AnO(N logN) minimal spanning tree algorithm forN points in the plane
Abstract We shall present a divide-and-conquer algorithm to construct minimal spanning trees out of a set of points in two dimensions. This algorithm is based upon the concept of Voronoi diagrams. If implemented in parallel, its time complexity isO(N) and it requiresO(logN) processors whereN is the...
Ausführliche Beschreibung
Autor*in: |
Chang, R. C. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1986 |
---|
Schlagwörter: |
---|
Anmerkung: |
© BIT Foundations 1986 |
---|
Übergeordnetes Werk: |
Enthalten in: BIT - Kluwer Academic Publishers, 1961, 26(1986), 1 vom: März, Seite 7-16 |
---|---|
Übergeordnetes Werk: |
volume:26 ; year:1986 ; number:1 ; month:03 ; pages:7-16 |
Links: |
---|
DOI / URN: |
10.1007/BF01939358 |
---|
Katalog-ID: |
OLC2050616945 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2050616945 | ||
003 | DE-627 | ||
005 | 20230503004027.0 | ||
007 | tu | ||
008 | 200819s1986 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF01939358 |2 doi | |
035 | |a (DE-627)OLC2050616945 | ||
035 | |a (DE-He213)BF01939358-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 070 |q VZ |
084 | |a 31.00 |2 bkl | ||
084 | |a 54.00 |2 bkl | ||
100 | 1 | |a Chang, R. C. |e verfasserin |4 aut | |
245 | 1 | 0 | |a AnO(N logN) minimal spanning tree algorithm forN points in the plane |
264 | 1 | |c 1986 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © BIT Foundations 1986 | ||
520 | |a Abstract We shall present a divide-and-conquer algorithm to construct minimal spanning trees out of a set of points in two dimensions. This algorithm is based upon the concept of Voronoi diagrams. If implemented in parallel, its time complexity isO(N) and it requiresO(logN) processors whereN is the number of input points. | ||
650 | 4 | |a Computational Mathematic | |
650 | 4 | |a Time Complexity | |
650 | 4 | |a Span Tree | |
650 | 4 | |a Tree Algorithm | |
650 | 4 | |a Minimal Span Tree | |
700 | 1 | |a Lee, R. C. T. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BIT |d Kluwer Academic Publishers, 1961 |g 26(1986), 1 vom: März, Seite 7-16 |w (DE-627)129850969 |w (DE-600)280314-8 |w (DE-576)015150151 |x 0006-3835 |7 nnns |
773 | 1 | 8 | |g volume:26 |g year:1986 |g number:1 |g month:03 |g pages:7-16 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF01939358 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-BBI | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2244 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4029 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4082 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 31.00 |q VZ |
936 | b | k | |a 54.00 |q VZ |
951 | |a AR | ||
952 | |d 26 |j 1986 |e 1 |c 03 |h 7-16 |
author_variant |
r c c rc rcc r c t l rct rctl |
---|---|
matchkey_str |
article:00063835:1986----::nnoniiasannteagrtmono |
hierarchy_sort_str |
1986 |
bklnumber |
31.00 54.00 |
publishDate |
1986 |
allfields |
10.1007/BF01939358 doi (DE-627)OLC2050616945 (DE-He213)BF01939358-p DE-627 ger DE-627 rakwb eng 070 VZ 31.00 bkl 54.00 bkl Chang, R. C. verfasserin aut AnO(N logN) minimal spanning tree algorithm forN points in the plane 1986 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © BIT Foundations 1986 Abstract We shall present a divide-and-conquer algorithm to construct minimal spanning trees out of a set of points in two dimensions. This algorithm is based upon the concept of Voronoi diagrams. If implemented in parallel, its time complexity isO(N) and it requiresO(logN) processors whereN is the number of input points. Computational Mathematic Time Complexity Span Tree Tree Algorithm Minimal Span Tree Lee, R. C. T. aut Enthalten in BIT Kluwer Academic Publishers, 1961 26(1986), 1 vom: März, Seite 7-16 (DE-627)129850969 (DE-600)280314-8 (DE-576)015150151 0006-3835 nnns volume:26 year:1986 number:1 month:03 pages:7-16 https://doi.org/10.1007/BF01939358 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-BBI SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2244 GBV_ILN_2409 GBV_ILN_4029 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 31.00 VZ 54.00 VZ AR 26 1986 1 03 7-16 |
spelling |
