Thermal behavior of ferulic acid employing isoconversional models and artificial neural network
Abstract Ferulic acid (FA) is a phenolic acid of plant kingdom presenting antioxidant activity, a fundamental pharmaceutical property. This property suggests FA can be used in cosmetic skin formulations as a photoprotective and anti-aging agent. The purpose of this work is to investigate the kinetic...
Ausführliche Beschreibung
Autor*in: |
Brito, Luana Guedes [verfasserIn] Nogueira, Fernando Henrique Andrade Ferreira, Bárbara Darós de Lelis de Freitas Marques, Maria Betânia |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Akadémiai Kiadó, Budapest, Hungary 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of thermal analysis and calorimetry - Springer International Publishing, 1998, 138(2019), 5 vom: 02. März, Seite 3715-3726 |
---|---|
Übergeordnetes Werk: |
volume:138 ; year:2019 ; number:5 ; day:02 ; month:03 ; pages:3715-3726 |
Links: |
---|
DOI / URN: |
10.1007/s10973-019-08114-x |
---|
Katalog-ID: |
OLC2049876815 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2049876815 | ||
003 | DE-627 | ||
005 | 20230503170502.0 | ||
007 | tu | ||
008 | 200820s2019 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10973-019-08114-x |2 doi | |
035 | |a (DE-627)OLC2049876815 | ||
035 | |a (DE-He213)s10973-019-08114-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q VZ |
100 | 1 | |a Brito, Luana Guedes |e verfasserin |4 aut | |
245 | 1 | 0 | |a Thermal behavior of ferulic acid employing isoconversional models and artificial neural network |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Akadémiai Kiadó, Budapest, Hungary 2019 | ||
520 | |a Abstract Ferulic acid (FA) is a phenolic acid of plant kingdom presenting antioxidant activity, a fundamental pharmaceutical property. This property suggests FA can be used in cosmetic skin formulations as a photoprotective and anti-aging agent. The purpose of this work is to investigate the kinetics of FA thermal decomposition process in non-isothermic conditions applying Friedman, Flynn–Wall–Ozawa and Kissinger–Akahira–Sunose methodologies and in isothermal conditions using a neural network. All these isoconversional results showed coherent values of apparent activation energy under nitrogen atmosphere. For the isothermal analysis, R2 model presented best performance to individually describe the data. However, the neural network assumed the decomposition as a combined event, in which ten models have contributions to describe experimental data. The DRX results showed the sample is not at steadier configuration and require a pre-treatment before the analysis by the non-isothermal experiments. From this, the sample was prepared with heat treatment up to 130 °C, and the determined activation energy showed reduction of 5 kJ $ mol^{−1} $. The isothermal analysis endorses activation energy about 40 kJ $ mol^{−1} $. These results proved the FA thermal decomposition is strongly influenced by experimental conditions. | ||
650 | 4 | |a Solid thermal decomposition | |
650 | 4 | |a Ferulic acid | |
650 | 4 | |a Kinetics | |
650 | 4 | |a Thermogravimetry | |
650 | 4 | |a Artificial neural network | |
700 | 1 | |a Leite, Geovana Quixabeira |4 aut | |
700 | 1 | |a Duarte, Fernanda Ílary Costa |4 aut | |
700 | 1 | |a Ostrosky, Elissa Arantes |4 aut | |
700 | 1 | |a Ferrari, Marcio |4 aut | |
700 | 1 | |a de Lima, Adley Antonini Neves |4 aut | |
700 | 1 | |a Nogueira, Fernando Henrique Andrade |4 aut | |
700 | 1 | |a Aragão, Cícero Flávio Soares |4 aut | |
700 | 1 | |a Ferreira, Bárbara Darós de Lelis |4 aut | |
700 | 1 | |a de Freitas Marques, Maria Betânia |4 aut | |
700 | 1 | |a Yoshida, Maria Irene |4 aut | |
700 | 1 | |a da Nova Mussel, Wagner |4 aut | |
700 | 1 | |a Sebastiao, Rita de Cássia de Oliveira |4 aut | |
700 | 1 | |a Gomes, Ana Paula Barreto |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of thermal analysis and calorimetry |d Springer International Publishing, 1998 |g 138(2019), 5 vom: 02. März, Seite 3715-3726 |w (DE-627)244148767 |w (DE-600)1429493-X |w (DE-576)066397693 |x 1388-6150 |7 nnns |
773 | 1 | 8 | |g volume:138 |g year:2019 |g number:5 |g day:02 |g month:03 |g pages:3715-3726 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10973-019-08114-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 138 |j 2019 |e 5 |b 02 |c 03 |h 3715-3726 |
author_variant |
