Calculation of thermodynamic functions of aluminum plasma for high-energy-density systems
Abstract The results of calculating the degree of ionization, the pressure, and the specific internal energy of aluminum plasma in a wide temperature range are presented. The TERMAG computational code based on the Thomas–Fermi model was used at temperatures Т > 105 K, and the ionization equilibri...
Ausführliche Beschreibung
Autor*in: |
Shumaev, V. V. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Pleiades Publishing, Ltd. 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Physics of atomic nuclei - Pleiades Publishing, 1993, 79(2016), 9-10 vom: Dez., Seite 1414-1418 |
---|---|
Übergeordnetes Werk: |
volume:79 ; year:2016 ; number:9-10 ; month:12 ; pages:1414-1418 |
Links: |
---|
DOI / URN: |
10.1134/S1063778816090088 |
---|
Katalog-ID: |
OLC2049926294 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2049926294 | ||
003 | DE-627 | ||
005 | 20230504110703.0 | ||
007 | tu | ||
008 | 200820s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1134/S1063778816090088 |2 doi | |
035 | |a (DE-627)OLC2049926294 | ||
035 | |a (DE-He213)S1063778816090088-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Shumaev, V. V. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Calculation of thermodynamic functions of aluminum plasma for high-energy-density systems |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Pleiades Publishing, Ltd. 2016 | ||
520 | |a Abstract The results of calculating the degree of ionization, the pressure, and the specific internal energy of aluminum plasma in a wide temperature range are presented. The TERMAG computational code based on the Thomas–Fermi model was used at temperatures Т > 105 K, and the ionization equilibrium model (Saha model) was applied at lower temperatures. Quantitatively similar results were obtained in the temperature range where both models are applicable. This suggests that the obtained data may be joined to produce a wide-range equation of state. | ||
650 | 4 | |a thermodynamic functions | |
650 | 4 | |a Thomas–Fermi model | |
650 | 4 | |a Saha model | |
650 | 4 | |a Saha–Boltzmann equations | |
650 | 4 | |a aluminum | |
650 | 4 | |a hot plasma | |
650 | 4 | |a power units | |
650 | 4 | |a equation of state | |
773 | 0 | 8 | |i Enthalten in |t Physics of atomic nuclei |d Pleiades Publishing, 1993 |g 79(2016), 9-10 vom: Dez., Seite 1414-1418 |w (DE-627)131188437 |w (DE-600)1146378-8 |w (DE-576)032622155 |x 1063-7788 |7 nnns |
773 | 1 | 8 | |g volume:79 |g year:2016 |g number:9-10 |g month:12 |g pages:1414-1418 |
856 | 4 | 1 | |u https://doi.org/10.1134/S1063778816090088 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OPC-AST | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 79 |j 2016 |e 9-10 |c 12 |h 1414-1418 |
author_variant |
v v s vv vvs |
---|---|
matchkey_str |
article:10637788:2016----::acltootemdnmcucinoauiupamfri |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1134/S1063778816090088 doi (DE-627)OLC2049926294 (DE-He213)S1063778816090088-p DE-627 ger DE-627 rakwb eng 530 VZ Shumaev, V. V. verfasserin aut Calculation of thermodynamic functions of aluminum plasma for high-energy-density systems 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2016 Abstract The results of calculating the degree of ionization, the pressure, and the specific internal energy of aluminum plasma in a wide temperature range are presented. The TERMAG computational code based on the Thomas–Fermi model was used at temperatures Т > 105 K, and the ionization equilibrium model (Saha model) was applied at lower temperatures. Quantitatively similar results were obtained in the temperature range where both models are applicable. This suggests that the obtained data may be joined to produce a wide-range equation of state. thermodynamic functions Thomas–Fermi model Saha model Saha–Boltzmann equations aluminum hot plasma power units equation of state Enthalten in Physics of atomic nuclei Pleiades Publishing, 1993 79(2016), 9-10 vom: Dez., Seite 1414-1418 (DE-627)131188437 (DE-600)1146378-8 (DE-576)032622155 1063-7788 nnns volume:79 year:2016 number:9-10 month:12 pages:1414-1418 https://doi.org/10.1134/S1063778816090088 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OPC-AST GBV_ILN_70 AR 79 2016 9-10 12 1414-1418 |
spelling |
10.1134/S1063778816090088 doi (DE-627)OLC2049926294 (DE-He213)S1063778816090088-p DE-627 ger DE-627 rakwb eng 530 VZ Shumaev, V. V. verfasserin aut Calculation of thermodynamic functions of aluminum plasma for high-energy-density systems 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2016 Abstract The results of calculating the degree of ionization, the pressure, and the specific internal energy of aluminum plasma in a wide temperature range are presented. The TERMAG computational code based on the Thomas–Fermi model was used at temperatures Т > 105 K, and the ionization equilibrium model (Saha model) was applied at lower temperatures. Quantitatively similar results were obtained in the temperature range where both models are applicable. This suggests that the obtained data may be joined to produce a wide-range equation of state. thermodynamic functions Thomas–Fermi model Saha model Saha–Boltzmann equations aluminum hot plasma power units equation of state Enthalten in Physics of atomic nuclei Pleiades Publishing, 1993 79(2016), 9-10 vom: Dez., Seite 1414-1418 (DE-627)131188437 (DE-600)1146378-8 (DE-576)032622155 1063-7788 nnns volume:79 year:2016 number:9-10 month:12 pages:1414-1418 https://doi.org/10.1134/S1063778816090088 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OPC-AST GBV_ILN_70 AR 79 2016 9-10 12 1414-1418 |
