Invariant measures exist under a summability condition for unimodal maps
Summary For unimodal maps with negative Schwarzian derivative a sufficient condition for the existence of an invariant measure, absolutely continuous with respect to Lebesgue measure, is given. Namely the derivatives of the iterations of the map in the (unique) critical value must be so large that t...
Ausführliche Beschreibung
Autor*in: |
Nowicki, Tomasz [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1991 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© Springer International 1991 |
---|
Übergeordnetes Werk: |
Enthalten in: Inventiones mathematicae - Springer-Verlag, 1966, 105(1991), 1 vom: Dez., Seite 123-136 |
---|---|
Übergeordnetes Werk: |
volume:105 ; year:1991 ; number:1 ; month:12 ; pages:123-136 |
Links: |
---|
DOI / URN: |
10.1007/BF01232258 |
---|
Katalog-ID: |
OLC2050908016 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2050908016 | ||
003 | DE-627 | ||
005 | 20230323220834.0 | ||
007 | tu | ||
008 | 200819s1991 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF01232258 |2 doi | |
035 | |a (DE-627)OLC2050908016 | ||
035 | |a (DE-He213)BF01232258-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a SA 5940 |q VZ |2 rvk | ||
084 | |a SA 5940 |q VZ |2 rvk | ||
100 | 1 | |a Nowicki, Tomasz |e verfasserin |4 aut | |
245 | 1 | 0 | |a Invariant measures exist under a summability condition for unimodal maps |
264 | 1 | |c 1991 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer International 1991 | ||
520 | |a Summary For unimodal maps with negative Schwarzian derivative a sufficient condition for the existence of an invariant measure, absolutely continuous with respect to Lebesgue measure, is given. Namely the derivatives of the iterations of the map in the (unique) critical value must be so large that the sum of (some root of) the inverses is finite. | ||
650 | 4 | |a Lebesgue Measure | |
650 | 4 | |a Invariant Measure | |
650 | 4 | |a Summability Condition | |
650 | 4 | |a Schwarzian Derivative | |
650 | 4 | |a Negative Schwarzian Derivative | |
700 | 1 | |a van Strien, Sebastian |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Inventiones mathematicae |d Springer-Verlag, 1966 |g 105(1991), 1 vom: Dez., Seite 123-136 |w (DE-627)129077453 |w (DE-600)2921-X |w (DE-576)014409992 |x 0020-9910 |7 nnns |
773 | 1 | 8 | |g volume:105 |g year:1991 |g number:1 |g month:12 |g pages:123-136 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF01232258 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4082 | ||
912 | |a GBV_ILN_4103 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4314 | ||
912 | |a GBV_ILN_4315 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4700 | ||
936 | r | v | |a SA 5940 |
936 | r | v | |a SA 5940 |
951 | |a AR | ||
952 | |d 105 |j 1991 |e 1 |c 12 |h 123-136 |
author_variant |
t n tn s s v ss ssv |
---|---|
matchkey_str |
article:00209910:1991----::nainmaueeitneaumbltcni |
hierarchy_sort_str |
1991 |
publishDate |
1991 |
allfields |
10.1007/BF01232258 doi (DE-627)OLC2050908016 (DE-He213)BF01232258-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 5940 VZ rvk SA 5940 VZ rvk Nowicki, Tomasz verfasserin aut Invariant measures exist under a summability condition for unimodal maps 1991 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer International 1991 Summary For unimodal maps with negative Schwarzian derivative a sufficient condition for the existence of an invariant measure, absolutely continuous with respect to Lebesgue measure, is given. Namely the derivatives of the iterations of the map in the (unique) critical value must be so large that the sum of (some root of) the inverses is finite. Lebesgue Measure Invariant Measure Summability Condition Schwarzian Derivative Negative Schwarzian Derivative van Strien, Sebastian aut Enthalten in Inventiones mathematicae Springer-Verlag, 1966 105(1991), 1 vom: Dez., Seite 123-136 (DE-627)129077453 (DE-600)2921-X (DE-576)014409992 0020-9910 nnns volume:105 year:1991 number:1 month:12 pages:123-136 https://doi.org/10.1007/BF01232258 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4012 GBV_ILN_4027 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 5940 SA 5940 AR 105 1991 1 12 123-136 |
spelling |
