Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus
Abstract NMR analysis of 13C-labelling patterns showed that the Embden–Meyerhof (EM) pathway is the main route for glycolysis in the extreme thermophile Caldicellulosiruptor saccharolyticus. Glucose fermentation via the EM pathway to acetate results in a theoretical yield of 4 mol of hydrogen and 2...
Ausführliche Beschreibung
Autor*in: |
de Vrije, T. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2007 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag 2007 |
---|
Übergeordnetes Werk: |
Enthalten in: Applied microbiology and biotechnology - Springer Berlin Heidelberg, 1984, 74(2007), 6 vom: 01. Apr., Seite 1358-1367 |
---|---|
Übergeordnetes Werk: |
volume:74 ; year:2007 ; number:6 ; day:01 ; month:04 ; pages:1358-1367 |
Links: |
---|
DOI / URN: |
10.1007/s00253-006-0783-x |
---|
Katalog-ID: |
OLC2050712081 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2050712081 | ||
003 | DE-627 | ||
005 | 20230510073153.0 | ||
007 | tu | ||
008 | 200820s2007 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00253-006-0783-x |2 doi | |
035 | |a (DE-627)OLC2050712081 | ||
035 | |a (DE-He213)s00253-006-0783-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |q VZ |
084 | |a 12 |2 ssgn | ||
084 | |a BIODIV |q DE-30 |2 fid | ||
100 | 1 | |a de Vrije, T. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus |
264 | 1 | |c 2007 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 2007 | ||
520 | |a Abstract NMR analysis of 13C-labelling patterns showed that the Embden–Meyerhof (EM) pathway is the main route for glycolysis in the extreme thermophile Caldicellulosiruptor saccharolyticus. Glucose fermentation via the EM pathway to acetate results in a theoretical yield of 4 mol of hydrogen and 2 mol of acetate per mole of glucose. Previously, approximately 70% of the theoretical maximum hydrogen yield has been reached in batch fermentations. In this study, hydrogen and acetate yields have been determined at different dilution rates during continuous cultivation. The yields were dependent on the growth rate. The highest hydrogen yields of 82 to 90% of theoretical maximum (3.3 to 3.6 mol $ H_{2} $ per mol glucose) were obtained at low growth rates when a relatively larger part of the consumed glucose is used for maintenance. The hydrogen productivity showed the opposite effect. Both the specific and the volumetric hydrogen production rates were highest at the higher growth rates, reaching values of respectively 30 mmol $ g^{−1} $ $ h^{−1} $ and 20 mmol $ l^{−1} $ $ h^{−1} $. An industrial process for biohydrogen production will require a bioreactor design, which enables an optimal mix of high productivity and high yield. | ||
650 | 4 | |a Fermentation | |
650 | 4 | |a Dilution Rate | |
650 | 4 | |a Hydrogen Yield | |
650 | 4 | |a Biohydrogen Production | |
650 | 4 | |a Hydrogen Production Rate | |
700 | 1 | |a Mars, A. E. |4 aut | |
700 | 1 | |a Budde, M. A. W. |4 aut | |
700 | 1 | |a Lai, M. H. |4 aut | |
700 | 1 | |a Dijkema, C. |4 aut | |
700 | 1 | |a de Waard, P. |4 aut | |
700 | 1 | |a Claassen, P. A. M. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied microbiology and biotechnology |d Springer Berlin Heidelberg, 1984 |g 74(2007), 6 vom: 01. Apr., Seite 1358-1367 |w (DE-627)129942634 |w (DE-600)392453-1 |w (DE-576)015507750 |x 0175-7598 |7 nnns |
773 | 1 | 8 | |g volume:74 |g year:2007 |g number:6 |g day:01 |g month:04 |g pages:1358-1367 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00253-006-0783-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_147 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2360 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4082 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4307 | ||
951 | |a AR | ||
952 | |d 74 |j 2007 |e 6 |b 01 |c 04 |h 1358-1367 |
author_variant |
v t d vt vtd a e m ae aem m a w b maw mawb m h l mh mhl c d cd w p d wp wpd p a m c pam pamc |
---|---|
matchkey_str |
article:01757598:2007----::lcltcahaadyrgnilsuisfheteehrohlcliel |
hierarchy_sort_str |
2007 |
publishDate |
2007 |
allfields |
