GEANT4 Simulation of the High-Energy Neutron Beam of the TOF Spectrometer GNEIS
Abstract Using the Geant4 software package, a numerical simulation of a neutron source of the time-offlight spectrometer GNEIS created on the basis of the SC-1000 synchrocyclotron with 1 GeV proton energy at the NRC Kurchatov Institute—PNPI (Gatchina) has been carried out. The influence of the struc...
Ausführliche Beschreibung
Autor*in: |
Nakin, A. V. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Pleiades Publishing, Ltd. 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: Physics of atomic nuclei - Pleiades Publishing, 1993, 82(2019), 12 vom: Dez., Seite 1661-1664 |
---|---|
Übergeordnetes Werk: |
volume:82 ; year:2019 ; number:12 ; month:12 ; pages:1661-1664 |
Links: |
---|
DOI / URN: |
10.1134/S1063778819120196 |
---|
Katalog-ID: |
OLC2049933452 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2049933452 | ||
003 | DE-627 | ||
005 | 20230504125246.0 | ||
007 | tu | ||
008 | 200820s2019 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1134/S1063778819120196 |2 doi | |
035 | |a (DE-627)OLC2049933452 | ||
035 | |a (DE-He213)S1063778819120196-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Nakin, A. V. |e verfasserin |4 aut | |
245 | 1 | 0 | |a GEANT4 Simulation of the High-Energy Neutron Beam of the TOF Spectrometer GNEIS |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Pleiades Publishing, Ltd. 2019 | ||
520 | |a Abstract Using the Geant4 software package, a numerical simulation of a neutron source of the time-offlight spectrometer GNEIS created on the basis of the SC-1000 synchrocyclotron with 1 GeV proton energy at the NRC Kurchatov Institute—PNPI (Gatchina) has been carried out. The influence of the structural features of the neutron source of the spectrometer on the spatial and energy distributions of neutrons has been studied. The intensity and spectral characteristics of the neutron flux in the range of 1–1000 MeV have been determined on the basis of the obtained information and detailed allowance for all elements of the neutron beam guide system. It is found that the best agreement between the experiment and calculation performed by means of Geant4 is observed when using the QGSP_INCLXX_HP model. In the neutron energy range of 1–200 MeV, the difference between the experimental and calculated shapes of the spectra is less than 25%. | ||
650 | 4 | |a synchrocyclotron | |
650 | 4 | |a neutron source | |
650 | 4 | |a simulation | |
650 | 4 | |a Monte Carlo method | |
650 | 4 | |a Geant4 | |
700 | 1 | |a Vorobyev, A. S. |4 aut | |
700 | 1 | |a Shcherbakov, O. A. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Physics of atomic nuclei |d Pleiades Publishing, 1993 |g 82(2019), 12 vom: Dez., Seite 1661-1664 |w (DE-627)131188437 |w (DE-600)1146378-8 |w (DE-576)032622155 |x 1063-7788 |7 nnns |
773 | 1 | 8 | |g volume:82 |g year:2019 |g number:12 |g month:12 |g pages:1661-1664 |
856 | 4 | 1 | |u https://doi.org/10.1134/S1063778819120196 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OPC-AST | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 82 |j 2019 |e 12 |c 12 |h 1661-1664 |
author_variant |
a v n av avn a s v as asv o a s oa oas |
---|---|
matchkey_str |
article:10637788:2019----::en4iuainfhhgeegnurnemfht |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1134/S1063778819120196 doi (DE-627)OLC2049933452 (DE-He213)S1063778819120196-p DE-627 ger DE-627 rakwb eng 530 VZ Nakin, A. V. verfasserin aut GEANT4 Simulation of the High-Energy Neutron Beam of the TOF Spectrometer GNEIS 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2019 Abstract Using the Geant4 software package, a numerical simulation of a neutron source of the time-offlight spectrometer GNEIS created on the basis of the SC-1000 synchrocyclotron with 1 GeV proton energy at the NRC Kurchatov Institute—PNPI (Gatchina) has been carried out. The influence of the structural features of the neutron source of the spectrometer on the spatial and energy distributions of neutrons has been studied. The intensity and spectral characteristics of the neutron flux in the range of 1–1000 MeV have been determined on the basis of the obtained information and detailed allowance for all elements of the neutron beam guide system. It is found that the best agreement between the experiment and calculation performed by means of Geant4 is observed when using the QGSP_INCLXX_HP model. In the neutron energy range of 1–200 MeV, the difference between the experimental and calculated shapes of the spectra is less than 25%. synchrocyclotron neutron source simulation Monte Carlo method Geant4 Vorobyev, A. S. aut Shcherbakov, O. A. aut Enthalten in Physics of atomic nuclei Pleiades Publishing, 1993 82(2019), 12 vom: Dez., Seite 1661-1664 (DE-627)131188437 (DE-600)1146378-8 (DE-576)032622155 1063-7788 nnns volume:82 year:2019 number:12 month:12 pages:1661-1664 https://doi.org/10.1134/S1063778819120196 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OPC-AST GBV_ILN_70 AR 82 2019 12 12 1661-1664 |
