Investigation of latent heat storage system using graphite micro-particle enhancement
Abstract Low-temperature energy storage system (LTESS) stores the thermal energy from the sun, exhaust gases and waste heat from industries and other sources. Phase changing materials (PCM) are used as the energy storage medium for this system. The advantage of PCM is that it has higher energy stora...
Ausführliche Beschreibung
Autor*in: |
Dhandayuthabani, M. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Akadémiai Kiadó, Budapest, Hungary 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of thermal analysis and calorimetry - Springer International Publishing, 1998, 139(2019), 3 vom: 05. Aug., Seite 2181-2186 |
---|---|
Übergeordnetes Werk: |
volume:139 ; year:2019 ; number:3 ; day:05 ; month:08 ; pages:2181-2186 |
Links: |
---|
DOI / URN: |
10.1007/s10973-019-08625-7 |
---|
Katalog-ID: |
OLC2049879970 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2049879970 | ||
003 | DE-627 | ||
005 | 20230503170521.0 | ||
007 | tu | ||
008 | 200820s2019 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10973-019-08625-7 |2 doi | |
035 | |a (DE-627)OLC2049879970 | ||
035 | |a (DE-He213)s10973-019-08625-7-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q VZ |
100 | 1 | |a Dhandayuthabani, M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Investigation of latent heat storage system using graphite micro-particle enhancement |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Akadémiai Kiadó, Budapest, Hungary 2019 | ||
520 | |a Abstract Low-temperature energy storage system (LTESS) stores the thermal energy from the sun, exhaust gases and waste heat from industries and other sources. Phase changing materials (PCM) are used as the energy storage medium for this system. The advantage of PCM is that it has higher energy storage density, with low volume. The disadvantage of PCM for using as LTESS is that the thermal conductivity of PCM is less and this requires more time period and surface area of contact, for loading and unloading of thermal energy. A solution to this problem can be incorporating graphite micro-particles in the paraffin PCM to improve its thermal conductivity. The heat transfer of LTESS is determined experimentally. Incorporating micro-particle in the PCM has improved the heat transfer of the LTESS. Maxwell–Garnett equation is used to determine the heat transfer of PCM and J-type temperature measuring probe, and sensor apparatus is used to determine the heat transfer experimentally. The encapsulation has increased the heat-retaining ability and storage time by about 40% on average for the flow rates tested. | ||
650 | 4 | |a Low-temperature energy storage system | |
650 | 4 | |a Thermal energy storage | |
650 | 4 | |a Pentacosane | |
650 | 4 | |a Micro-particles | |
650 | 4 | |a Graphite | |
700 | 1 | |a Jegadheeswaran, S. |0 (orcid)0000-0002-2540-0487 |4 aut | |
700 | 1 | |a Vijayan, V. |4 aut | |
700 | 1 | |a Antony, A. Godwin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of thermal analysis and calorimetry |d Springer International Publishing, 1998 |g 139(2019), 3 vom: 05. Aug., Seite 2181-2186 |w (DE-627)244148767 |w (DE-600)1429493-X |w (DE-576)066397693 |x 1388-6150 |7 nnns |
773 | 1 | 8 | |g volume:139 |g year:2019 |g number:3 |g day:05 |g month:08 |g pages:2181-2186 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10973-019-08625-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 139 |j 2019 |e 3 |b 05 |c 08 |h 2181-2186 |
author_variant |
m d md s j sj v v vv a g a ag aga |
---|---|
matchkey_str |
article:13886150:2019----::netgtooltnhasoaeytmsngahtmc |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s10973-019-08625-7 doi (DE-627)OLC2049879970 (DE-He213)s10973-019-08625-7-p DE-627 ger DE-627 rakwb eng 660 VZ Dhandayuthabani, M. verfasserin aut Investigation of latent heat storage system using graphite micro-particle enhancement 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2019 Abstract Low-temperature energy storage system (LTESS) stores the thermal energy from the sun, exhaust gases and waste heat from industries and other sources. Phase changing materials (PCM) are used as the energy storage medium for this system. The advantage of PCM is that it has higher energy storage density, with low volume. The disadvantage of PCM for using as LTESS is that the thermal conductivity of PCM is less and this requires more time period and surface area of contact, for loading and unloading of thermal energy. A solution to this problem can be incorporating graphite micro-particles in the paraffin PCM to improve its thermal conductivity. The