allfields_unstemmed |
10.1134/S1063778816090088 doi (DE-627)OLC2049926294 (DE-He213)S1063778816090088-p DE-627 ger DE-627 rakwb eng 530 VZ Shumaev, V. V. verfasserin aut Calculation of thermodynamic functions of aluminum plasma for high-energy-density systems 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2016 Abstract The results of calculating the degree of ionization, the pressure, and the specific internal energy of aluminum plasma in a wide temperature range are presented. The TERMAG computational code based on the Thomas–Fermi model was used at temperatures Т > 105 K, and the ionization equilibrium model (Saha model) was applied at lower temperatures. Quantitatively similar results were obtained in the temperature range where both models are applicable. This suggests that the obtained data may be joined to produce a wide-range equation of state. thermodynamic functions Thomas–Fermi model Saha model Saha–Boltzmann equations aluminum hot plasma power units equation of state Enthalten in Physics of atomic nuclei Pleiades Publishing, 1993 79(2016), 9-10 vom: Dez., Seite 1414-1418 (DE-627)131188437 (DE-600)1146378-8 (DE-576)032622155 1063-7788 nnns volume:79 year:2016 number:9-10 month:12 pages:1414-1418 https://doi.org/10.1134/S1063778816090088 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OPC-AST GBV_ILN_70 AR 79 2016 9-10 12 1414-1418 |
allfieldsGer |
10.1134/S1063778816090088 doi (DE-627)OLC2049926294 (DE-He213)S1063778816090088-p DE-627 ger DE-627 rakwb eng 530 VZ Shumaev, V. V. verfasserin aut Calculation of thermodynamic functions of aluminum plasma for high-energy-density systems 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2016 Abstract The results of calculating the degree of ionization, the pressure, and the specific internal energy of aluminum plasma in a wide temperature range are presented. The TERMAG computational code based on the Thomas–Fermi model was used at temperatures Т > 105 K, and the ionization equilibrium model (Saha model) was applied at lower temperatures. Quantitatively similar results were obtained in the temperature range where both models are applicable. This suggests that the obtained data may be joined to produce a wide-range equation of state. thermodynamic functions Thomas–Fermi model Saha model Saha–Boltzmann equations aluminum hot plasma power units equation of state Enthalten in Physics of atomic nuclei Pleiades Publishing, 1993 79(2016), 9-10 vom: Dez., Seite 1414-1418 (DE-627)131188437 (DE-600)1146378-8 (DE-576)032622155 1063-7788 nnns volume:79 year:2016 number:9-10 month:12 pages:1414-1418 https://doi.org/10.1134/S1063778816090088 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OPC-AST GBV_ILN_70 AR 79 2016 9-10 12 1414-1418 |
allfieldsSound |
10.1134/S1063778816090088 doi (DE-627)OLC2049926294 (DE-He213)S1063778816090088-p DE-627 ger DE-627 rakwb eng 530 VZ Shumaev, V. V. verfasserin aut Calculation of thermodynamic functions of aluminum plasma for high-energy-density systems 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2016 Abstract The results of calculating the degree of ionization, the pressure, and the specific internal energy of aluminum plasma in a wide temperature range are presented. The TERMAG computational code based on the Thomas–Fermi model was used at temperatures Т > 105 K, and the ionization equilibrium model (Saha model) was applied at lower temperatures. Quantitatively similar results were obtained in the temperature range where both models are applicable. This suggests that the obtained data may be joined to produce a wide-range equation of state. thermodynamic functions Thomas–Fermi model Saha model Saha–Boltzmann equations aluminum hot plasma power units equation of state Enthalten in Physics of atomic nuclei Pleiades Publishing, 1993 79(2016), 9-10 vom: Dez., Seite 1414-1418 (DE-627)131188437 (DE-600)1146378-8 (DE-576)032622155 1063-7788 nnns volume:79 year:2016 number:9-10 month:12 pages:1414-1418 https://doi.org/10.1134/S1063778816090088 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OPC-AST GBV_ILN_70 AR 79 2016 9-10 12 1414-1418 |
language |
English |
source |
Enthalten in Physics of atomic nuclei 79(2016), 9-10 vom: Dez., Seite 1414-1418 volume:79 year:2016 number:9-10 month:12 pages:1414-1418 |
sourceStr |
Enthalten in Physics of atomic nuclei 79(2016), 9-10 vom: Dez., Seite 1414-1418 volume:79 year:2016 number:9-10 month:12 pages:1414-1418 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