10.1007/s00253-006-0783-x doi (DE-627)OLC2050712081 (DE-He213)s00253-006-0783-x-p DE-627 ger DE-627 rakwb eng 570 VZ 12 ssgn BIODIV DE-30 fid de Vrije, T. verfasserin aut Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2007 Abstract NMR analysis of 13C-labelling patterns showed that the Embden–Meyerhof (EM) pathway is the main route for glycolysis in the extreme thermophile Caldicellulosiruptor saccharolyticus. Glucose fermentation via the EM pathway to acetate results in a theoretical yield of 4 mol of hydrogen and 2 mol of acetate per mole of glucose. Previously, approximately 70% of the theoretical maximum hydrogen yield has been reached in batch fermentations. In this study, hydrogen and acetate yields have been determined at different dilution rates during continuous cultivation. The yields were dependent on the growth rate. The highest hydrogen yields of 82 to 90% of theoretical maximum (3.3 to 3.6 mol $ H_{2} $ per mol glucose) were obtained at low growth rates when a relatively larger part of the consumed glucose is used for maintenance. The hydrogen productivity showed the opposite effect. Both the specific and the volumetric hydrogen production rates were highest at the higher growth rates, reaching values of respectively 30 mmol $ g^{−1} $ $ h^{−1} $ and 20 mmol $ l^{−1} $ $ h^{−1} $. An industrial process for biohydrogen production will require a bioreactor design, which enables an optimal mix of high productivity and high yield. Fermentation Dilution Rate Hydrogen Yield Biohydrogen Production Hydrogen Production Rate Mars, A. E. aut Budde, M. A. W. aut Lai, M. H. aut Dijkema, C. aut de Waard, P. aut Claassen, P. A. M. aut Enthalten in Applied microbiology and biotechnology Springer Berlin Heidelberg, 1984 74(2007), 6 vom: 01. Apr., Seite 1358-1367 (DE-627)129942634 (DE-600)392453-1 (DE-576)015507750 0175-7598 nnns volume:74 year:2007 number:6 day:01 month:04 pages:1358-1367 https://doi.org/10.1007/s00253-006-0783-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_21 GBV_ILN_23 GBV_ILN_40 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_100 GBV_ILN_130 GBV_ILN_147 GBV_ILN_267 GBV_ILN_285 GBV_ILN_2004 GBV_ILN_2018 GBV_ILN_2360 GBV_ILN_4012 GBV_ILN_4082 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 AR 74 2007 6 01 04 1358-1367 |
spelling |
10.1007/s00253-006-0783-x doi (DE-627)OLC2050712081 (DE-He213)s00253-006-0783-x-p DE-627 ger DE-627 rakwb eng 570 VZ 12 ssgn BIODIV DE-30 fid de Vrije, T. verfasserin aut Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2007 Abstract NMR analysis of 13C-labelling patterns showed that the Embden–Meyerhof (EM) pathway is the main route for glycolysis in the extreme thermophile Caldicellulosiruptor saccharolyticus. Glucose fermentation via the EM pathway to acetate results in a theoretical yield of 4 mol of hydrogen and 2 mol of acetate per mole of glucose. Previously, approximately 70% of the theoretical maximum hydrogen yield has been reached in batch fermentations. In this study, hydrogen and acetate yields have been determined at different dilution rates during continuous cultivation. The yields were dependent on the growth rate. The highest hydrogen yields of 82 to 90% of theoretical maximum (3.3 to 3.6 mol $ H_{2} $ per mol glucose) were obtained at low growth rates when a relatively larger part of the consumed glucose is used for maintenance. The hydrogen productivity showed the opposite effect. Both the specific and the volumetric hydrogen production rates were highest at the higher growth rates, reaching values of respectively 30 mmol $ g^{−1} $ $ h^{−1} $ and 20 mmol $ l^{−1} $ $ h^{−1} $. An industrial process for biohydrogen production will require a bioreactor design, which enables an optimal mix of high productivity and high yield. Fermentation Dilution Rate Hydrogen Yield Biohydrogen Production Hydrogen Production Rate Mars, A. E. aut Budde, M. A. W. aut Lai, M. H. aut Dijkema, C. aut de Waard, P. aut Claassen, P. A. M. aut Enthalten in Applied microbiology and biotechnology Springer Berlin Heidelberg, 1984 74(2007), 6 vom: 01. Apr., Seite 1358-1367 (DE-627)129942634 (DE-600)392453-1 (DE-576)015507750 0175-7598 nnns volume:74 year:2007 number:6 day:01 month:04 pages:1358-1367 https://doi.org/10.1007/s00253-006-0783-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_21 GBV_ILN_23 GBV_ILN_40 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_100 GBV_ILN_130 GBV_ILN_147 GBV_ILN_267 GBV_ILN_285 GBV_ILN_2004 GBV_ILN_2018 GBV_ILN_2360 GBV_ILN_4012 GBV_ILN_4082 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 AR 74 2007 6 01 04 1358-1367 |
allfields_unstemmed |