heat transfer of LTESS is determined experimentally. Incorporating micro-particle in the PCM has improved the heat transfer of the LTESS. Maxwell–Garnett equation is used to determine the heat transfer of PCM and J-type temperature measuring probe, and sensor apparatus is used to determine the heat transfer experimentally. The encapsulation has increased the heat-retaining ability and storage time by about 40% on average for the flow rates tested. Low-temperature energy storage system Thermal energy storage Pentacosane Micro-particles Graphite Jegadheeswaran, S. (orcid)0000-0002-2540-0487 aut Vijayan, V. aut Antony, A. Godwin aut Enthalten in Journal of thermal analysis and calorimetry Springer International Publishing, 1998 139(2019), 3 vom: 05. Aug., Seite 2181-2186 (DE-627)244148767 (DE-600)1429493-X (DE-576)066397693 1388-6150 nnns volume:139 year:2019 number:3 day:05 month:08 pages:2181-2186 https://doi.org/10.1007/s10973-019-08625-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 AR 139 2019 3 05 08 2181-2186 |
spelling |
10.1007/s10973-019-08625-7 doi (DE-627)OLC2049879970 (DE-He213)s10973-019-08625-7-p DE-627 ger DE-627 rakwb eng 660 VZ Dhandayuthabani, M. verfasserin aut Investigation of latent heat storage system using graphite micro-particle enhancement 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2019 Abstract Low-temperature energy storage system (LTESS) stores the thermal energy from the sun, exhaust gases and waste heat from industries and other sources. Phase changing materials (PCM) are used as the energy storage medium for this system. The advantage of PCM is that it has higher energy storage density, with low volume. The disadvantage of PCM for using as LTESS is that the thermal conductivity of PCM is less and this requires more time period and surface area of contact, for loading and unloading of thermal energy. A solution to this problem can be incorporating graphite micro-particles in the paraffin PCM to improve its thermal conductivity. The heat transfer of LTESS is determined experimentally. Incorporating micro-particle in the PCM has improved the heat transfer of the LTESS. Maxwell–Garnett equation is used to determine the heat transfer of PCM and J-type temperature measuring probe, and sensor apparatus is used to determine the heat transfer experimentally. The encapsulation has increased the heat-retaining ability and storage time by about 40% on average for the flow rates tested. Low-temperature energy storage system Thermal energy storage Pentacosane Micro-particles Graphite Jegadheeswaran, S. (orcid)0000-0002-2540-0487 aut Vijayan, V. aut Antony, A. Godwin aut Enthalten in Journal of thermal analysis and calorimetry Springer International Publishing, 1998 139(2019), 3 vom: 05. Aug., Seite 2181-2186 (DE-627)244148767 (DE-600)1429493-X (DE-576)066397693 1388-6150 nnns volume:139 year:2019 number:3 day:05 month:08 pages:2181-2186 https://doi.org/10.1007/s10973-019-08625-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 AR 139 2019 3 05 08 2181-2186 |
allfields_unstemmed |
10.1007/s10973-019-08625-7 doi (DE-627)OLC2049879970 (DE-He213)s10973-019-08625-7-p DE-627 ger DE-627 rakwb eng 660 VZ Dhandayuthabani, M. verfasserin aut Investigation of latent heat storage system using graphite micro-particle enhancement 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2019 Abstract Low-temperature energy storage system (LTESS) stores the thermal energy from the sun, exhaust gases and waste heat from industries and other sources. Phase changing materials (PCM) are used as the energy storage medium for this system. The advantage of PCM is that it has higher energy storage density, with low volume. The disadvantage of PCM for using as LTESS is that the thermal conductivity of PCM is less and this requires more time period and surface area of contact, for loading and unloading of thermal energy. A solution to this problem can be incorporating graphite micro-particles in the paraffin PCM to improve its thermal conductivity. The heat transfer of LTESS is determined experimentally. Incorporating micro-particle in the PCM has improved the heat transfer of the LTESS. Maxwell–Garnett equation is used to determine the heat transfer of PCM and J-type temperature measuring probe, and sensor apparatus is used to determine the heat transfer experimentally. The encapsulation has increased the heat-retaining ability and storage time by about 40% on average for the flow rates tested. Low-temperature energy storage system Thermal energy storage Pentacosane Micro-particles Graphite Jegadheeswaran, S. (orcid)0000-0002-2540-0487 aut Vijayan, V. aut Antony, A. Godwin aut Enthalten in Journal of thermal analysis and calorimetry Springer International Publishing, 1998 139(2019), 3 vom: 05. Aug., Seite 2181-2186 (DE-627)244148767 (DE-600)1429493-X (DE-576)066397693 1388-6150 nnns volume:139 year:2019 number:3 day:05 month:08 pages:2181-2186 https://doi.org/10.1007/s10973-019-08625-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 AR 139 2019 3 05 08 2181-2186 |