l g b lg lgb g q l gq gql f í c d fíc fícd e a o ea eao m f mf l a a n d laan laand f h a n fha fhan c f s a cfs cfsa b d d l f bddl bddlf f m m b d fmmb fmmbd m i y mi miy n m w d nmw nmwd r d c d o s rdcdo rdcdos a p b g apb apbg |
---|---|
matchkey_str |
article:13886150:2019----::hrabhvoofrlccdmlynioovrinloesna |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s10973-019-08114-x doi (DE-627)OLC2049876815 (DE-He213)s10973-019-08114-x-p DE-627 ger DE-627 rakwb eng 660 VZ Brito, Luana Guedes verfasserin aut Thermal behavior of ferulic acid employing isoconversional models and artificial neural network 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2019 Abstract Ferulic acid (FA) is a phenolic acid of plant kingdom presenting antioxidant activity, a fundamental pharmaceutical property. This property suggests FA can be used in cosmetic skin formulations as a photoprotective and anti-aging agent. The purpose of this work is to investigate the kinetics of FA thermal decomposition process in non-isothermic conditions applying Friedman, Flynn–Wall–Ozawa and Kissinger–Akahira–Sunose methodologies and in isothermal conditions using a neural network. All these isoconversional results showed coherent values of apparent activation energy under nitrogen atmosphere. For the isothermal analysis, R2 model presented best performance to individually describe the data. However, the neural network assumed the decomposition as a combined event, in which ten models have contributions to describe experimental data. The DRX results showed the sample is not at steadier configuration and require a pre-treatment before the analysis by the non-isothermal experiments. From this, the sample was prepared with heat treatment up to 130 °C, and the determined activation energy showed reduction of 5 kJ $ mol^{−1} $. The isothermal analysis endorses activation energy about 40 kJ $ mol^{−1} $. These results proved the FA thermal decomposition is strongly influenced by experimental conditions. Solid thermal decomposition Ferulic acid Kinetics Thermogravimetry Artificial neural network Leite, Geovana Quixabeira aut Duarte, Fernanda Ílary Costa aut Ostrosky, Elissa Arantes aut Ferrari, Marcio aut de Lima, Adley Antonini Neves aut Nogueira, Fernando Henrique Andrade aut Aragão, Cícero Flávio Soares aut Ferreira, Bárbara Darós de Lelis aut de Freitas Marques, Maria Betânia aut Yoshida, Maria Irene aut da Nova Mussel, Wagner aut Sebastiao, Rita de Cássia de Oliveira aut Gomes, Ana Paula Barreto aut Enthalten in Journal of thermal analysis and calorimetry Springer International Publishing, 1998 138(2019), 5 vom: 02. März, Seite 3715-3726 (DE-627)244148767 (DE-600)1429493-X (DE-576)066397693 1388-6150 nnns volume:138 year:2019 number:5 day:02 month:03 pages:3715-3726 https://doi.org/10.1007/s10973-019-08114-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 AR 138 2019 5 02 03 3715-3726 |
spelling |
10.1007/s10973-019-08114-x doi (DE-627)OLC2049876815 (DE-He213)s10973-019-08114-x-p DE-627 ger DE-627 rakwb eng 660 VZ Brito, Luana Guedes verfasserin aut Thermal behavior of ferulic acid employing isoconversional models and artificial neural network 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2019 Abstract Ferulic acid (FA) is a phenolic acid of plant kingdom presenting antioxidant activity, a fundamental pharmaceutical property. This property suggests FA can be used in cosmetic skin formulations as a photoprotective and anti-aging agent. The purpose of this work is to investigate the kinetics of FA thermal decomposition process in non-isothermic conditions applying Friedman, Flynn–Wall–Ozawa and Kissinger–Akahira–Sunose methodologies and in isothermal conditions using a neural network. All these isoconversional results showed coherent values of apparent activation energy under nitrogen atmosphere. For the isothermal analysis, R2 model presented best performance to individually describe the data. However, the neural network assumed the decomposition as a combined event, in which ten models have contributions to describe experimental data. The DRX results showed the sample is not at steadier configuration and require a pre-treatment before the analysis by the non-isothermal experiments. From this, the sample was prepared with heat treatment up to 130 °C, and the determined activation energy showed reduction of 5 kJ $ mol^{−1} $. The isothermal analysis endorses activation energy about 40 kJ $ mol^{−1} $. These results proved the FA thermal decomposition is