10.1007/s00253-006-0783-x doi (DE-627)OLC2050712081 (DE-He213)s00253-006-0783-x-p DE-627 ger DE-627 rakwb eng 570 VZ 12 ssgn BIODIV DE-30 fid de Vrije, T. verfasserin aut Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2007 Abstract NMR analysis of 13C-labelling patterns showed that the Embden–Meyerhof (EM) pathway is the main route for glycolysis in the extreme thermophile Caldicellulosiruptor saccharolyticus. Glucose fermentation via the EM pathway to acetate results in a theoretical yield of 4 mol of hydrogen and 2 mol of acetate per mole of glucose. Previously, approximately 70% of the theoretical maximum hydrogen yield has been reached in batch fermentations. In this study, hydrogen and acetate yields have been determined at different dilution rates during continuous cultivation. The yields were dependent on the growth rate. The highest hydrogen yields of 82 to 90% of theoretical maximum (3.3 to 3.6 mol $ H_{2} $ per mol glucose) were obtained at low growth rates when a relatively larger part of the consumed glucose is used for maintenance. The hydrogen productivity showed the opposite effect. Both the specific and the volumetric hydrogen production rates were highest at the higher growth rates, reaching values of respectively 30 mmol $ g^{−1} $ $ h^{−1} $ and 20 mmol $ l^{−1} $ $ h^{−1} $. An industrial process for biohydrogen production will require a bioreactor design, which enables an optimal mix of high productivity and high yield. Fermentation Dilution Rate Hydrogen Yield Biohydrogen Production Hydrogen Production Rate Mars, A. E. aut Budde, M. A. W. aut Lai, M. H. aut Dijkema, C. aut de Waard, P. aut Claassen, P. A. M. aut Enthalten in Applied microbiology and biotechnology Springer Berlin Heidelberg, 1984 74(2007), 6 vom: 01. Apr., Seite 1358-1367 (DE-627)129942634 (DE-600)392453-1 (DE-576)015507750 0175-7598 nnns volume:74 year:2007 number:6 day:01 month:04 pages:1358-1367 https://doi.org/10.1007/s00253-006-0783-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_21 GBV_ILN_23 GBV_ILN_40 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_100 GBV_ILN_130 GBV_ILN_147 GBV_ILN_267 GBV_ILN_285 GBV_ILN_2004 GBV_ILN_2018 GBV_ILN_2360 GBV_ILN_4012 GBV_ILN_4082 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 AR 74 2007 6 01 04 1358-1367 |
allfieldsGer |
10.1007/s00253-006-0783-x doi (DE-627)OLC2050712081 (DE-He213)s00253-006-0783-x-p DE-627 ger DE-627 rakwb eng 570 VZ 12 ssgn BIODIV DE-30 fid de Vrije, T. verfasserin aut Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2007 Abstract NMR analysis of 13C-labelling patterns showed that the Embden–Meyerhof (EM) pathway is the main route for glycolysis in the extreme thermophile Caldicellulosiruptor saccharolyticus. Glucose fermentation via the EM pathway to acetate results in a theoretical yield of 4 mol of hydrogen and 2 mol of acetate per mole of glucose. Previously, approximately 70% of the theoretical maximum hydrogen yield has been reached in batch fermentations. In this study, hydrogen and acetate yields have been determined at different dilution rates during continuous cultivation. The yields were dependent on the growth rate. The highest hydrogen yields of 82 to 90% of theoretical maximum (3.3 to 3.6 mol $ H_{2} $ per mol glucose) were obtained at low growth rates when a relatively larger part of the consumed glucose is used for maintenance. The hydrogen productivity showed the opposite effect. Both the specific and the volumetric hydrogen production rates were highest at the higher growth rates, reaching values of respectively 30 mmol $ g^{−1} $ $ h^{−1} $ and 20 mmol $ l^{−1} $ $ h^{−1} $. An industrial process for biohydrogen production will require a bioreactor design, which enables an optimal mix of high productivity and high yield. Fermentation Dilution Rate Hydrogen Yield Biohydrogen Production Hydrogen Production Rate Mars, A. E. aut Budde, M. A. W. aut Lai, M. H. aut Dijkema, C. aut de Waard, P. aut Claassen, P. A. M. aut Enthalten in Applied microbiology and biotechnology Springer Berlin Heidelberg, 1984 74(2007), 6 vom: 01. Apr., Seite 1358-1367 (DE-627)129942634 (DE-600)392453-1 (DE-576)015507750 0175-7598 nnns volume:74 year:2007 number:6 day:01 month:04 pages:1358-1367 https://doi.org/10.1007/s00253-006-0783-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_21 GBV_ILN_23 GBV_ILN_40 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_100 GBV_ILN_130 GBV_ILN_147 GBV_ILN_267 GBV_ILN_285 GBV_ILN_2004 GBV_ILN_2018 GBV_ILN_2360 GBV_ILN_4012 GBV_ILN_4082 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 AR 74 2007 6 01 04 1358-1367 |