10.1007/BF01232258 doi (DE-627)OLC2050908016 (DE-He213)BF01232258-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 5940 VZ rvk SA 5940 VZ rvk Nowicki, Tomasz verfasserin aut Invariant measures exist under a summability condition for unimodal maps 1991 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer International 1991 Summary For unimodal maps with negative Schwarzian derivative a sufficient condition for the existence of an invariant measure, absolutely continuous with respect to Lebesgue measure, is given. Namely the derivatives of the iterations of the map in the (unique) critical value must be so large that the sum of (some root of) the inverses is finite. Lebesgue Measure Invariant Measure Summability Condition Schwarzian Derivative Negative Schwarzian Derivative van Strien, Sebastian aut Enthalten in Inventiones mathematicae Springer-Verlag, 1966 105(1991), 1 vom: Dez., Seite 123-136 (DE-627)129077453 (DE-600)2921-X (DE-576)014409992 0020-9910 nnns volume:105 year:1991 number:1 month:12 pages:123-136 https://doi.org/10.1007/BF01232258 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4012 GBV_ILN_4027 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 5940 SA 5940 AR 105 1991 1 12 123-136 |
allfields_unstemmed |
10.1007/BF01232258 doi (DE-627)OLC2050908016 (DE-He213)BF01232258-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 5940 VZ rvk SA 5940 VZ rvk Nowicki, Tomasz verfasserin aut Invariant measures exist under a summability condition for unimodal maps 1991 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer International 1991 Summary For unimodal maps with negative Schwarzian derivative a sufficient condition for the existence of an invariant measure, absolutely continuous with respect to Lebesgue measure, is given. Namely the derivatives of the iterations of the map in the (unique) critical value must be so large that the sum of (some root of) the inverses is finite. Lebesgue Measure Invariant Measure Summability Condition Schwarzian Derivative Negative Schwarzian Derivative van Strien, Sebastian aut Enthalten in Inventiones mathematicae Springer-Verlag, 1966 105(1991), 1 vom: Dez., Seite 123-136 (DE-627)129077453 (DE-600)2921-X (DE-576)014409992 0020-9910 nnns volume:105 year:1991 number:1 month:12 pages:123-136 https://doi.org/10.1007/BF01232258 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4012 GBV_ILN_4027 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 5940 SA 5940 AR 105 1991 1 12 123-136 |
allfieldsGer |
10.1007/BF01232258 doi (DE-627)OLC2050908016 (DE-He213)BF01232258-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 5940 VZ rvk SA 5940 VZ rvk Nowicki, Tomasz verfasserin aut Invariant measures exist under a summability condition for unimodal maps 1991 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer International 1991 Summary For unimodal maps with negative Schwarzian derivative a sufficient condition for the existence of an invariant measure, absolutely continuous with respect to Lebesgue measure, is given. Namely the derivatives of the iterations of the map in the (unique) critical value must be so large that the sum of (some root of) the inverses is finite. Lebesgue Measure Invariant Measure Summability Condition Schwarzian Derivative Negative Schwarzian Derivative van Strien, Sebastian aut Enthalten in Inventiones mathematicae Springer-Verlag, 1966 105(1991), 1 vom: Dez., Seite 123-136 (DE-627)129077453 (DE-600)2921-X (DE-576)014409992 0020-9910 nnns volume:105 year:1991 number:1 month:12 pages:123-136 https://doi.org/10.1007/BF01232258 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4012 GBV_ILN_4027 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 5940 SA 5940 AR 105 1991 1 12 123-136 |
allfieldsSound |
10.1007/BF01232258 doi (DE-627)OLC2050908016 (DE-He213)BF01232258-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn SA 5940 VZ rvk SA 5940 VZ rvk Nowicki, Tomasz verfasserin aut Invariant measures exist under a summability condition for unimodal maps 1991 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer International 1991 Summary For unimodal maps with negative Schwarzian derivative a sufficient condition for the existence of an invariant measure, absolutely continuous with respect to Lebesgue measure, is given. Namely the derivatives of the iterations of the map in the (unique) critical value must be so large that the sum of (some root of) the inverses is finite. Lebesgue Measure Invariant Measure Summability Condition Schwarzian Derivative Negative Schwarzian Derivative van Strien, Sebastian aut Enthalten in Inventiones mathematicae Springer-Verlag, 1966 105(1991), 1 vom: Dez., Seite 123-136 (DE-627)129077453 (DE-600)2921-X (DE-576)014409992 0020-9910 nnns volume:105 year:1991 number:1 month:12 pages:123-136 https://doi.org/10.1007/BF01232258 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4012 GBV_ILN_4027 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 5940 SA 5940 AR 105 1991 1 12 123-136 |
language |
English |
source |
Enthalten in Inventiones mathematicae 105(1991), 1 vom: Dez., Seite 123-136 volume:105 year:1991 number:1 month:12 pages:123-136 |
sourceStr |
Enthalten in Inventiones mathematicae 105(1991), 1 vom: Dez., Seite 123-136 volume:105 year:1991 number:1 month:12 pages:123-136 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Lebesgue Measure Invariant Measure Summability Condition Schwarzian Derivative Negative Schwarzian Derivative |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Inventiones mathematicae |