strongly influenced by experimental conditions. Solid thermal decomposition Ferulic acid Kinetics Thermogravimetry Artificial neural network Leite, Geovana Quixabeira aut Duarte, Fernanda Ílary Costa aut Ostrosky, Elissa Arantes aut Ferrari, Marcio aut de Lima, Adley Antonini Neves aut Nogueira, Fernando Henrique Andrade aut Aragão, Cícero Flávio Soares aut Ferreira, Bárbara Darós de Lelis aut de Freitas Marques, Maria Betânia aut Yoshida, Maria Irene aut da Nova Mussel, Wagner aut Sebastiao, Rita de Cássia de Oliveira aut Gomes, Ana Paula Barreto aut Enthalten in Journal of thermal analysis and calorimetry Springer International Publishing, 1998 138(2019), 5 vom: 02. März, Seite 3715-3726 (DE-627)244148767 (DE-600)1429493-X (DE-576)066397693 1388-6150 nnns volume:138 year:2019 number:5 day:02 month:03 pages:3715-3726 https://doi.org/10.1007/s10973-019-08114-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 AR 138 2019 5 02 03 3715-3726 |
allfields_unstemmed |
10.1007/s10973-019-08114-x doi (DE-627)OLC2049876815 (DE-He213)s10973-019-08114-x-p DE-627 ger DE-627 rakwb eng 660 VZ Brito, Luana Guedes verfasserin aut Thermal behavior of ferulic acid employing isoconversional models and artificial neural network 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2019 Abstract Ferulic acid (FA) is a phenolic acid of plant kingdom presenting antioxidant activity, a fundamental pharmaceutical property. This property suggests FA can be used in cosmetic skin formulations as a photoprotective and anti-aging agent. The purpose of this work is to investigate the kinetics of FA thermal decomposition process in non-isothermic conditions applying Friedman, Flynn–Wall–Ozawa and Kissinger–Akahira–Sunose methodologies and in isothermal conditions using a neural network. All these isoconversional results showed coherent values of apparent activation energy under nitrogen atmosphere. For the isothermal analysis, R2 model presented best performance to individually describe the data. However, the neural network assumed the decomposition as a combined event, in which ten models have contributions to describe experimental data. The DRX results showed the sample is not at steadier configuration and require a pre-treatment before the analysis by the non-isothermal experiments. From this, the sample was prepared with heat treatment up to 130 °C, and the determined activation energy showed reduction of 5 kJ $ mol^{−1} $. The isothermal analysis endorses activation energy about 40 kJ $ mol^{−1} $. These results proved the FA thermal decomposition is strongly influenced by experimental conditions. Solid thermal decomposition Ferulic acid Kinetics Thermogravimetry Artificial neural network Leite, Geovana Quixabeira aut Duarte, Fernanda Ílary Costa aut Ostrosky, Elissa Arantes aut Ferrari, Marcio aut de Lima, Adley Antonini Neves aut Nogueira, Fernando Henrique Andrade aut Aragão, Cícero Flávio Soares aut Ferreira, Bárbara Darós de Lelis aut de Freitas Marques, Maria Betânia aut Yoshida, Maria Irene aut da Nova Mussel, Wagner aut Sebastiao, Rita de Cássia de Oliveira aut Gomes, Ana Paula Barreto aut Enthalten in Journal of thermal analysis and calorimetry Springer International Publishing, 1998 138(2019), 5 vom: 02. März, Seite 3715-3726 (DE-627)244148767 (DE-600)1429493-X (DE-576)066397693 1388-6150 nnns volume:138 year:2019 number:5 day:02 month:03 pages:3715-3726 https://doi.org/10.1007/s10973-019-08114-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 AR 138 2019 5 02 03 3715-3726 |
allfieldsGer |
10.1007/s10973-019-08114-x doi (DE-627)OLC2049876815 (DE-He213)s10973-019-08114-x-p DE-627 ger DE-627 rakwb eng 660 VZ Brito, Luana Guedes verfasserin aut Thermal behavior of ferulic acid employing isoconversional models and artificial neural network 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2019 Abstract Ferulic acid (FA) is a phenolic acid of plant kingdom presenting antioxidant activity, a fundamental pharmaceutical property. This property suggests FA can be used in cosmetic skin formulations as a photoprotective and anti-aging agent. The purpose of this work is to investigate the kinetics of FA thermal decomposition process in non-isothermic conditions applying Friedman, Flynn–Wall–Ozawa and Kissinger–Akahira–Sunose methodologies and in isothermal conditions using a neural network. All these isoconversional results showed coherent values of apparent activation energy under nitrogen atmosphere. For