thermodynamic functions Thomas–Fermi model Saha model Saha–Boltzmann equations aluminum hot plasma power units equation of state |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Physics of atomic nuclei |
authorswithroles_txt_mv |
Shumaev, V. V. @@aut@@ |
publishDateDaySort_date |
2016-12-01T00:00:00Z |
hierarchy_top_id |
131188437 |
dewey-sort |
3530 |
id |
OLC2049926294 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2049926294</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504110703.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S1063778816090088</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2049926294</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S1063778816090088-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shumaev, V. V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Calculation of thermodynamic functions of aluminum plasma for high-energy-density systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The results of calculating the degree of ionization, the pressure, and the specific internal energy of aluminum plasma in a wide temperature range are presented. The TERMAG computational code based on the Thomas–Fermi model was used at temperatures Т > 105 K, and the ionization equilibrium model (Saha model) was applied at lower temperatures. Quantitatively similar results were obtained in the temperature range where both models are applicable. This suggests that the obtained data may be joined to produce a wide-range equation of state.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermodynamic functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thomas–Fermi model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Saha model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Saha–Boltzmann equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aluminum</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hot plasma</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power units</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">equation of state</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physics of atomic nuclei</subfield><subfield code="d">Pleiades Publishing, 1993</subfield><subfield code="g">79(2016), 9-10 vom: Dez., Seite 1414-1418</subfield><subfield code="w">(DE-627)131188437</subfield><subfield code="w">(DE-600)1146378-8</subfield><subfield code="w">(DE-576)032622155</subfield><subfield code="x">1063-7788</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:79</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:9-10</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:1414-1418</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S1063778816090088</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">79</subfield><subfield code="j">2016</subfield><subfield code="e">9-10</subfield><subfield code="c">12</subfield><subfield code="h">1414-1418</subfield></datafield></record></collection>
|
author |
Shumaev, V. V. |
spellingShingle |
Shumaev, V. V. ddc 530 misc thermodynamic functions misc Thomas–Fermi model misc Saha model misc Saha–Boltzmann equations misc aluminum misc hot plasma misc power units misc equation of state Calculation of thermodynamic functions of aluminum plasma for high-energy-density systems |
authorStr |
Shumaev, V. V. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)131188437 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1063-7788 |
topic_title |
530 VZ Calculation of thermodynamic functions of aluminum plasma for high-energy-density systems thermodynamic functions Thomas–Fermi model Saha model Saha–Boltzmann equations aluminum hot plasma power units equation of state |
topic |
ddc 530 misc thermodynamic functions misc Thomas–Fermi model misc Saha model misc Saha–Boltzmann equations misc aluminum misc hot plasma misc power units misc equation of state |
topic_unstemmed |
ddc 530 misc thermodynamic functions misc Thomas–Fermi model misc Saha model misc Saha–Boltzmann equations misc aluminum misc hot plasma misc power units misc equation of state |
topic_browse |
ddc 530 misc thermodynamic functions misc Thomas–Fermi model misc Saha model misc Saha–Boltzmann equations misc aluminum misc hot plasma misc power units misc equation of state |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Physics of atomic nuclei |
hierarchy_parent_id |
131188437 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Physics of atomic nuclei |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)131188437 (DE-600)1146378-8 (DE-576)032622155 |
title |
Calculation of thermodynamic functions of aluminum plasma for high-energy-density systems |
ctrlnum |
(DE-627)OLC2049926294 (DE-He213)S1063778816090088-p |
title_full |
Calculation of thermodynamic functions of aluminum plasma for high-energy-density systems |
author_sort |
Shumaev, V. V. |
journal |
Physics of atomic nuclei |
journalStr |
Physics of atomic nuclei |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
1414 |
author_browse |
Shumaev, V. V. |
container_volume |
79 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Shumaev, V. V. |