10.1007/BF01939358 doi (DE-627)OLC2050616945 (DE-He213)BF01939358-p DE-627 ger DE-627 rakwb eng 070 VZ 31.00 bkl 54.00 bkl Chang, R. C. verfasserin aut AnO(N logN) minimal spanning tree algorithm forN points in the plane 1986 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © BIT Foundations 1986 Abstract We shall present a divide-and-conquer algorithm to construct minimal spanning trees out of a set of points in two dimensions. This algorithm is based upon the concept of Voronoi diagrams. If implemented in parallel, its time complexity isO(N) and it requiresO(logN) processors whereN is the number of input points. Computational Mathematic Time Complexity Span Tree Tree Algorithm Minimal Span Tree Lee, R. C. T. aut Enthalten in BIT Kluwer Academic Publishers, 1961 26(1986), 1 vom: März, Seite 7-16 (DE-627)129850969 (DE-600)280314-8 (DE-576)015150151 0006-3835 nnns volume:26 year:1986 number:1 month:03 pages:7-16 https://doi.org/10.1007/BF01939358 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-BBI SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2244 GBV_ILN_2409 GBV_ILN_4029 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 31.00 VZ 54.00 VZ AR 26 1986 1 03 7-16 |
allfields_unstemmed |
10.1007/BF01939358 doi (DE-627)OLC2050616945 (DE-He213)BF01939358-p DE-627 ger DE-627 rakwb eng 070 VZ 31.00 bkl 54.00 bkl Chang, R. C. verfasserin aut AnO(N logN) minimal spanning tree algorithm forN points in the plane 1986 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © BIT Foundations 1986 Abstract We shall present a divide-and-conquer algorithm to construct minimal spanning trees out of a set of points in two dimensions. This algorithm is based upon the concept of Voronoi diagrams. If implemented in parallel, its time complexity isO(N) and it requiresO(logN) processors whereN is the number of input points. Computational Mathematic Time Complexity Span Tree Tree Algorithm Minimal Span Tree Lee, R. C. T. aut Enthalten in BIT Kluwer Academic Publishers, 1961 26(1986), 1 vom: März, Seite 7-16 (DE-627)129850969 (DE-600)280314-8 (DE-576)015150151 0006-3835 nnns volume:26 year:1986 number:1 month:03 pages:7-16 https://doi.org/10.1007/BF01939358 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-BBI SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2244 GBV_ILN_2409 GBV_ILN_4029 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 31.00 VZ 54.00 VZ AR 26 1986 1 03 7-16 |
allfieldsGer |
10.1007/BF01939358 doi (DE-627)OLC2050616945 (DE-He213)BF01939358-p DE-627 ger DE-627 rakwb eng 070 VZ 31.00 bkl 54.00 bkl Chang, R. C. verfasserin aut AnO(N logN) minimal spanning tree algorithm forN points in the plane 1986 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © BIT Foundations 1986 Abstract We shall present a divide-and-conquer algorithm to construct minimal spanning trees out of a set of points in two dimensions. This algorithm is based upon the concept of Voronoi diagrams. If implemented in parallel, its time complexity isO(N) and it requiresO(logN) processors whereN is the number of input points. Computational Mathematic Time Complexity Span Tree Tree Algorithm Minimal Span Tree Lee, R. C. T. aut Enthalten in BIT Kluwer Academic Publishers, 1961 26(1986), 1 vom: März, Seite 7-16 (DE-627)129850969 (DE-600)280314-8 (DE-576)015150151 0006-3835 nnns volume:26 year:1986 number:1 month:03 pages:7-16 https://doi.org/10.1007/BF01939358 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-BBI SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2244 GBV_ILN_2409 GBV_ILN_4029 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 31.00 VZ 54.00 VZ AR 26 1986 1 03 7-16 |
allfieldsSound |
10.1007/BF01939358 doi (DE-627)OLC2050616945 (DE-He213)BF01939358-p DE-627 ger DE-627 rakwb eng 070 VZ 31.00 bkl 54.00 bkl Chang, R. C. verfasserin aut AnO(N logN) minimal spanning tree algorithm forN points in the plane 1986 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © BIT Foundations 1986 Abstract We shall present a divide-and-conquer algorithm to construct minimal spanning trees out of a set of points in two dimensions. This algorithm is based upon the concept of Voronoi diagrams. If implemented in parallel, its time complexity isO(N) and it requiresO(logN) processors whereN is the number of input points. Computational Mathematic Time Complexity Span Tree Tree Algorithm Minimal Span Tree Lee, R. C. T. aut Enthalten in BIT Kluwer Academic Publishers, 1961 26(1986), 1 vom: März, Seite 7-16 (DE-627)129850969 (DE-600)280314-8 (DE-576)015150151 0006-3835 nnns volume:26 year:1986 number:1 month:03 pages:7-16 https://doi.org/10.1007/BF01939358 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-BBI SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2244 GBV_ILN_2409 GBV_ILN_4029 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 31.00 VZ 54.00 VZ AR 26 1986 1 03 7-16 |