spelling |
10.1134/S1063778819120196 doi (DE-627)OLC2049933452 (DE-He213)S1063778819120196-p DE-627 ger DE-627 rakwb eng 530 VZ Nakin, A. V. verfasserin aut GEANT4 Simulation of the High-Energy Neutron Beam of the TOF Spectrometer GNEIS 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2019 Abstract Using the Geant4 software package, a numerical simulation of a neutron source of the time-offlight spectrometer GNEIS created on the basis of the SC-1000 synchrocyclotron with 1 GeV proton energy at the NRC Kurchatov Institute—PNPI (Gatchina) has been carried out. The influence of the structural features of the neutron source of the spectrometer on the spatial and energy distributions of neutrons has been studied. The intensity and spectral characteristics of the neutron flux in the range of 1–1000 MeV have been determined on the basis of the obtained information and detailed allowance for all elements of the neutron beam guide system. It is found that the best agreement between the experiment and calculation performed by means of Geant4 is observed when using the QGSP_INCLXX_HP model. In the neutron energy range of 1–200 MeV, the difference between the experimental and calculated shapes of the spectra is less than 25%. synchrocyclotron neutron source simulation Monte Carlo method Geant4 Vorobyev, A. S. aut Shcherbakov, O. A. aut Enthalten in Physics of atomic nuclei Pleiades Publishing, 1993 82(2019), 12 vom: Dez., Seite 1661-1664 (DE-627)131188437 (DE-600)1146378-8 (DE-576)032622155 1063-7788 nnns volume:82 year:2019 number:12 month:12 pages:1661-1664 https://doi.org/10.1134/S1063778819120196 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OPC-AST GBV_ILN_70 AR 82 2019 12 12 1661-1664 |
allfields_unstemmed |
10.1134/S1063778819120196 doi (DE-627)OLC2049933452 (DE-He213)S1063778819120196-p DE-627 ger DE-627 rakwb eng 530 VZ Nakin, A. V. verfasserin aut GEANT4 Simulation of the High-Energy Neutron Beam of the TOF Spectrometer GNEIS 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2019 Abstract Using the Geant4 software package, a numerical simulation of a neutron source of the time-offlight spectrometer GNEIS created on the basis of the SC-1000 synchrocyclotron with 1 GeV proton energy at the NRC Kurchatov Institute—PNPI (Gatchina) has been carried out. The influence of the structural features of the neutron source of the spectrometer on the spatial and energy distributions of neutrons has been studied. The intensity and spectral characteristics of the neutron flux in the range of 1–1000 MeV have been determined on the basis of the obtained information and detailed allowance for all elements of the neutron beam guide system. It is found that the best agreement between the experiment and calculation performed by means of Geant4 is observed when using the QGSP_INCLXX_HP model. In the neutron energy range of 1–200 MeV, the difference between the experimental and calculated shapes of the spectra is less than 25%. synchrocyclotron neutron source simulation Monte Carlo method Geant4 Vorobyev, A. S. aut Shcherbakov, O. A. aut Enthalten in Physics of atomic nuclei Pleiades Publishing, 1993 82(2019), 12 vom: Dez., Seite 1661-1664 (DE-627)131188437 (DE-600)1146378-8 (DE-576)032622155 1063-7788 nnns volume:82 year:2019 number:12 month:12 pages:1661-1664 https://doi.org/10.1134/S1063778819120196 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OPC-AST GBV_ILN_70 AR 82 2019 12 12 1661-1664 |
allfieldsGer |
10.1134/S1063778819120196 doi (DE-627)OLC2049933452 (DE-He213)S1063778819120196-p DE-627 ger DE-627 rakwb eng 530 VZ Nakin, A. V. verfasserin aut GEANT4 Simulation of the High-Energy Neutron Beam of the TOF Spectrometer GNEIS 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2019 Abstract Using the Geant4 software package, a numerical simulation of a neutron source of the time-offlight spectrometer GNEIS created on the basis of the SC-1000 synchrocyclotron with 1 GeV proton energy at the NRC Kurchatov Institute—PNPI (Gatchina) has been carried out. The influence of the structural features of the neutron source of the spectrometer on the spatial and energy distributions of neutrons has been studied. The intensity and spectral characteristics of the neutron flux in the range of 1–1000 MeV have been determined on the basis of the obtained information and detailed allowance for all elements of the neutron beam guide system. It is found that the best agreement between the experiment and calculation performed by means of Geant4 is observed when using the QGSP_INCLXX_HP model. In the neutron energy range of 1–200 MeV, the difference between the experimental and calculated shapes of the spectra is less than 25%. synchrocyclotron neutron source simulation Monte Carlo method Geant4 Vorobyev, A. S. aut Shcherbakov, O. A. aut Enthalten in Physics of atomic nuclei Pleiades Publishing, 1993 82(2019), 12 vom: Dez., Seite 1661-1664 (DE-627)131188437 (DE-600)1146378-8 (DE-576)032622155 1063-7788 nnns volume:82 year:2019 number:12 month:12 pages:1661-1664 https://doi.org/10.1134/S1063778819120196 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OPC-AST GBV_ILN_70 AR 82 2019 12 12 1661-1664 |