allfieldsSound |
10.1007/s00253-006-0783-x doi (DE-627)OLC2050712081 (DE-He213)s00253-006-0783-x-p DE-627 ger DE-627 rakwb eng 570 VZ 12 ssgn BIODIV DE-30 fid de Vrije, T. verfasserin aut Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2007 Abstract NMR analysis of 13C-labelling patterns showed that the Embden–Meyerhof (EM) pathway is the main route for glycolysis in the extreme thermophile Caldicellulosiruptor saccharolyticus. Glucose fermentation via the EM pathway to acetate results in a theoretical yield of 4 mol of hydrogen and 2 mol of acetate per mole of glucose. Previously, approximately 70% of the theoretical maximum hydrogen yield has been reached in batch fermentations. In this study, hydrogen and acetate yields have been determined at different dilution rates during continuous cultivation. The yields were dependent on the growth rate. The highest hydrogen yields of 82 to 90% of theoretical maximum (3.3 to 3.6 mol $ H_{2} $ per mol glucose) were obtained at low growth rates when a relatively larger part of the consumed glucose is used for maintenance. The hydrogen productivity showed the opposite effect. Both the specific and the volumetric hydrogen production rates were highest at the higher growth rates, reaching values of respectively 30 mmol $ g^{−1} $ $ h^{−1} $ and 20 mmol $ l^{−1} $ $ h^{−1} $. An industrial process for biohydrogen production will require a bioreactor design, which enables an optimal mix of high productivity and high yield. Fermentation Dilution Rate Hydrogen Yield Biohydrogen Production Hydrogen Production Rate Mars, A. E. aut Budde, M. A. W. aut Lai, M. H. aut Dijkema, C. aut de Waard, P. aut Claassen, P. A. M. aut Enthalten in Applied microbiology and biotechnology Springer Berlin Heidelberg, 1984 74(2007), 6 vom: 01. Apr., Seite 1358-1367 (DE-627)129942634 (DE-600)392453-1 (DE-576)015507750 0175-7598 nnns volume:74 year:2007 number:6 day:01 month:04 pages:1358-1367 https://doi.org/10.1007/s00253-006-0783-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_21 GBV_ILN_23 GBV_ILN_40 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_100 GBV_ILN_130 GBV_ILN_147 GBV_ILN_267 GBV_ILN_285 GBV_ILN_2004 GBV_ILN_2018 GBV_ILN_2360 GBV_ILN_4012 GBV_ILN_4082 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 AR 74 2007 6 01 04 1358-1367 |
language |
English |
source |
Enthalten in Applied microbiology and biotechnology 74(2007), 6 vom: 01. Apr., Seite 1358-1367 volume:74 year:2007 number:6 day:01 month:04 pages:1358-1367 |
sourceStr |
Enthalten in Applied microbiology and biotechnology 74(2007), 6 vom: 01. Apr., Seite 1358-1367 volume:74 year:2007 number:6 day:01 month:04 pages:1358-1367 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Fermentation Dilution Rate Hydrogen Yield Biohydrogen Production Hydrogen Production Rate |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Applied microbiology and biotechnology |
authorswithroles_txt_mv |
de Vrije, T. @@aut@@ Mars, A. E. @@aut@@ Budde, M. A. W. @@aut@@ Lai, M. H. @@aut@@ Dijkema, C. @@aut@@ de Waard, P. @@aut@@ Claassen, P. A. M. @@aut@@ |
publishDateDaySort_date |
2007-04-01T00:00:00Z |
hierarchy_top_id |
129942634 |
dewey-sort |
3570 |
id |
OLC2050712081 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2050712081</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230510073153.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00253-006-0783-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2050712081</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00253-006-0783-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">12</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">de Vrije, T.