language |
English |
source |
Enthalten in BIT 26(1986), 1 vom: März, Seite 7-16 volume:26 year:1986 number:1 month:03 pages:7-16 |
sourceStr |
Enthalten in BIT 26(1986), 1 vom: März, Seite 7-16 volume:26 year:1986 number:1 month:03 pages:7-16 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Computational Mathematic Time Complexity Span Tree Tree Algorithm Minimal Span Tree |
dewey-raw |
070 |
isfreeaccess_bool |
false |
container_title |
BIT |
authorswithroles_txt_mv |
Chang, R. C. @@aut@@ Lee, R. C. T. @@aut@@ |
publishDateDaySort_date |
1986-03-01T00:00:00Z |
hierarchy_top_id |
129850969 |
dewey-sort |
270 |
id |
OLC2050616945 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2050616945</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503004027.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1986 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01939358</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2050616945</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01939358-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chang, R. C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">AnO(N logN) minimal spanning tree algorithm forN points in the plane</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1986</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© BIT Foundations 1986</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We shall present a divide-and-conquer algorithm to construct minimal spanning trees out of a set of points in two dimensions. This algorithm is based upon the concept of Voronoi diagrams. If implemented in parallel, its time complexity isO(N) and it requiresO(logN) processors whereN is the number of input points.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Span Tree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tree Algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimal Span Tree</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, R. C. T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BIT</subfield><subfield code="d">Kluwer Academic Publishers, 1961</subfield><subfield code="g">26(1986), 1 vom: März, Seite 7-16</subfield><subfield code="w">(DE-627)129850969</subfield><subfield code="w">(DE-600)280314-8</subfield><subfield code="w">(DE-576)015150151</subfield><subfield code="x">0006-3835</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:1986</subfield><subfield code="g">number:1</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:7-16</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01939358</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4029</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">1986</subfield><subfield code="e">1</subfield><subfield code="c">03</subfield><subfield code="h">7-16</subfield></datafield></record></collection>
|
author |
Chang, R. C. |
spellingShingle |
Chang, R. C. ddc 070 bkl 31.00 bkl 54.00 misc Computational Mathematic misc Time Complexity misc Span Tree misc Tree Algorithm misc Minimal Span Tree AnO(N logN) minimal spanning tree algorithm forN points in the plane |
authorStr |
Chang, R. C. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129850969 |
format |
Article |
dewey-ones |
070 - News media, journalism & publishing |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0006-3835 |
topic_title |
070 VZ 31.00 bkl 54.00 bkl AnO(N logN) minimal spanning tree algorithm forN points in the plane Computational Mathematic Time Complexity Span Tree Tree Algorithm Minimal Span Tree |
topic |
ddc 070 bkl 31.00 bkl 54.00 misc Computational Mathematic misc Time Complexity misc Span Tree misc Tree Algorithm misc Minimal Span Tree |
topic_unstemmed |
ddc 070 bkl 31.00 bkl 54.00 misc Computational Mathematic misc Time Complexity misc Span Tree misc Tree Algorithm misc Minimal Span Tree |
topic_browse |
ddc 070 bkl 31.00 bkl 54.00 misc Computational Mathematic misc Time Complexity misc Span Tree misc Tree Algorithm misc Minimal Span Tree |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
BIT |
hierarchy_parent_id |
129850969 |
dewey-tens |
070 - News media, journalism & publishing |
hierarchy_top_title |
BIT |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129850969 (DE-600)280314-8 (DE-576)015150151 |
title |
AnO(N logN) minimal spanning tree algorithm forN points in the plane |
ctrlnum |
(DE-627)OLC2050616945 (DE-He213)BF01939358-p |
title_full |