allfieldsSound |
10.1134/S1063778819120196 doi (DE-627)OLC2049933452 (DE-He213)S1063778819120196-p DE-627 ger DE-627 rakwb eng 530 VZ Nakin, A. V. verfasserin aut GEANT4 Simulation of the High-Energy Neutron Beam of the TOF Spectrometer GNEIS 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2019 Abstract Using the Geant4 software package, a numerical simulation of a neutron source of the time-offlight spectrometer GNEIS created on the basis of the SC-1000 synchrocyclotron with 1 GeV proton energy at the NRC Kurchatov Institute—PNPI (Gatchina) has been carried out. The influence of the structural features of the neutron source of the spectrometer on the spatial and energy distributions of neutrons has been studied. The intensity and spectral characteristics of the neutron flux in the range of 1–1000 MeV have been determined on the basis of the obtained information and detailed allowance for all elements of the neutron beam guide system. It is found that the best agreement between the experiment and calculation performed by means of Geant4 is observed when using the QGSP_INCLXX_HP model. In the neutron energy range of 1–200 MeV, the difference between the experimental and calculated shapes of the spectra is less than 25%. synchrocyclotron neutron source simulation Monte Carlo method Geant4 Vorobyev, A. S. aut Shcherbakov, O. A. aut Enthalten in Physics of atomic nuclei Pleiades Publishing, 1993 82(2019), 12 vom: Dez., Seite 1661-1664 (DE-627)131188437 (DE-600)1146378-8 (DE-576)032622155 1063-7788 nnns volume:82 year:2019 number:12 month:12 pages:1661-1664 https://doi.org/10.1134/S1063778819120196 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OPC-AST GBV_ILN_70 AR 82 2019 12 12 1661-1664 |
language |
English |
source |
Enthalten in Physics of atomic nuclei 82(2019), 12 vom: Dez., Seite 1661-1664 volume:82 year:2019 number:12 month:12 pages:1661-1664 |
sourceStr |
Enthalten in Physics of atomic nuclei 82(2019), 12 vom: Dez., Seite 1661-1664 volume:82 year:2019 number:12 month:12 pages:1661-1664 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
synchrocyclotron neutron source simulation Monte Carlo method Geant4 |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Physics of atomic nuclei |
authorswithroles_txt_mv |
Nakin, A. V. @@aut@@ Vorobyev, A. S. @@aut@@ Shcherbakov, O. A. @@aut@@ |
publishDateDaySort_date |
2019-12-01T00:00:00Z |
hierarchy_top_id |
131188437 |
dewey-sort |
3530 |
id |
OLC2049933452 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2049933452</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504125246.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S1063778819120196</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2049933452</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S1063778819120196-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nakin, A. V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">GEANT4 Simulation of the High-Energy Neutron Beam of the TOF Spectrometer GNEIS</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Using the Geant4 software package, a numerical simulation of a neutron source of the time-offlight spectrometer GNEIS created on the basis of the SC-1000 synchrocyclotron with 1 GeV proton energy at the NRC Kurchatov Institute—PNPI (Gatchina) has been carried out. The influence of the structural features of the neutron source of the spectrometer on the spatial and energy distributions of neutrons has been studied. The intensity and spectral characteristics of the neutron flux in the range of 1–1000 MeV have been determined on the basis of the obtained information and detailed allowance for all elements of the neutron beam guide system. It is found that the best agreement between the experiment and calculation performed by means of Geant4 is observed when using the QGSP_INCLXX_HP model. In the neutron energy range of 1–200 MeV, the difference between the experimental and calculated shapes of the spectra is less than 25%.