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract NMR analysis of 13C-labelling patterns showed that the Embden–Meyerhof (EM) pathway is the main route for glycolysis in the extreme thermophile Caldicellulosiruptor saccharolyticus. Glucose fermentation via the EM pathway to acetate results in a theoretical yield of 4 mol of hydrogen and 2 mol of acetate per mole of glucose. Previously, approximately 70% of the theoretical maximum hydrogen yield has been reached in batch fermentations. In this study, hydrogen and acetate yields have been determined at different dilution rates during continuous cultivation. The yields were dependent on the growth rate. The highest hydrogen yields of 82 to 90% of theoretical maximum (3.3 to 3.6 mol $ H_{2} $ per mol glucose) were obtained at low growth rates when a relatively larger part of the consumed glucose is used for maintenance. The hydrogen productivity showed the opposite effect. Both the specific and the volumetric hydrogen production rates were highest at the higher growth rates, reaching values of respectively 30 mmol $ g^{−1} $ $ h^{−1} $ and 20 mmol $ l^{−1} $ $ h^{−1} $. An industrial process for biohydrogen production will require a bioreactor design, which enables an optimal mix of high productivity and high yield.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fermentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dilution Rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen Yield</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biohydrogen Production</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen Production Rate</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mars, A. E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Budde, M. A. W.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lai, M. H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dijkema, C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">de Waard, P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Claassen, P. A. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied microbiology and biotechnology</subfield><subfield code="d">Springer Berlin Heidelberg, 1984</subfield><subfield code="g">74(2007), 6 vom: 01. Apr., Seite 1358-1367</subfield><subfield code="w">(DE-627)129942634</subfield><subfield code="w">(DE-600)392453-1</subfield><subfield code="w">(DE-576)015507750</subfield><subfield code="x">0175-7598</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:74</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:6</subfield><subfield code="g">day:01</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:1358-1367</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00253-006-0783-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2360</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">74</subfield><subfield code="j">2007</subfield><subfield code="e">6</subfield><subfield code="b">01</subfield><subfield code="c">04</subfield><subfield code="h">1358-1367</subfield></datafield></record></collection>
|
author |
de Vrije, T. |
spellingShingle |
de Vrije, T. ddc 570 ssgn 12 fid BIODIV misc Fermentation misc Dilution Rate misc Hydrogen Yield misc Biohydrogen Production misc Hydrogen Production Rate Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus |
authorStr |
de Vrije, T. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129942634 |
format |
Article |
dewey-ones |
570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0175-7598 |
topic_title |
570 VZ 12 ssgn BIODIV DE-30 fid Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus Fermentation Dilution Rate Hydrogen Yield Biohydrogen Production Hydrogen Production Rate |
topic |
ddc 570 ssgn 12 fid BIODIV misc Fermentation misc Dilution Rate misc Hydrogen Yield misc Biohydrogen Production misc Hydrogen Production Rate |
topic_unstemmed |
ddc 570 ssgn 12 fid BIODIV misc Fermentation misc Dilution Rate misc Hydrogen Yield misc Biohydrogen Production misc Hydrogen Production Rate |
topic_browse |
ddc 570 ssgn 12 fid BIODIV misc Fermentation misc Dilution Rate misc Hydrogen Yield misc Biohydrogen Production misc Hydrogen Production Rate |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Applied microbiology and biotechnology |
hierarchy_parent_id |
129942634 |
dewey-tens |
570 - Life sciences; biology |
hierarchy_top_title |
Applied microbiology and biotechnology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129942634 (DE-600)392453-1 (DE-576)015507750 |
title |
Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus |
ctrlnum |
(DE-627)OLC2050712081 (DE-He213)s00253-006-0783-x-p |
title_full |
Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus |
author_sort |
de Vrije, T. |
journal |
Applied microbiology and biotechnology |
journalStr |
Applied microbiology and biotechnology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2007 |