the isothermal analysis, R2 model presented best performance to individually describe the data. However, the neural network assumed the decomposition as a combined event, in which ten models have contributions to describe experimental data. The DRX results showed the sample is not at steadier configuration and require a pre-treatment before the analysis by the non-isothermal experiments. From this, the sample was prepared with heat treatment up to 130 °C, and the determined activation energy showed reduction of 5 kJ $ mol^{−1} $. The isothermal analysis endorses activation energy about 40 kJ $ mol^{−1} $. These results proved the FA thermal decomposition is strongly influenced by experimental conditions. Solid thermal decomposition Ferulic acid Kinetics Thermogravimetry Artificial neural network Leite, Geovana Quixabeira aut Duarte, Fernanda Ílary Costa aut Ostrosky, Elissa Arantes aut Ferrari, Marcio aut de Lima, Adley Antonini Neves aut Nogueira, Fernando Henrique Andrade aut Aragão, Cícero Flávio Soares aut Ferreira, Bárbara Darós de Lelis aut de Freitas Marques, Maria Betânia aut Yoshida, Maria Irene aut da Nova Mussel, Wagner aut Sebastiao, Rita de Cássia de Oliveira aut Gomes, Ana Paula Barreto aut Enthalten in Journal of thermal analysis and calorimetry Springer International Publishing, 1998 138(2019), 5 vom: 02. März, Seite 3715-3726 (DE-627)244148767 (DE-600)1429493-X (DE-576)066397693 1388-6150 nnns volume:138 year:2019 number:5 day:02 month:03 pages:3715-3726 https://doi.org/10.1007/s10973-019-08114-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 AR 138 2019 5 02 03 3715-3726 |
allfieldsSound |
10.1007/s10973-019-08114-x doi (DE-627)OLC2049876815 (DE-He213)s10973-019-08114-x-p DE-627 ger DE-627 rakwb eng 660 VZ Brito, Luana Guedes verfasserin aut Thermal behavior of ferulic acid employing isoconversional models and artificial neural network 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2019 Abstract Ferulic acid (FA) is a phenolic acid of plant kingdom presenting antioxidant activity, a fundamental pharmaceutical property. This property suggests FA can be used in cosmetic skin formulations as a photoprotective and anti-aging agent. The purpose of this work is to investigate the kinetics of FA thermal decomposition process in non-isothermic conditions applying Friedman, Flynn–Wall–Ozawa and Kissinger–Akahira–Sunose methodologies and in isothermal conditions using a neural network. All these isoconversional results showed coherent values of apparent activation energy under nitrogen atmosphere. For the isothermal analysis, R2 model presented best performance to individually describe the data. However, the neural network assumed the decomposition as a combined event, in which ten models have contributions to describe experimental data. The DRX results showed the sample is not at steadier configuration and require a pre-treatment before the analysis by the non-isothermal experiments. From this, the sample was prepared with heat treatment up to 130 °C, and the determined activation energy showed reduction of 5 kJ $ mol^{−1} $. The isothermal analysis endorses activation energy about 40 kJ $ mol^{−1} $. These results proved the FA thermal decomposition is strongly influenced by experimental conditions. Solid thermal decomposition Ferulic acid Kinetics Thermogravimetry Artificial neural network Leite, Geovana Quixabeira aut Duarte, Fernanda Ílary Costa aut Ostrosky, Elissa Arantes aut Ferrari, Marcio aut de Lima, Adley Antonini Neves aut Nogueira, Fernando Henrique Andrade aut Aragão, Cícero Flávio Soares aut Ferreira, Bárbara Darós de Lelis aut de Freitas Marques, Maria Betânia aut Yoshida, Maria Irene aut da Nova Mussel, Wagner aut Sebastiao, Rita de Cássia de Oliveira aut Gomes, Ana Paula Barreto aut Enthalten in Journal of thermal analysis and calorimetry Springer International Publishing, 1998 138(2019), 5 vom: 02. März, Seite 3715-3726 (DE-627)244148767 (DE-600)1429493-X (DE-576)066397693 1388-6150 nnns volume:138 year:2019 number:5 day:02 month:03 pages:3715-3726 https://doi.org/10.1007/s10973-019-08114-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 AR 138 2019 5 02 03 3715-3726 |
language |
English |
source |
Enthalten in Journal of thermal analysis and calorimetry 138(2019), 5 vom: 02. März, Seite 3715-3726 volume:138 year:2019 number:5 day:02 month:03 pages:3715-3726 |
sourceStr |