allfieldsGer |
10.1007/s10973-019-08625-7 doi (DE-627)OLC2049879970 (DE-He213)s10973-019-08625-7-p DE-627 ger DE-627 rakwb eng 660 VZ Dhandayuthabani, M. verfasserin aut Investigation of latent heat storage system using graphite micro-particle enhancement 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2019 Abstract Low-temperature energy storage system (LTESS) stores the thermal energy from the sun, exhaust gases and waste heat from industries and other sources. Phase changing materials (PCM) are used as the energy storage medium for this system. The advantage of PCM is that it has higher energy storage density, with low volume. The disadvantage of PCM for using as LTESS is that the thermal conductivity of PCM is less and this requires more time period and surface area of contact, for loading and unloading of thermal energy. A solution to this problem can be incorporating graphite micro-particles in the paraffin PCM to improve its thermal conductivity. The heat transfer of LTESS is determined experimentally. Incorporating micro-particle in the PCM has improved the heat transfer of the LTESS. Maxwell–Garnett equation is used to determine the heat transfer of PCM and J-type temperature measuring probe, and sensor apparatus is used to determine the heat transfer experimentally. The encapsulation has increased the heat-retaining ability and storage time by about 40% on average for the flow rates tested. Low-temperature energy storage system Thermal energy storage Pentacosane Micro-particles Graphite Jegadheeswaran, S. (orcid)0000-0002-2540-0487 aut Vijayan, V. aut Antony, A. Godwin aut Enthalten in Journal of thermal analysis and calorimetry Springer International Publishing, 1998 139(2019), 3 vom: 05. Aug., Seite 2181-2186 (DE-627)244148767 (DE-600)1429493-X (DE-576)066397693 1388-6150 nnns volume:139 year:2019 number:3 day:05 month:08 pages:2181-2186 https://doi.org/10.1007/s10973-019-08625-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 AR 139 2019 3 05 08 2181-2186 |
allfieldsSound |
10.1007/s10973-019-08625-7 doi (DE-627)OLC2049879970 (DE-He213)s10973-019-08625-7-p DE-627 ger DE-627 rakwb eng 660 VZ Dhandayuthabani, M. verfasserin aut Investigation of latent heat storage system using graphite micro-particle enhancement 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2019 Abstract Low-temperature energy storage system (LTESS) stores the thermal energy from the sun, exhaust gases and waste heat from industries and other sources. Phase changing materials (PCM) are used as the energy storage medium for this system. The advantage of PCM is that it has higher energy storage density, with low volume. The disadvantage of PCM for using as LTESS is that the thermal conductivity of PCM is less and this requires more time period and surface area of contact, for loading and unloading of thermal energy. A solution to this problem can be incorporating graphite micro-particles in the paraffin PCM to improve its thermal conductivity. The heat transfer of LTESS is determined experimentally. Incorporating micro-particle in the PCM has improved the heat transfer of the LTESS. Maxwell–Garnett equation is used to determine the heat transfer of PCM and J-type temperature measuring probe, and sensor apparatus is used to determine the heat transfer experimentally. The encapsulation has increased the heat-retaining ability and storage time by about 40% on average for the flow rates tested. Low-temperature energy storage system Thermal energy storage Pentacosane Micro-particles Graphite Jegadheeswaran, S. (orcid)0000-0002-2540-0487 aut Vijayan, V. aut Antony, A. Godwin aut Enthalten in Journal of thermal analysis and calorimetry Springer International Publishing, 1998 139(2019), 3 vom: 05. Aug., Seite 2181-2186 (DE-627)244148767 (DE-600)1429493-X (DE-576)066397693 1388-6150 nnns volume:139 year:2019 number:3 day:05 month:08 pages:2181-2186 https://doi.org/10.1007/s10973-019-08625-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 AR 139 2019 3 05 08 2181-2186 |
language |
English |
source |
Enthalten in Journal of thermal analysis and calorimetry 139(2019), 3 vom: 05. Aug., Seite 2181-2186 volume:139 year:2019 number:3 day:05 month:08 pages:2181-2186 |