contenttype_str_mv |
txt |
container_start_page |
1358 |
author_browse |
de Vrije, T. Mars, A. E. Budde, M. A. W. Lai, M. H. Dijkema, C. de Waard, P. Claassen, P. A. M. |
container_volume |
74 |
class |
570 VZ 12 ssgn BIODIV DE-30 fid |
format_se |
Aufsätze |
author-letter |
de Vrije, T. |
doi_str_mv |
10.1007/s00253-006-0783-x |
dewey-full |
570 |
title_sort |
glycolytic pathway and hydrogen yield studies of the extreme thermophile caldicellulosiruptor saccharolyticus |
title_auth |
Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus |
abstract |
Abstract NMR analysis of 13C-labelling patterns showed that the Embden–Meyerhof (EM) pathway is the main route for glycolysis in the extreme thermophile Caldicellulosiruptor saccharolyticus. Glucose fermentation via the EM pathway to acetate results in a theoretical yield of 4 mol of hydrogen and 2 mol of acetate per mole of glucose. Previously, approximately 70% of the theoretical maximum hydrogen yield has been reached in batch fermentations. In this study, hydrogen and acetate yields have been determined at different dilution rates during continuous cultivation. The yields were dependent on the growth rate. The highest hydrogen yields of 82 to 90% of theoretical maximum (3.3 to 3.6 mol $ H_{2} $ per mol glucose) were obtained at low growth rates when a relatively larger part of the consumed glucose is used for maintenance. The hydrogen productivity showed the opposite effect. Both the specific and the volumetric hydrogen production rates were highest at the higher growth rates, reaching values of respectively 30 mmol $ g^{−1} $ $ h^{−1} $ and 20 mmol $ l^{−1} $ $ h^{−1} $. An industrial process for biohydrogen production will require a bioreactor design, which enables an optimal mix of high productivity and high yield. © Springer-Verlag 2007 |
abstractGer |
Abstract NMR analysis of 13C-labelling patterns showed that the Embden–Meyerhof (EM) pathway is the main route for glycolysis in the extreme thermophile Caldicellulosiruptor saccharolyticus. Glucose fermentation via the EM pathway to acetate results in a theoretical yield of 4 mol of hydrogen and 2 mol of acetate per mole of glucose. Previously, approximately 70% of the theoretical maximum hydrogen yield has been reached in batch fermentations. In this study, hydrogen and acetate yields have been determined at different dilution rates during continuous cultivation. The yields were dependent on the growth rate. The highest hydrogen yields of 82 to 90% of theoretical maximum (3.3 to 3.6 mol $ H_{2} $ per mol glucose) were obtained at low growth rates when a relatively larger part of the consumed glucose is used for maintenance. The hydrogen productivity showed the opposite effect. Both the specific and the volumetric hydrogen production rates were highest at the higher growth rates, reaching values of respectively 30 mmol $ g^{−1} $ $ h^{−1} $ and 20 mmol $ l^{−1} $ $ h^{−1} $. An industrial process for biohydrogen production will require a bioreactor design, which enables an optimal mix of high productivity and high yield. © Springer-Verlag 2007 |
abstract_unstemmed |
Abstract NMR analysis of 13C-labelling patterns showed that the Embden–Meyerhof (EM) pathway is the main route for glycolysis in the extreme thermophile Caldicellulosiruptor saccharolyticus. Glucose fermentation via the EM pathway to acetate results in a theoretical yield of 4 mol of hydrogen and 2 mol of acetate per mole of glucose. Previously, approximately 70% of the theoretical maximum hydrogen yield has been reached in batch fermentations. In this study, hydrogen and acetate yields have been determined at different dilution rates during continuous cultivation. The yields were dependent on the growth rate. The highest hydrogen yields of 82 to 90% of theoretical maximum (3.3 to 3.6 mol $ H_{2} $ per mol glucose) were obtained at low growth rates when a relatively larger part of the consumed glucose is used for maintenance. The hydrogen productivity showed the opposite effect. Both the specific and the volumetric hydrogen production rates were highest at the higher growth rates, reaching values of respectively 30 mmol $ g^{−1} $ $ h^{−1} $ and 20 mmol $ l^{−1} $ $ h^{−1} $. An industrial process for biohydrogen production will require a bioreactor design, which enables an optimal mix of high productivity and high yield. © Springer-Verlag 2007 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_21 GBV_ILN_23 GBV_ILN_40 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_100 GBV_ILN_130 GBV_ILN_147 GBV_ILN_267 GBV_ILN_285 GBV_ILN_2004 GBV_ILN_2018 GBV_ILN_2360 GBV_ILN_4012 GBV_ILN_4082 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 |