AnO(N logN) minimal spanning tree algorithm forN points in the plane |
author_sort |
Chang, R. C. |
journal |
BIT |
journalStr |
BIT |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
1986 |
contenttype_str_mv |
txt |
container_start_page |
7 |
author_browse |
Chang, R. C. Lee, R. C. T. |
container_volume |
26 |
class |
070 VZ 31.00 bkl 54.00 bkl |
format_se |
Aufsätze |
author-letter |
Chang, R. C. |
doi_str_mv |
10.1007/BF01939358 |
dewey-full |
070 |
title_sort |
ano(n logn) minimal spanning tree algorithm forn points in the plane |
title_auth |
AnO(N logN) minimal spanning tree algorithm forN points in the plane |
abstract |
Abstract We shall present a divide-and-conquer algorithm to construct minimal spanning trees out of a set of points in two dimensions. This algorithm is based upon the concept of Voronoi diagrams. If implemented in parallel, its time complexity isO(N) and it requiresO(logN) processors whereN is the number of input points. © BIT Foundations 1986 |
abstractGer |
Abstract We shall present a divide-and-conquer algorithm to construct minimal spanning trees out of a set of points in two dimensions. This algorithm is based upon the concept of Voronoi diagrams. If implemented in parallel, its time complexity isO(N) and it requiresO(logN) processors whereN is the number of input points. © BIT Foundations 1986 |
abstract_unstemmed |
Abstract We shall present a divide-and-conquer algorithm to construct minimal spanning trees out of a set of points in two dimensions. This algorithm is based upon the concept of Voronoi diagrams. If implemented in parallel, its time complexity isO(N) and it requiresO(logN) processors whereN is the number of input points. © BIT Foundations 1986 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-BBI SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2244 GBV_ILN_2409 GBV_ILN_4029 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 |
container_issue |
1 |
title_short |
AnO(N logN) minimal spanning tree algorithm forN points in the plane |
url |
https://doi.org/10.1007/BF01939358 |
remote_bool |
false |
author2 |
Lee, R. C. T. |
author2Str |
Lee, R. C. T. |
ppnlink |
129850969 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF01939358 |
up_date |
2024-07-04T02:25:07.075Z |
_version_ |
1803613537121075200 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2050616945</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503004027.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1986 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01939358</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2050616945</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01939358-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chang, R. C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">AnO(N logN) minimal spanning tree algorithm forN points in the plane</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1986</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© BIT Foundations 1986</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We shall present a divide-and-conquer algorithm to construct minimal spanning trees out of a set of points in two dimensions. This algorithm is based upon the concept of Voronoi diagrams. If implemented in parallel, its time complexity isO(N) and it requiresO(logN) processors whereN is the number of input points.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Span Tree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tree Algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimal Span Tree</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, R. C. T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BIT</subfield><subfield code="d">Kluwer Academic Publishers, 1961</subfield><subfield code="g">26(1986), 1 vom: März, Seite 7-16</subfield><subfield code="w">(DE-627)129850969</subfield><subfield code="w">(DE-600)280314-8</subfield><subfield code="w">(DE-576)015150151</subfield><subfield code="x">0006-3835</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:1986</subfield><subfield code="g">number:1</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:7-16</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01939358</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4029</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">1986</subfield><subfield code="e">1</subfield><subfield code="c">03</subfield><subfield code="h">7-16</subfield></datafield></record></collection>
|
score |
7.3984203 |