Enthalten in Journal of thermal analysis and calorimetry 138(2019), 5 vom: 02. März, Seite 3715-3726 volume:138 year:2019 number:5 day:02 month:03 pages:3715-3726 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Solid thermal decomposition Ferulic acid Kinetics Thermogravimetry Artificial neural network |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Journal of thermal analysis and calorimetry |
authorswithroles_txt_mv |
Brito, Luana Guedes @@aut@@ Leite, Geovana Quixabeira @@aut@@ Duarte, Fernanda Ílary Costa @@aut@@ Ostrosky, Elissa Arantes @@aut@@ Ferrari, Marcio @@aut@@ de Lima, Adley Antonini Neves @@aut@@ Nogueira, Fernando Henrique Andrade @@aut@@ Aragão, Cícero Flávio Soares @@aut@@ Ferreira, Bárbara Darós de Lelis @@aut@@ de Freitas Marques, Maria Betânia @@aut@@ Yoshida, Maria Irene @@aut@@ da Nova Mussel, Wagner @@aut@@ Sebastiao, Rita de Cássia de Oliveira @@aut@@ Gomes, Ana Paula Barreto @@aut@@ |
publishDateDaySort_date |
2019-03-02T00:00:00Z |
hierarchy_top_id |
244148767 |
dewey-sort |
3660 |
id |
OLC2049876815 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2049876815</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503170502.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10973-019-08114-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2049876815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10973-019-08114-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brito, Luana Guedes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermal behavior of ferulic acid employing isoconversional models and artificial neural network</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Akadémiai Kiadó, Budapest, Hungary 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Ferulic acid (FA) is a phenolic acid of plant kingdom presenting antioxidant activity, a fundamental pharmaceutical property. This property suggests FA can be used in cosmetic skin formulations as a photoprotective and anti-aging agent. The purpose of this work is to investigate the kinetics of FA thermal decomposition process in non-isothermic conditions applying Friedman, Flynn–Wall–Ozawa and Kissinger–Akahira–Sunose methodologies and in isothermal conditions using a neural network. All these isoconversional results showed coherent values of apparent activation energy under nitrogen atmosphere. For the isothermal analysis, R2 model presented best performance to individually describe the data. However, the neural network assumed the decomposition as a combined event, in which ten models have contributions to describe experimental data. The DRX results showed the sample is not at steadier configuration and require a pre-treatment before the analysis by the non-isothermal experiments. From this, the sample was prepared with heat treatment up to 130 °C, and the determined activation energy showed reduction of 5 kJ $ mol^{−1} $. The isothermal analysis endorses activation energy about 40 kJ $ mol^{−1} $. These results proved the FA thermal decomposition is strongly influenced by experimental conditions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solid thermal decomposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ferulic acid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kinetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermogravimetry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial neural network</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leite, Geovana Quixabeira</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Duarte, Fernanda Ílary Costa</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ostrosky, Elissa Arantes</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ferrari, Marcio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">de Lima, Adley Antonini Neves</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nogueira, Fernando Henrique Andrade</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aragão, Cícero Flávio Soares</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ferreira, Bárbara Darós de Lelis</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">de Freitas Marques, Maria Betânia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yoshida, Maria Irene</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">da Nova Mussel, Wagner</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sebastiao, Rita de Cássia de Oliveira</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gomes, Ana Paula Barreto</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of