container_issue |
6 |
title_short |
Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus |
url |
https://doi.org/10.1007/s00253-006-0783-x |
remote_bool |
false |
author2 |
Mars, A. E. Budde, M. A. W. Lai, M. H. Dijkema, C. de Waard, P. Claassen, P. A. M. |
author2Str |
Mars, A. E. Budde, M. A. W. Lai, M. H. Dijkema, C. de Waard, P. Claassen, P. A. M. |
ppnlink |
129942634 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00253-006-0783-x |
up_date |
2024-07-04T02:39:26.915Z |
_version_ |
1803614438733905920 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2050712081</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230510073153.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00253-006-0783-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2050712081</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00253-006-0783-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">12</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">de Vrije, T.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract NMR analysis of 13C-labelling patterns showed that the Embden–Meyerhof (EM) pathway is the main route for glycolysis in the extreme thermophile Caldicellulosiruptor saccharolyticus. Glucose fermentation via the EM pathway to acetate results in a theoretical yield of 4 mol of hydrogen and 2 mol of acetate per mole of glucose. Previously, approximately 70% of the theoretical maximum hydrogen yield has been reached in batch fermentations. In this study, hydrogen and acetate yields have been determined at different dilution rates during continuous cultivation. The yields were dependent on the growth rate. The highest hydrogen yields of 82 to 90% of theoretical maximum (3.3 to 3.6 mol $ H_{2} $ per mol glucose) were obtained at low growth rates when a relatively larger part of the consumed glucose is used for maintenance. The hydrogen productivity showed the opposite effect. Both the specific and the volumetric hydrogen production rates were highest at the higher growth rates, reaching values of respectively 30 mmol $ g^{−1} $ $ h^{−1} $ and 20 mmol $ l^{−1} $ $ h^{−1} $. An industrial process for biohydrogen production will require a bioreactor design, which enables an optimal mix of high productivity and high yield.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fermentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dilution Rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen Yield</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biohydrogen Production</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen Production Rate</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mars, A. E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Budde, M. A. W.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lai, M. H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dijkema, C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">de Waard, P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Claassen, P. A. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied microbiology and biotechnology</subfield><subfield code="d">Springer Berlin Heidelberg, 1984</subfield><subfield code="g">74(2007), 6 vom: 01. Apr., Seite 1358-1367</subfield><subfield code="w">(DE-627)129942634</subfield><subfield code="w">(DE-600)392453-1</subfield><subfield code="w">(DE-576)015507750</subfield><subfield code="x">0175-7598</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:74</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:6</subfield><subfield code="g">day:01</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:1358-1367</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00253-006-0783-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2360</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">74</subfield><subfield code="j">2007</subfield><subfield code="e">6</subfield><subfield code="b">01</subfield><subfield code="c">04</subfield><subfield code="h">1358-1367</subfield></datafield></record></collection>
|
score |
7.4006615 |