sourceStr |
Enthalten in Journal of thermal analysis and calorimetry 139(2019), 3 vom: 05. Aug., Seite 2181-2186 volume:139 year:2019 number:3 day:05 month:08 pages:2181-2186 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Low-temperature energy storage system Thermal energy storage Pentacosane Micro-particles Graphite |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Journal of thermal analysis and calorimetry |
authorswithroles_txt_mv |
Dhandayuthabani, M. @@aut@@ Jegadheeswaran, S. @@aut@@ Vijayan, V. @@aut@@ Antony, A. Godwin @@aut@@ |
publishDateDaySort_date |
2019-08-05T00:00:00Z |
hierarchy_top_id |
244148767 |
dewey-sort |
3660 |
id |
OLC2049879970 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2049879970</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503170521.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10973-019-08625-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2049879970</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10973-019-08625-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dhandayuthabani, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Investigation of latent heat storage system using graphite micro-particle enhancement</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Akadémiai Kiadó, Budapest, Hungary 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Low-temperature energy storage system (LTESS) stores the thermal energy from the sun, exhaust gases and waste heat from industries and other sources. Phase changing materials (PCM) are used as the energy storage medium for this system. The advantage of PCM is that it has higher energy storage density, with low volume. The disadvantage of PCM for using as LTESS is that the thermal conductivity of PCM is less and this requires more time period and surface area of contact, for loading and unloading of thermal energy. A solution to this problem can be incorporating graphite micro-particles in the paraffin PCM to improve its thermal conductivity. The heat transfer of LTESS is determined experimentally. Incorporating micro-particle in the PCM has improved the heat transfer of the LTESS. Maxwell–Garnett equation is used to determine the heat transfer of PCM and J-type temperature measuring probe, and sensor apparatus is used to determine the heat transfer experimentally. The encapsulation has increased the heat-retaining ability and storage time by about 40% on average for the flow rates tested.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low-temperature energy storage system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal energy storage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pentacosane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Micro-particles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graphite</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jegadheeswaran, S.</subfield><subfield code="0">(orcid)0000-0002-2540-0487</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vijayan, V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Antony, A. Godwin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of thermal analysis and calorimetry</subfield><subfield code="d">Springer International Publishing, 1998</subfield><subfield code="g">139(2019), 3 vom: 05. Aug., Seite 2181-2186</subfield><subfield code="w">(DE-627)244148767</subfield><subfield code="w">(DE-600)1429493-X</subfield><subfield code="w">(DE-576)066397693</subfield><subfield code="x">1388-6150</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:139</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:3</subfield><subfield code="g">day:05</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:2181-2186</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10973-019-08625-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">139</subfield><subfield code="j">2019</subfield><subfield code="e">3</subfield><subfield code="b">05</subfield><subfield code="c">08</subfield><subfield code="h">2181-2186</subfield></datafield></record></collection>
|
author |
Dhandayuthabani, M. |
spellingShingle |
Dhandayuthabani, M. ddc 660 misc Low-temperature energy storage system misc Thermal energy storage misc Pentacosane misc Micro-particles misc Graphite Investigation of latent heat storage system using graphite micro-particle enhancement |
authorStr |
Dhandayuthabani, M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)244148767 |
format |
Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1388-6150 |
topic_title |
660 VZ Investigation of latent heat storage system using graphite micro-particle enhancement Low-temperature energy storage system Thermal energy storage Pentacosane Micro-particles Graphite |