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synchrocyclotron</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neutron source</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monte Carlo method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geant4</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vorobyev, A. S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shcherbakov, O. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physics of atomic nuclei</subfield><subfield code="d">Pleiades Publishing, 1993</subfield><subfield code="g">82(2019), 12 vom: Dez., Seite 1661-1664</subfield><subfield code="w">(DE-627)131188437</subfield><subfield code="w">(DE-600)1146378-8</subfield><subfield code="w">(DE-576)032622155</subfield><subfield code="x">1063-7788</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:82</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:12</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:1661-1664</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S1063778819120196</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">82</subfield><subfield code="j">2019</subfield><subfield code="e">12</subfield><subfield code="c">12</subfield><subfield code="h">1661-1664</subfield></datafield></record></collection>
|
author |
Nakin, A. V. |
spellingShingle |
Nakin, A. V. ddc 530 misc synchrocyclotron misc neutron source misc simulation misc Monte Carlo method misc Geant4 GEANT4 Simulation of the High-Energy Neutron Beam of the TOF Spectrometer GNEIS |
authorStr |
Nakin, A. V. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)131188437 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1063-7788 |
topic_title |
530 VZ GEANT4 Simulation of the High-Energy Neutron Beam of the TOF Spectrometer GNEIS synchrocyclotron neutron source simulation Monte Carlo method Geant4 |
topic |
ddc 530 misc synchrocyclotron misc neutron source misc simulation misc Monte Carlo method misc Geant4 |
topic_unstemmed |
ddc 530 misc synchrocyclotron misc neutron source misc simulation misc Monte Carlo method misc Geant4 |
topic_browse |
ddc 530 misc synchrocyclotron misc neutron source misc simulation misc Monte Carlo method misc Geant4 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Physics of atomic nuclei |
hierarchy_parent_id |
131188437 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Physics of atomic nuclei |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)131188437 (DE-600)1146378-8 (DE-576)032622155 |
title |
GEANT4 Simulation of the High-Energy Neutron Beam of the TOF Spectrometer GNEIS |
ctrlnum |
(DE-627)OLC2049933452 (DE-He213)S1063778819120196-p |
title_full |
GEANT4 Simulation of the High-Energy Neutron Beam of the TOF Spectrometer GNEIS |
author_sort |
Nakin, A. V. |
journal |
Physics of atomic nuclei |
journalStr |
Physics of atomic nuclei |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
1661 |
author_browse |
Nakin, A. V. Vorobyev, A. S. Shcherbakov, O. A. |
container_volume |
82 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Nakin, A. V. |
doi_str_mv |
10.1134/S1063778819120196 |
dewey-full |
530 |
title_sort |
geant4 simulation of the high-energy neutron beam of the tof spectrometer gneis |
title_auth |
GEANT4 Simulation of the High-Energy Neutron Beam of the TOF Spectrometer GNEIS |
abstract |
Abstract Using the Geant4 software package, a numerical simulation of a neutron source of the time-offlight spectrometer GNEIS created on the basis of the SC-1000 synchrocyclotron with 1 GeV proton energy at the NRC Kurchatov Institute—PNPI (Gatchina) has been carried out. The influence of the structural features of the neutron source of the spectrometer on the spatial and energy distributions of neutrons has been studied. The intensity and spectral characteristics of the neutron flux in the range of 1–1000 MeV have been determined on the basis of the obtained information and detailed allowance for all elements of the neutron beam guide system. It is found that the best agreement between the experiment and calculation performed by means of Geant4 is observed when using the QGSP_INCLXX_HP model. In the neutron energy range of 1–200 MeV, the difference between the experimental and calculated shapes of the spectra is less than 25%. © Pleiades Publishing, Ltd. 2019 |
abstractGer |
Abstract Using the Geant4 software package, a numerical simulation of a neutron source of the time-offlight spectrometer GNEIS created on the basis of the SC-1000 synchrocyclotron with 1 GeV proton energy at the NRC Kurchatov Institute—PNPI (Gatchina) has been carried out. The influence of the structural features of the neutron source of the spectrometer on the spatial and energy distributions of neutrons has been studied. The intensity and spectral characteristics of the neutron flux in the range of 1–1000 MeV have been determined on the basis of the obtained information and detailed allowance for all elements of the neutron beam guide system. It is found that the best agreement between the experiment and calculation performed by means of Geant4 is observed when using the QGSP_INCLXX_HP model. In the neutron energy range of 1–200 MeV, the difference between the experimental and calculated shapes of the spectra is less than 25%. © Pleiades Publishing, Ltd. 2019 |