doi_str_mv |
10.1134/S1063778816090088 |
dewey-full |
530 |
title_sort |
calculation of thermodynamic functions of aluminum plasma for high-energy-density systems |
title_auth |
Calculation of thermodynamic functions of aluminum plasma for high-energy-density systems |
abstract |
Abstract The results of calculating the degree of ionization, the pressure, and the specific internal energy of aluminum plasma in a wide temperature range are presented. The TERMAG computational code based on the Thomas–Fermi model was used at temperatures Т > 105 K, and the ionization equilibrium model (Saha model) was applied at lower temperatures. Quantitatively similar results were obtained in the temperature range where both models are applicable. This suggests that the obtained data may be joined to produce a wide-range equation of state. © Pleiades Publishing, Ltd. 2016 |
abstractGer |
Abstract The results of calculating the degree of ionization, the pressure, and the specific internal energy of aluminum plasma in a wide temperature range are presented. The TERMAG computational code based on the Thomas–Fermi model was used at temperatures Т > 105 K, and the ionization equilibrium model (Saha model) was applied at lower temperatures. Quantitatively similar results were obtained in the temperature range where both models are applicable. This suggests that the obtained data may be joined to produce a wide-range equation of state. © Pleiades Publishing, Ltd. 2016 |
abstract_unstemmed |
Abstract The results of calculating the degree of ionization, the pressure, and the specific internal energy of aluminum plasma in a wide temperature range are presented. The TERMAG computational code based on the Thomas–Fermi model was used at temperatures Т > 105 K, and the ionization equilibrium model (Saha model) was applied at lower temperatures. Quantitatively similar results were obtained in the temperature range where both models are applicable. This suggests that the obtained data may be joined to produce a wide-range equation of state. © Pleiades Publishing, Ltd. 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OPC-AST GBV_ILN_70 |
container_issue |
9-10 |
title_short |
Calculation of thermodynamic functions of aluminum plasma for high-energy-density systems |
url |
https://doi.org/10.1134/S1063778816090088 |
remote_bool |
false |
ppnlink |
131188437 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1134/S1063778816090088 |
up_date |
2024-07-04T00:31:33.716Z |
_version_ |
1803606392797396992 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2049926294</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504110703.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S1063778816090088</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2049926294</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S1063778816090088-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shumaev, V. V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Calculation of thermodynamic functions of aluminum plasma for high-energy-density systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The results of calculating the degree of ionization, the pressure, and the specific internal energy of aluminum plasma in a wide temperature range are presented. The TERMAG computational code based on the Thomas–Fermi model was used at temperatures Т > 105 K, and the ionization equilibrium model (Saha model) was applied at lower temperatures. Quantitatively similar results were obtained in the temperature range where both models are applicable. This suggests that the obtained data may be joined to produce a wide-range equation of state.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermodynamic functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thomas–Fermi model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Saha model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Saha–Boltzmann equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aluminum</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hot plasma</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power units</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">equation of state</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physics of atomic nuclei</subfield><subfield code="d">Pleiades Publishing, 1993</subfield><subfield code="g">79(2016), 9-10 vom: Dez., Seite 1414-1418</subfield><subfield code="w">(DE-627)131188437</subfield><subfield code="w">(DE-600)1146378-8</subfield><subfield code="w">(DE-576)032622155</subfield><subfield code="x">1063-7788</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:79</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:9-10</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:1414-1418</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S1063778816090088</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">79</subfield><subfield code="j">2016</subfield><subfield code="e">9-10</subfield><subfield code="c">12</subfield><subfield code="h">1414-1418</subfield></datafield></record></collection>
|
score |
7.4009953 |