topic |
ddc 660 misc Low-temperature energy storage system misc Thermal energy storage misc Pentacosane misc Micro-particles misc Graphite |
topic_unstemmed |
ddc 660 misc Low-temperature energy storage system misc Thermal energy storage misc Pentacosane misc Micro-particles misc Graphite |
topic_browse |
ddc 660 misc Low-temperature energy storage system misc Thermal energy storage misc Pentacosane misc Micro-particles misc Graphite |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of thermal analysis and calorimetry |
hierarchy_parent_id |
244148767 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
Journal of thermal analysis and calorimetry |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)244148767 (DE-600)1429493-X (DE-576)066397693 |
title |
Investigation of latent heat storage system using graphite micro-particle enhancement |
ctrlnum |
(DE-627)OLC2049879970 (DE-He213)s10973-019-08625-7-p |
title_full |
Investigation of latent heat storage system using graphite micro-particle enhancement |
author_sort |
Dhandayuthabani, M. |
journal |
Journal of thermal analysis and calorimetry |
journalStr |
Journal of thermal analysis and calorimetry |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
2181 |
author_browse |
Dhandayuthabani, M. Jegadheeswaran, S. Vijayan, V. Antony, A. Godwin |
container_volume |
139 |
class |
660 VZ |
format_se |
Aufsätze |
author-letter |
Dhandayuthabani, M. |
doi_str_mv |
10.1007/s10973-019-08625-7 |
normlink |
(ORCID)0000-0002-2540-0487 |
normlink_prefix_str_mv |
(orcid)0000-0002-2540-0487 |
dewey-full |
660 |
title_sort |
investigation of latent heat storage system using graphite micro-particle enhancement |
title_auth |
Investigation of latent heat storage system using graphite micro-particle enhancement |
abstract |
Abstract Low-temperature energy storage system (LTESS) stores the thermal energy from the sun, exhaust gases and waste heat from industries and other sources. Phase changing materials (PCM) are used as the energy storage medium for this system. The advantage of PCM is that it has higher energy storage density, with low volume. The disadvantage of PCM for using as LTESS is that the thermal conductivity of PCM is less and this requires more time period and surface area of contact, for loading and unloading of thermal energy. A solution to this problem can be incorporating graphite micro-particles in the paraffin PCM to improve its thermal conductivity. The heat transfer of LTESS is determined experimentally. Incorporating micro-particle in the PCM has improved the heat transfer of the LTESS. Maxwell–Garnett equation is used to determine the heat transfer of PCM and J-type temperature measuring probe, and sensor apparatus is used to determine the heat transfer experimentally. The encapsulation has increased the heat-retaining ability and storage time by about 40% on average for the flow rates tested. © Akadémiai Kiadó, Budapest, Hungary 2019 |
abstractGer |
Abstract Low-temperature energy storage system (LTESS) stores the thermal energy from the sun, exhaust gases and waste heat from industries and other sources. Phase changing materials (PCM) are used as the energy storage medium for this system. The advantage of PCM is that it has higher energy storage density, with low volume. The disadvantage of PCM for using as LTESS is that the thermal conductivity of PCM is less and this requires more time period and surface area of contact, for loading and unloading of thermal energy. A solution to this problem can be incorporating graphite micro-particles in the paraffin PCM to improve its thermal conductivity. The heat transfer of LTESS is determined experimentally. Incorporating micro-particle in the PCM has improved the heat transfer of the LTESS. Maxwell–Garnett equation is used to determine the heat transfer of PCM and J-type temperature measuring probe, and sensor apparatus is used to determine the heat transfer experimentally. The encapsulation has increased the heat-retaining ability and storage time by about 40% on average for the flow rates tested. © Akadémiai Kiadó, Budapest, Hungary 2019 |
abstract_unstemmed |