abstract_unstemmed |
Abstract Using the Geant4 software package, a numerical simulation of a neutron source of the time-offlight spectrometer GNEIS created on the basis of the SC-1000 synchrocyclotron with 1 GeV proton energy at the NRC Kurchatov Institute—PNPI (Gatchina) has been carried out. The influence of the structural features of the neutron source of the spectrometer on the spatial and energy distributions of neutrons has been studied. The intensity and spectral characteristics of the neutron flux in the range of 1–1000 MeV have been determined on the basis of the obtained information and detailed allowance for all elements of the neutron beam guide system. It is found that the best agreement between the experiment and calculation performed by means of Geant4 is observed when using the QGSP_INCLXX_HP model. In the neutron energy range of 1–200 MeV, the difference between the experimental and calculated shapes of the spectra is less than 25%. © Pleiades Publishing, Ltd. 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OPC-AST GBV_ILN_70 |
container_issue |
12 |
title_short |
GEANT4 Simulation of the High-Energy Neutron Beam of the TOF Spectrometer GNEIS |
url |
https://doi.org/10.1134/S1063778819120196 |
remote_bool |
false |
author2 |
Vorobyev, A. S. Shcherbakov, O. A. |
author2Str |
Vorobyev, A. S. Shcherbakov, O. A. |
ppnlink |
131188437 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1134/S1063778819120196 |
up_date |
2024-07-04T00:33:02.220Z |
_version_ |
1803606485600567296 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2049933452</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504125246.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S1063778819120196</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2049933452</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S1063778819120196-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nakin, A. V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">GEANT4 Simulation of the High-Energy Neutron Beam of the TOF Spectrometer GNEIS</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Using the Geant4 software package, a numerical simulation of a neutron source of the time-offlight spectrometer GNEIS created on the basis of the SC-1000 synchrocyclotron with 1 GeV proton energy at the NRC Kurchatov Institute—PNPI (Gatchina) has been carried out. The influence of the structural features of the neutron source of the spectrometer on the spatial and energy distributions of neutrons has been studied. The intensity and spectral characteristics of the neutron flux in the range of 1–1000 MeV have been determined on the basis of the obtained information and detailed allowance for all elements of the neutron beam guide system. It is found that the best agreement between the experiment and calculation performed by means of Geant4 is observed when using the QGSP_INCLXX_HP model. In the neutron energy range of 1–200 MeV, the difference between the experimental and calculated shapes of the spectra is less than 25%.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synchrocyclotron</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neutron source</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monte Carlo method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geant4</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vorobyev, A. S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shcherbakov, O. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physics of atomic nuclei</subfield><subfield code="d">Pleiades Publishing, 1993</subfield><subfield code="g">82(2019), 12 vom: Dez., Seite 1661-1664</subfield><subfield code="w">(DE-627)131188437</subfield><subfield code="w">(DE-600)1146378-8</subfield><subfield code="w">(DE-576)032622155</subfield><subfield code="x">1063-7788</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:82</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:12</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:1661-1664</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S1063778819120196</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">82</subfield><subfield code="j">2019</subfield><subfield code="e">12</subfield><subfield code="c">12</subfield><subfield code="h">1661-1664</subfield></datafield></record></collection>
|
score |
7.40199 |