |
format_se |
Aufsätze |
author-letter |
Souri, Dariush |
doi_str_mv |
10.1007/s10973-017-6151-5 |
dewey-full |
660 |
title_sort |
calorimetric analysis of non-crystalline $ teo_{2} $–$ v_{2} $$ o_{5} $–$ sb_{2} $$ o_{3} $ |
title_auth |
Calorimetric analysis of non-crystalline $ TeO_{2} $–$ V_{2} $$ O_{5} $–$ Sb_{2} $$ O_{3} $ |
abstract |
Abstract In the present report, thermal and physical characterization of $ 40TeO_{2} $–(60 − x)$ V_{2} $$ O_{5} $–x$ Sb_{2} $$ O_{3} $ glasses, prepared by melt quenching method, has been investigated by differential scanning calorimetry (DSC) and so discussed in the compositional range 0 ≤ x ≤ 10 mol%. DSC plots of these ternary glasses have been studied within the temperature range of 150–500 °C at the heating rates φ = 3, 6, 9, 10 and 13 K $ min^{−1} $. In this work, thermal stability, glass-forming tendency, the temperature corresponding to the onset of crystallization (Tx), the crystallization temperature (TCr), the glass transition temperature (Tg), the activation energy of crystallization by using Ozawa and Kissinger methods, and the crystallization activation energy using Avrami index (n) have been measured and reported, to determine the relationship between $ Sb_{2} $$ O_{3} $ content and the thermal stability in order to interpret the structure of glass. In conclusion, from the obtained data, it was found that characteristic temperatures Tg, Tx and Tcr are increasing with increasing the antimony oxide content and also with increasing the heating rate; glass with x = 10 has the highest thermal stability and glass-forming tendency and so has very good resistance against thermal attacks; the sample S5 shows a sharp decrease in the crystallization activation energy, which can be resulted by the increase in non-bridging oxygens; the crystallization activation energy calculated from Kissinger’s model is more accurate, and the trend of activation energy values is similar in all of Ozawa, Kissinger and Avrami methods; also the obtained values of n show that it fluctuates around n ≈ 1, which can be attributed to surface or one-dimensional crystal growth of crystals. © Akadémiai Kiadó, Budapest, Hungary 2017 |
abstractGer |
Abstract In the present report, thermal and physical characterization of $ 40TeO_{2} $–(60 − x)$ V_{2} $$ O_{5} $–x$ Sb_{2} $$ O_{3} $ glasses, prepared by melt quenching method, has been investigated by differential scanning calorimetry (DSC) and so discussed in the compositional range 0 ≤ x ≤ 10 mol%. DSC plots of these ternary glasses have been studied within the temperature range of 150–500 °C at the heating rates φ = 3, 6, 9, 10 and 13 K $ min^{−1} $. In this work, thermal stability, glass-forming tendency, the temperature corresponding to the onset of crystallization (Tx), the crystallization temperature (TCr), the glass transition temperature (Tg), the activation energy of crystallization by using Ozawa and Kissinger methods, and the crystallization activation energy using Avrami index (n) have been measured and reported, to determine the relationship between $ Sb_{2} $$ O_{3} $ content and the thermal stability in order to interpret the structure of glass. In conclusion, from the obtained data, it was found that characteristic temperatures Tg, Tx and Tcr are increasing with increasing the antimony oxide content and also with increasing the heating rate; glass with x = 10 has the highest thermal stability and glass-forming tendency and so has very good resistance against thermal attacks; the sample S5 shows a sharp decrease in the crystallization activation energy, which can be resulted by the increase in non-bridging oxygens; the crystallization activation energy calculated from Kissinger’s model is more accurate, and the trend of activation energy values is similar in all of Ozawa, Kissinger and Avrami methods; also the obtained values of n show that it fluctuates around n ≈ 1, which can be attributed to surface or one-dimensional crystal growth of crystals. © Akadémiai Kiadó, Budapest, Hungary 2017 |
abstract_unstemmed |
Abstract In the present report, thermal and physical characterization of $ 40TeO_{2} $–(60 − x)$ V_{2} $$ O_{5} $–x$ Sb_{2} $$ O_{3} $ glasses, prepared by melt quenching method, has been investigated by differential scanning calorimetry (DSC) and so discussed in the compositional range 0 ≤ x ≤ 10 mol%. DSC plots of these ternary glasses have been studied within the temperature range of 150–500 °C at the heating rates φ = 3, 6, 9, 10 and 13 K $ min^{−1} $. In this work, thermal stability, glass-forming tendency, the temperature corresponding to the onset of crystallization (Tx), the crystallization temperature (TCr), the glass transition temperature (Tg), the activation energy of crystallization by using Ozawa and Kissinger methods, and the crystallization activation energy using Avrami index (n) have been measured and reported, to determine the relationship between $ Sb_{2} $$ O_{3} $ content and the thermal stability in order to interpret the structure of glass. In conclusion, from the obtained data, it was found