authorswithroles_txt_mv |
Nowicki, Tomasz @@aut@@ van Strien, Sebastian @@aut@@ |
publishDateDaySort_date |
1991-12-01T00:00:00Z |
hierarchy_top_id |
129077453 |
dewey-sort |
3510 |
id |
OLC2050908016 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2050908016</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323220834.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1991 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01232258</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2050908016</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01232258-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5940</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5940</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nowicki, Tomasz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Invariant measures exist under a summability condition for unimodal maps</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1991</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer International 1991</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary For unimodal maps with negative Schwarzian derivative a sufficient condition for the existence of an invariant measure, absolutely continuous with respect to Lebesgue measure, is given. Namely the derivatives of the iterations of the map in the (unique) critical value must be so large that the sum of (some root of) the inverses is finite.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lebesgue Measure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Invariant Measure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Summability Condition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Schwarzian Derivative</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Negative Schwarzian Derivative</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van Strien, Sebastian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Inventiones mathematicae</subfield><subfield code="d">Springer-Verlag, 1966</subfield><subfield code="g">105(1991), 1 vom: Dez., Seite 123-136</subfield><subfield code="w">(DE-627)129077453</subfield><subfield code="w">(DE-600)2921-X</subfield><subfield code="w">(DE-576)014409992</subfield><subfield code="x">0020-9910</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:105</subfield><subfield code="g">year:1991</subfield><subfield code="g">number:1</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:123-136</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01232258</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5940</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5940</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">105</subfield><subfield code="j">1991</subfield><subfield code="e">1</subfield><subfield code="c">12</subfield><subfield code="h">123-136</subfield></datafield></record></collection>
|
author |
Nowicki, Tomasz |
spellingShingle |
Nowicki, Tomasz ddc 510 ssgn 17,1 rvk SA 5940 misc Lebesgue Measure misc Invariant Measure misc Summability Condition misc Schwarzian Derivative misc Negative Schwarzian Derivative Invariant measures exist under a summability condition for unimodal maps |
authorStr |
Nowicki, Tomasz |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129077453 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0020-9910 |
topic_title |
510 VZ 17,1 ssgn SA 5940 VZ rvk Invariant measures exist under a summability condition for unimodal maps Lebesgue Measure Invariant Measure Summability Condition Schwarzian Derivative Negative Schwarzian Derivative |
topic |
ddc 510 ssgn 17,1 rvk SA 5940 misc Lebesgue Measure misc Invariant Measure misc Summability Condition misc Schwarzian Derivative misc Negative Schwarzian Derivative |
topic_unstemmed |
ddc 510 ssgn 17,1 rvk SA 5940 misc Lebesgue Measure misc Invariant Measure misc Summability Condition misc Schwarzian Derivative misc Negative Schwarzian Derivative |
topic_browse |
ddc 510 ssgn 17,1 rvk SA 5940 misc Lebesgue Measure misc Invariant Measure misc Summability Condition misc Schwarzian Derivative misc Negative Schwarzian Derivative |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Inventiones mathematicae |
hierarchy_parent_id |
129077453 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Inventiones mathematicae |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129077453 (DE-600)2921-X (DE-576)014409992 |
title |
Invariant measures exist under a summability condition for unimodal maps |
ctrlnum |
(DE-627)OLC2050908016 (DE-He213)BF01232258-p |
title_full |
Invariant measures exist under a summability condition for unimodal maps |
author_sort |
Nowicki, Tomasz |
journal |
Inventiones mathematicae |
journalStr |
Inventiones mathematicae |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1991 |
contenttype_str_mv |