Abstract Low-temperature energy storage system (LTESS) stores the thermal energy from the sun, exhaust gases and waste heat from industries and other sources. Phase changing materials (PCM) are used as the energy storage medium for this system. The advantage of PCM is that it has higher energy storage density, with low volume. The disadvantage of PCM for using as LTESS is that the thermal conductivity of PCM is less and this requires more time period and surface area of contact, for loading and unloading of thermal energy. A solution to this problem can be incorporating graphite micro-particles in the paraffin PCM to improve its thermal conductivity. The heat transfer of LTESS is determined experimentally. Incorporating micro-particle in the PCM has improved the heat transfer of the LTESS. Maxwell–Garnett equation is used to determine the heat transfer of PCM and J-type temperature measuring probe, and sensor apparatus is used to determine the heat transfer experimentally. The encapsulation has increased the heat-retaining ability and storage time by about 40% on average for the flow rates tested. © Akadémiai Kiadó, Budapest, Hungary 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 |
container_issue |
3 |
title_short |
Investigation of latent heat storage system using graphite micro-particle enhancement |
url |
https://doi.org/10.1007/s10973-019-08625-7 |
remote_bool |
false |
author2 |
Jegadheeswaran, S. Vijayan, V. Antony, A. Godwin |
author2Str |
Jegadheeswaran, S. Vijayan, V. Antony, A. Godwin |
ppnlink |
244148767 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10973-019-08625-7 |
up_date |
2024-07-04T00:22:30.986Z |
_version_ |
1803605823704793088 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2049879970</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503170521.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10973-019-08625-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2049879970</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10973-019-08625-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dhandayuthabani, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Investigation of latent heat storage system using graphite micro-particle enhancement</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Akadémiai Kiadó, Budapest, Hungary 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Low-temperature energy storage system (LTESS) stores the thermal energy from the sun, exhaust gases and waste heat from industries and other sources. Phase changing materials (PCM) are used as the energy storage medium for this system. The advantage of PCM is that it has higher energy storage density, with low volume. The disadvantage of PCM for using as LTESS is that the thermal conductivity of PCM is less and this requires more time period and surface area of contact, for loading and unloading of thermal energy. A solution to this problem can be incorporating graphite micro-particles in the paraffin PCM to improve its thermal conductivity. The heat transfer of LTESS is determined experimentally. Incorporating micro-particle in the PCM has improved the heat transfer of the LTESS. Maxwell–Garnett equation is used to determine the heat transfer of PCM and J-type temperature measuring probe, and sensor apparatus is used to determine the heat transfer experimentally. The encapsulation has increased the heat-retaining ability and storage time by about 40% on average for the flow rates tested.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low-temperature energy storage system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal energy storage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pentacosane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Micro-particles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graphite</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jegadheeswaran, S.</subfield><subfield code="0">(orcid)0000-0002-2540-0487</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vijayan, V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Antony, A. Godwin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of thermal analysis and calorimetry</subfield><subfield code="d">Springer International Publishing, 1998</subfield><subfield code="g">139(2019), 3 vom: 05. Aug., Seite 2181-2186</subfield><subfield code="w">(DE-627)244148767</subfield><subfield code="w">(DE-600)1429493-X</subfield><subfield code="w">(DE-576)066397693</subfield><subfield code="x">1388-6150</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:139</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:3</subfield><subfield code="g">day:05</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:2181-2186</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10973-019-08625-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">139</subfield><subfield code="j">2019</subfield><subfield code="e">3</subfield><subfield code="b">05</subfield><subfield code="c">08</subfield><subfield code="h">2181-2186</subfield></datafield></record></collection>
|
score |
7.4018965 |