that characteristic temperatures Tg, Tx and Tcr are increasing with increasing the antimony oxide content and also with increasing the heating rate; glass with x = 10 has the highest thermal stability and glass-forming tendency and so has very good resistance against thermal attacks; the sample S5 shows a sharp decrease in the crystallization activation energy, which can be resulted by the increase in non-bridging oxygens; the crystallization activation energy calculated from Kissinger’s model is more accurate, and the trend of activation energy values is similar in all of Ozawa, Kissinger and Avrami methods; also the obtained values of n show that it fluctuates around n ≈ 1, which can be attributed to surface or one-dimensional crystal growth of crystals. © Akadémiai Kiadó, Budapest, Hungary 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 |
container_issue |
1 |
title_short |
Calorimetric analysis of non-crystalline $ TeO_{2} $–$ V_{2} $$ O_{5} $–$ Sb_{2} $$ O_{3} $ |
url |
https://doi.org/10.1007/s10973-017-6151-5 |
remote_bool |
false |
author2 |
Shahmoradi, Yazdan |
author2Str |
Shahmoradi, Yazdan |
ppnlink |
244148767 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10973-017-6151-5 |
up_date |
2024-07-04T00:16:19.814Z |
_version_ |
1803605434502742016 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2049853998</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503170232.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10973-017-6151-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2049853998</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10973-017-6151-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Souri, Dariush</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Calorimetric analysis of non-crystalline $ TeO_{2} $–$ V_{2} $$ O_{5} $–$ Sb_{2} $$ O_{3} $</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Akadémiai Kiadó, Budapest, Hungary 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In the present report, thermal and physical characterization of $ 40TeO_{2} $–(60 − x)$ V_{2} $$ O_{5} $–x$ Sb_{2} $$ O_{3} $ glasses, prepared by melt quenching method, has been investigated by differential scanning calorimetry (DSC) and so discussed in the compositional range 0 ≤ x ≤ 10 mol%. DSC plots of these ternary glasses have been studied within the temperature range of 150–500 °C at the heating rates φ = 3, 6, 9, 10 and 13 K $ min^{−1} $. In this work, thermal stability, glass-forming tendency, the temperature corresponding to the onset of crystallization (Tx), the crystallization temperature (TCr), the glass transition temperature (Tg), the activation energy of crystallization by using Ozawa and Kissinger methods, and the crystallization activation energy using Avrami index (n) have been measured and reported, to determine the relationship between $ Sb_{2} $$ O_{3} $ content and the thermal stability in order to interpret the structure of glass. In conclusion, from the obtained data, it was found that characteristic temperatures Tg, Tx and Tcr are increasing with increasing the antimony oxide content and also with increasing the heating rate; glass with x = 10 has the highest thermal stability and glass-forming tendency and so has very good resistance against thermal attacks; the sample S5 shows a sharp decrease in the crystallization activation energy, which can be resulted by the increase in non-bridging oxygens; the crystallization activation energy calculated from Kissinger’s model is more accurate, and the trend of activation energy values is similar in all of Ozawa, Kissinger and Avrami methods; also the obtained values of n show that it fluctuates around n ≈ 1, which can be attributed to surface or one-dimensional crystal growth of crystals.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amorphous materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ozawa method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kissinger method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Avrami index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crystallization activation energy</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shahmoradi, Yazdan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of thermal analysis and calorimetry</subfield><subfield code="d">Springer Netherlands, 1998</subfield><subfield code="g">129(2017), 1 vom: 18. Feb., Seite 601-607</subfield><subfield code="w">(DE-627)244148767</subfield><subfield code="w">(DE-600)1429493-X</subfield><subfield code="w">(DE-576)066397693</subfield><subfield code="x">1388-6150</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:129</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">day:18</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:601-607</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10973-017-6151-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">129</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="b">18</subfield><subfield code="c">02</subfield><subfield code="h">601-607</subfield></datafield></record></collection>
|
score |
7.4021244 |