thermal analysis and calorimetry</subfield><subfield code="d">Springer International Publishing, 1998</subfield><subfield code="g">138(2019), 5 vom: 02. März, Seite 3715-3726</subfield><subfield code="w">(DE-627)244148767</subfield><subfield code="w">(DE-600)1429493-X</subfield><subfield code="w">(DE-576)066397693</subfield><subfield code="x">1388-6150</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:138</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:5</subfield><subfield code="g">day:02</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:3715-3726</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10973-019-08114-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">138</subfield><subfield code="j">2019</subfield><subfield code="e">5</subfield><subfield code="b">02</subfield><subfield code="c">03</subfield><subfield code="h">3715-3726</subfield></datafield></record></collection>
|
author |
Brito, Luana Guedes |
spellingShingle |
Brito, Luana Guedes ddc 660 misc Solid thermal decomposition misc Ferulic acid misc Kinetics misc Thermogravimetry misc Artificial neural network Thermal behavior of ferulic acid employing isoconversional models and artificial neural network |
authorStr |
Brito, Luana Guedes |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)244148767 |
format |
Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1388-6150 |
topic_title |
660 VZ Thermal behavior of ferulic acid employing isoconversional models and artificial neural network Solid thermal decomposition Ferulic acid Kinetics Thermogravimetry Artificial neural network |
topic |
ddc 660 misc Solid thermal decomposition misc Ferulic acid misc Kinetics misc Thermogravimetry misc Artificial neural network |
topic_unstemmed |
ddc 660 misc Solid thermal decomposition misc Ferulic acid misc Kinetics misc Thermogravimetry misc Artificial neural network |
topic_browse |
ddc 660 misc Solid thermal decomposition misc Ferulic acid misc Kinetics misc Thermogravimetry misc Artificial neural network |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of thermal analysis and calorimetry |
hierarchy_parent_id |
244148767 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
Journal of thermal analysis and calorimetry |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)244148767 (DE-600)1429493-X (DE-576)066397693 |
title |
Thermal behavior of ferulic acid employing isoconversional models and artificial neural network |
ctrlnum |
(DE-627)OLC2049876815 (DE-He213)s10973-019-08114-x-p |
title_full |
Thermal behavior of ferulic acid employing isoconversional models and artificial neural network |
author_sort |
Brito, Luana Guedes |
journal |
Journal of thermal analysis and calorimetry |
journalStr |
Journal of thermal analysis and calorimetry |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
3715 |
author_browse |
Brito, Luana Guedes Leite, Geovana Quixabeira Duarte, Fernanda Ílary Costa Ostrosky, Elissa Arantes Ferrari, Marcio de Lima, Adley Antonini Neves Nogueira, Fernando Henrique Andrade Aragão, Cícero Flávio Soares Ferreira, Bárbara Darós de Lelis de Freitas Marques, Maria Betânia Yoshida, Maria Irene da Nova Mussel, Wagner Sebastiao, Rita de Cássia de Oliveira Gomes, Ana Paula Barreto |
container_volume |
138 |
class |
660 VZ |
format_se |
Aufsätze |
author-letter |
Brito, Luana Guedes |
doi_str_mv |
10.1007/s10973-019-08114-x |
dewey-full |
660 |
title_sort |
thermal behavior of ferulic acid employing isoconversional models and artificial neural network |
title_auth |
Thermal behavior of ferulic acid employing isoconversional models and artificial neural network |
abstract |
Abstract Ferulic acid (FA) is a phenolic acid of plant kingdom presenting antioxidant activity, a fundamental pharmaceutical property. This property suggests FA can be used in cosmetic skin formulations as a photoprotective and anti-aging agent. The purpose of this work is to investigate the kinetics of FA thermal decomposition process in non-isothermic conditions applying Friedman, Flynn–Wall–Ozawa and Kissinger–Akahira–Sunose methodologies and in isothermal conditions using a neural network. All these isoconversional results showed coherent values of apparent activation energy under nitrogen atmosphere. For the isothermal analysis, R2 model presented best performance to individually describe the data. However, the neural network assumed the decomposition as a combined event, in which ten models have contributions to describe experimental data. The DRX results showed the sample is not at steadier configuration and require a pre-treatment before the analysis by the non-isothermal experiments. From this, the sample was prepared with heat treatment up to 130 °C, and the determined activation energy showed reduction of 5 kJ $ mol^{−1} $. The isothermal analysis endorses activation energy about 40 kJ $ mol^{−1} $. These results proved the FA thermal decomposition is strongly influenced by experimental conditions. © Akadémiai Kiadó, Budapest, Hungary 2019 |