txt |
container_start_page |
123 |
author_browse |
Nowicki, Tomasz van Strien, Sebastian |
container_volume |
105 |
class |
510 VZ 17,1 ssgn SA 5940 VZ rvk |
format_se |
Aufsätze |
author-letter |
Nowicki, Tomasz |
doi_str_mv |
10.1007/BF01232258 |
dewey-full |
510 |
title_sort |
invariant measures exist under a summability condition for unimodal maps |
title_auth |
Invariant measures exist under a summability condition for unimodal maps |
abstract |
Summary For unimodal maps with negative Schwarzian derivative a sufficient condition for the existence of an invariant measure, absolutely continuous with respect to Lebesgue measure, is given. Namely the derivatives of the iterations of the map in the (unique) critical value must be so large that the sum of (some root of) the inverses is finite. © Springer International 1991 |
abstractGer |
Summary For unimodal maps with negative Schwarzian derivative a sufficient condition for the existence of an invariant measure, absolutely continuous with respect to Lebesgue measure, is given. Namely the derivatives of the iterations of the map in the (unique) critical value must be so large that the sum of (some root of) the inverses is finite. © Springer International 1991 |
abstract_unstemmed |
Summary For unimodal maps with negative Schwarzian derivative a sufficient condition for the existence of an invariant measure, absolutely continuous with respect to Lebesgue measure, is given. Namely the derivatives of the iterations of the map in the (unique) critical value must be so large that the sum of (some root of) the inverses is finite. © Springer International 1991 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4012 GBV_ILN_4027 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4126 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Invariant measures exist under a summability condition for unimodal maps |
url |
https://doi.org/10.1007/BF01232258 |
remote_bool |
false |
author2 |
van Strien, Sebastian |
author2Str |
van Strien, Sebastian |
ppnlink |
129077453 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF01232258 |
up_date |
2024-07-04T03:08:47.964Z |
_version_ |
1803616285336010752 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2050908016</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323220834.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1991 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01232258</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2050908016</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01232258-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5940</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5940</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nowicki, Tomasz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Invariant measures exist under a summability condition for unimodal maps</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1991</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer International 1991</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary For unimodal maps with negative Schwarzian derivative a sufficient condition for the existence of an invariant measure, absolutely continuous with respect to Lebesgue measure, is given. Namely the derivatives of the iterations of the map in the (unique) critical value must be so large that the sum of (some root of) the inverses is finite.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lebesgue Measure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Invariant Measure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Summability Condition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Schwarzian Derivative</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Negative Schwarzian Derivative</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van Strien, Sebastian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Inventiones mathematicae</subfield><subfield code="d">Springer-Verlag, 1966</subfield><subfield code="g">105(1991), 1 vom: Dez., Seite 123-136</subfield><subfield code="w">(DE-627)129077453</subfield><subfield code="w">(DE-600)2921-X</subfield><subfield code="w">(DE-576)014409992</subfield><subfield code="x">0020-9910</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:105</subfield><subfield code="g">year:1991</subfield><subfield code="g">number:1</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:123-136</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01232258</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5940</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5940</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">105</subfield><subfield code="j">1991</subfield><subfield code="e">1</subfield><subfield code="c">12</subfield><subfield code="h">123-136</subfield></datafield></record></collection>
|
score |
7.4000883 |