abstractGer |
Abstract Ferulic acid (FA) is a phenolic acid of plant kingdom presenting antioxidant activity, a fundamental pharmaceutical property. This property suggests FA can be used in cosmetic skin formulations as a photoprotective and anti-aging agent. The purpose of this work is to investigate the kinetics of FA thermal decomposition process in non-isothermic conditions applying Friedman, Flynn–Wall–Ozawa and Kissinger–Akahira–Sunose methodologies and in isothermal conditions using a neural network. All these isoconversional results showed coherent values of apparent activation energy under nitrogen atmosphere. For the isothermal analysis, R2 model presented best performance to individually describe the data. However, the neural network assumed the decomposition as a combined event, in which ten models have contributions to describe experimental data. The DRX results showed the sample is not at steadier configuration and require a pre-treatment before the analysis by the non-isothermal experiments. From this, the sample was prepared with heat treatment up to 130 °C, and the determined activation energy showed reduction of 5 kJ $ mol^{−1} $. The isothermal analysis endorses activation energy about 40 kJ $ mol^{−1} $. These results proved the FA thermal decomposition is strongly influenced by experimental conditions. © Akadémiai Kiadó, Budapest, Hungary 2019 |
abstract_unstemmed |
Abstract Ferulic acid (FA) is a phenolic acid of plant kingdom presenting antioxidant activity, a fundamental pharmaceutical property. This property suggests FA can be used in cosmetic skin formulations as a photoprotective and anti-aging agent. The purpose of this work is to investigate the kinetics of FA thermal decomposition process in non-isothermic conditions applying Friedman, Flynn–Wall–Ozawa and Kissinger–Akahira–Sunose methodologies and in isothermal conditions using a neural network. All these isoconversional results showed coherent values of apparent activation energy under nitrogen atmosphere. For the isothermal analysis, R2 model presented best performance to individually describe the data. However, the neural network assumed the decomposition as a combined event, in which ten models have contributions to describe experimental data. The DRX results showed the sample is not at steadier configuration and require a pre-treatment before the analysis by the non-isothermal experiments. From this, the sample was prepared with heat treatment up to 130 °C, and the determined activation energy showed reduction of 5 kJ $ mol^{−1} $. The isothermal analysis endorses activation energy about 40 kJ $ mol^{−1} $. These results proved the FA thermal decomposition is strongly influenced by experimental conditions. © Akadémiai Kiadó, Budapest, Hungary 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 |
container_issue |
5 |
title_short |
Thermal behavior of ferulic acid employing isoconversional models and artificial neural network |
url |
https://doi.org/10.1007/s10973-019-08114-x |
remote_bool |
false |
author2 |
Leite, Geovana Quixabeira Duarte, Fernanda Ílary Costa Ostrosky, Elissa Arantes Ferrari, Marcio de Lima, Adley Antonini Neves Nogueira, Fernando Henrique Andrade Aragão, Cícero Flávio Soares Ferreira, Bárbara Darós de Lelis de Freitas Marques, Maria Betânia Yoshida, Maria Irene da Nova Mussel, Wagner Sebastiao, Rita de Cássia de Oliveira Gomes, Ana Paula Barreto |
author2Str |
Leite, Geovana Quixabeira Duarte, Fernanda Ílary Costa Ostrosky, Elissa Arantes Ferrari, Marcio de Lima, Adley Antonini Neves Nogueira, Fernando Henrique Andrade Aragão, Cícero Flávio Soares Ferreira, Bárbara Darós de Lelis de Freitas Marques, Maria Betânia Yoshida, Maria Irene da Nova Mussel, Wagner Sebastiao, Rita de Cássia de Oliveira Gomes, Ana Paula Barreto |
ppnlink |
244148767 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10973-019-08114-x |
up_date |
2024-07-04T00:21:46.232Z |
_version_ |
1803605776776822784 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2049876815</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503170502.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10973-019-08114-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2049876815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10973-019-08114-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brito, Luana Guedes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermal behavior of ferulic acid employing isoconversional models and artificial neural network</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Akadémiai Kiadó, Budapest, Hungary 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Ferulic acid (FA) is a phenolic acid of plant kingdom presenting antioxidant activity, a fundamental pharmaceutical property. This property suggests FA can be used in cosmetic skin formulations as a photoprotective and anti-aging agent. The purpose of this work is to investigate the kinetics of FA thermal decomposition process in non-isothermic conditions applying Friedman, Flynn–Wall–Ozawa and Kissinger–Akahira–Sunose methodologies and in isothermal conditions using a neural network. All these isoconversional results showed coherent values of apparent activation energy under nitrogen atmosphere. For the isothermal analysis, R2 model presented best performance to individually describe the data. However, the neural network assumed the decomposition as a combined event, in which ten models have contributions to describe experimental data. The DRX results showed the sample is not at steadier configuration and require a pre-treatment before the analysis by the non-isothermal experiments. From this, the sample was prepared with heat treatment up to 130 °C, and the determined activation energy showed reduction of 5 kJ $ mol^{−1} $. The isothermal analysis endorses activation energy about 40 kJ $ mol^{−1} $. These results proved the FA thermal decomposition is strongly influenced by experimental conditions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solid thermal decomposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ferulic acid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kinetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermogravimetry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial neural network</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leite, Geovana Quixabeira</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Duarte, Fernanda Ílary Costa</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ostrosky, Elissa Arantes</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ferrari, Marcio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">de Lima, Adley Antonini Neves</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nogueira, Fernando Henrique Andrade</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aragão, Cícero Flávio Soares</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ferreira, Bárbara Darós de Lelis</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">de Freitas Marques, Maria Betânia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yoshida, Maria Irene</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">da Nova Mussel, Wagner</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sebastiao, Rita de Cássia de Oliveira</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gomes, Ana Paula Barreto</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of thermal analysis and calorimetry</subfield><subfield code="d">Springer International Publishing, 1998</subfield><subfield code="g">138(2019), 5 vom: 02. März, Seite 3715-3726</subfield><subfield code="w">(DE-627)244148767</subfield><subfield code="w">(DE-600)1429493-X</subfield><subfield code="w">(DE-576)066397693</subfield><subfield code="x">1388-6150</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:138</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:5</subfield><subfield code="g">day:02</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:3715-3726</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10973-019-08114-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">138</subfield><subfield code="j">2019</subfield><subfield code="e">5</subfield><subfield code="b">02</subfield><subfield code="c">03</subfield><subfield code="h">3715-3726</subfield></datafield></record></collection>
|
score |
7.4019136 |